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ABSTRACT

We review some recently developed fast simulation
concepts and techniques used for estimating the prob-
ability of rare buffer overflows in a class of queue-
ing models that arise in the analysis of ATM (asyn-
chronous transfer mode) communication networks.
We then discuss some new applications of these con-
cepts to estimate buffer loss probabilities in ATM net-
works where packets have different types of priorities.

1 INTRODUCTION

This paper deals with the estimation of buffer over-
flow probabilities in a class of queueing models that
arise in the context of ATM (asynchronous transfer
mode) communication networks. Broadly speaking,
an ATM network consists of several nodes connected
to each other through a network of switches. Packets
of information are sent from one node to another via
a sequence of switches called its route. Each packet
contains information in its header, about its final des-
tination and/or the route to be used to get to that
destination. The function of a switch is to read the
header information on each packet and direct it to
the next switch on its route. Hence, the rate at which
packets depart from a switch is governed by the time
it takes for the switch to do this. All switches have
finite buffers and packets which arrive at a switch
when its buffer is full, are lost. These communication
networks are also characterized by the fact that the
packet arrival stream from each node may be signifi-
cantly autocorrelated.

It is customary to model an ATM network as a
queueing network in discrete time, i.e., the time axis
is discretized. We will assume that each queue in
the network has the capacity to serve a fixed number
of packets in each discrete time unit. Several exter-
nal sources feed packets into different switches in the
network. To model the autocorrelation in the packet
arrival streams from external sources, different mod-
els are used. The most commonly used seems to be
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the Markov Modulated Arrival Process (MMAP), in
which each source can be in one of several states. The
source may change states after each discrete time unit
with transitions being governed by a discrete time
Markov chain. The distribution of the number of ar-
rivals from a source in each discrete time unit de-
pends on the state of the source over that time unit.
Other autocorrelated arrival stream models, like au-
toregressive arrival processes are also used to model
the arrival streams in such networks.

The queueing network model with the MMAPs de-
scribed above, may be solved for the buffer overflow
probabilities, using Markov chain methods. However,
for networks with many switches and external arrival
sources, the state space of the Markov chain may be
prohibitively large. The problem gets worse in net-
works with multiple packet classes and priorities. One
alternative may be to use simulation.

The main problem with simulation is the rarity of
the buffer overflow event. A large number of events
have to be simulated in the model before any sam-
ples of buffer overflow may be obtained. Thus we
have what is termed in the literature as a rare event
simulation problem. An approach that is used for
such problems is called importance sampling (see,
e.g., Hammersley and Handscomb 1964, Glynn and
Iglehart 1989 ). In importance sampling, the stochas-
tic model is simulated with a new probability dynam-
ics, that makes the events of interest occur more fre-
quently. The sample value is then adjusted to make
the final estimate unbiased. However, choosing any
change of measure that makes the event of interest
occur frequently is not enough; how it is made to
happen more frequently is also very important. For
example, an arbitrary change of measure that makes
the rare event happen more frequently may give an
estimator with an infinite variance. Hence the main
problem in importance sampling is to come up with
an appropriate change of measure for the rare event
simulation problem in hand.

Provably efficient changes of measures for queueing
models have been proposed and studied in the past
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(e.g., Siegmund 1976, Cottrell et. al. 1983, Parekh
and Walrand 1989, Sadowsky 1991, etc.). Until re-
cently, most of the study dealt with one queue sys-
tems where the arrival stream constitutes an i.i.d. re-
newal process. Extension of these provably efficient
changes of measures to networks have been few and
apply mainly to Markovian tandem networks (e.g.,
Tsoucas 1992, Glasserman and Kou 1993). Heuris-
tical approaches for fast simulation of more gen-
eral networks may be found in Parekh and Wal-
rand (1989), Frater et. al. (1991) and Devetsikiotis
and Townsend (1993). Provably efficient changes of
measures for queues with autocorrelated arrival pro-
cesses were studied in Chang et. al. (1993a) and
Juneja (1993) (see, e.g., Asmussen 1985, Lehtonen
and Nehriyen 1992 for analogous concepts in the con-
text of risk analysis), fast simulation of Markov fluid
models of such queues have been studied in Kesidis
and Walrand (1993) and Ridder (1994). Chang et.
al. (1993a) also linked fast simulation techniques for
ATM switches to the concept of effective bandwidth
(see, e.g., Guerin et. al. 1981) of the arrival sources,
thus generalizing the class of source models that can
be handled and allowing the study to be extended to
the class of intree networks. Some critical concepts
in Chang et. al. (1993a), dealing with effective band-
widths in intree networks, were also developed inde-
pendently in de Veciana et. al. (1993). The reader is
referred to Heidelberger (1993) for a comprehensive
survey covering most of the above results, as well as
a detailed list of references.

In this paper we review some of the basic concepts
and fast simulation techniques developed for ATM
networks in Chang et. al. (1993a). We then dis-
cuss some new applications of this theory to ATM
networks with multiple classes of packets and differ-
ent priority rules. In particular, we consider networks
with two classes of packets (high priority and low pri-
ority) under two different priority rules. In the first
priority rule, the higher priority packet gets what we
call service priority. This means that in any discrete
time instance first all the high priority packets are
transmitted. Then if there is any remaining capac-
ity, the lower priority packets get transmitted. In the
second priority rule, the higher priority packet gets
service priority as well as what we call buffer prior-
ity. In buffer priority, as long as the buffer is not
full, both high and low priority packets are admitted.
When the buffer is full and a high priority packet ar-
rives, then a low priority packet is displaced if it is
present in the system. Otherwise the high priority
packet is lost. If a low priority packet arrives and the
buffer is full, then the low priority packet is always
lost.

Another type of priority rule has been considered
in Chang et. al. (1993b). Whenever the queue length
(buffer contents) is less than a fixed B, < B, then

both high and low priority traffic streams are ac-
cepted by the switch. However, when the queue
length crosses B,, then low priority arrivals are re-
jected and only high priority arrivals are admitted to
the buffer. When the buffer gets full, both low and
high priority packets are rejected. For details of the
fast simulation technique, the reader is referred to
Chang et. al. (1993b).

The rest of the paper is organized as follows. In
Section 2, the general technique of importance sam-
pling for rare event simulation is described. Some
of the basic importance sampling concepts and tech-
niques for single queues and intree networks are dis-
cussed in Section 3. In Section 4, we study the
two different priority rules applied to intree networks
with multiple packet classes. Experimental results
are given in Section 5 and the conclusion is presented
in Section 6.

2 IMPORTANCE SAMPLING

First we illustrate the basic problem of rare event
simulation. Let X be a random variable with den-
sity p(-) and let Ap be a rare set in which X can
take values. The rare set .4p is parameterized by
B, so that as B — oo, the set becomes rarer, i.e.,
P(Ag) — 0. The problem is to estimate y5 =
P(AB) = Ep(lixecas}) where the subscript in the
expectation denotes the density of the random vari-
able X. In standard simulation, we generate n sam-
ples of the random variable X, say Xi,X»,...X,
and estimate yp by using 48 = Y.;—; l{x.cAp}/7-
For fixed n, the half width (HWpg) of the confidence
interval is (approximately) directly proportional to
VVar(lixeas}) = V7B —7p5. Consequently, the
relative error REg = HWpg/vg, is directly propor-
tional to \/Var(I{xe45})/75- It is then easy to see
that REgp — o0 as B — oo.

Let p'(-) be another density so that p’(z) > 0 when-
ever p(z) > 0 for all z in Ap. Then

18 = [ Lixeanp(@)de = By(lixean Ly(X)) (1)

where the subscript in the expectation denotes the
new density with respect to which the expectation is
taken and L,/ (-) is the likelihood ratio, i.e., Ly (z) =
p(z)/p'(z) whenever p'(z) > 0 and 0 otherwise.
Equation 1 suggests that we can use p’(-) instead
of p(-) to generate n samples of X and then use
¥ = Y71 Uxieasy Ly (Xi) as an unbiased estima-
tor of yp. This is called importance sampling. The
problem is to choose a p(:) so that

Var?'(l{XE.As}LP'(X)) < Va"‘p(l{xeAs})-
Suppose the p/(-) is such that for all X € Ap,
d1f(B) < Ly/(X) < d2f(B) (2)
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where d; and d; are constants and f(-) is a function
taking positive values with the property that that
f(B) — 0 as B — oo. Then using Equation 1, it
can be shown that

d1f(B)Ep (1{xcas}) < 7B < d2f(B) (3)

and Ep(1ixeas)L2) < djf?(B). Hence

Varp(1ixeapyLi) < d3f*(B). (4)

Suppose we are able
to show that liminfp_ o Ep/(l{xcap}) > 0. Then
using Equation 3 and Equation 4 we can show that
the relative error of the importance sampling estimate
remains bounded as € — 0. This is referred to as the
bounded relative error property.

3 IMPORTANCE SAMPLING FOR SIN-
GLE QUEUE AND INTREE NET-
WORKS

First consider the problem of estimating the steady
state loss probability in a single queue system. As-
sume that the queue is fed by K external sources,
each of which is a MMAP. For simplicity, we consider
the simplest form of such an arrival process. Let the
kth source be in any of the M, states {0,1,...My_1}.
Let Y (t) be the state of the kth source after time ¢,
and let pr(3,7) = P(Y(t + 1) = §|Yi(t) = 7). Let the
number of packets a source transmits per unit of dis-
crete time, ax(t), be equal to the current state of the
source. Let Ai(t) = 3i_, ax(t) be the total number
of arrivals from the kth source until time ¢, a(t) =
YK | ai(t) and A(t) = S5, Ax(t). We assume that
the switch has the capacity to dispatch ¢ packets ev-
ery unit of discrete time. Let B now denote the size of
the buffer. Then the number of people in the system
at time t is governed by the following Lindley type
recursion: Q(t+ 1) = (min(Q(t) + a(t +1),B) —¢)*.
Note that the recursion assumes that, all packets ar-
riving when the buffer is full, are lost. The problem
is to estimate the steady state probability of packet
loss when B is large.

Consider the Markov chain that has the Y, (t)’s and
the Q(t) as its state at time t. We will call this the
process Markov chain. Let A be the set of states
of this Markov chain with Q(¢) = 0. Define an A-
cycle to be the process between any two consecutive
times when the Markov chain enters a state in A. Let
X now denote a random sample path of the process
Markov chain over an A-cycle. Then the steady state
loss probability may be expressed as (see, e.g., Cog-
burn 1975)

E(D)

where W = W(X) is the number of packets lost in
an A-cycle (in steady state) and D = D(X) is the
total number of packets that arrive in an A-cycle (in
steady state). Let .Ap denote the event of hlttmg the
buffer in an A-cycle, when the buffer size is B. Note
that as B — oo, the event Ap becomes rarer. Thus,
as mentioned in Section 2, it becomes harder to sim-
ulate for P(Ap) = Ep(l{xeap}) (Where now p(-) is
the original measure on the sample path X). Note
that E(W) = E(W|Ap)P(Ap). Given that Ap has
occurred, W is mostly positive. So any importance
sampling change of measure that can efficiently simu-
late for P(Ap), should also be efficient for simulating
for E(W). Also, since D is rarely 0, one can estimate
E(D) by standard simulation. Hence we will concern
ourselves only with efficient changes of measure for
estimating P(Ag).

Let i s be the spectral radius of the matrix with
elements Ak(3,j) = €% pr(i,7) and let hye(j) be
the corresponding eigenvector. Define a new Markov
chain transition matrix by

%7 pi (4, 5)h,0(5)
Ak 0hk,0(%)

Let t = 0 denote the time of the start of an A-cycle in
steady state. Let the new measure pj(- ) on the sample
space of X be one in which we use the pj (4, 7)’s until
the first time when either the A-cycle completes or
Q(t) = B. If Q(t) = B then we use the pi(i,5)'s
until the A-cycle completes. Let Tp be the time to
buffer overflow in an A-cycle. Then for all X € Ap,
the likelihood ratio Lg(X) = Lp,(X) accumulated
over a cycle is given by

p;c,o(i’ J) =

K e s (¥t —1)
Ly(X) = ’gt:[[le OY()Ak,OW)—

K
= 4o Towa™ il

Let H(6) (resp H(9)) be the minimum (resp. max-
imum) of [Tr_,(h&,e(ik)/hx,e(3,) over all possible
(31,...,%k,%),...,9%). Because all the arrival pro-
cesses have a finite number of states, therefore such
a minimum (resp. maximum) exists. Then

GA(TB) _
e Ly (X) <F

e FIS <
(Tk=1 Ae,0)7=

Let B(t) be the number of departures from the queue
until time ¢. Since for sample paths in Ag, Q(t) does
not hit 0 before Tg, B(Tg) = c¢Ts. Then A(Ts) =
¢Tg + O(Tg) + B where O(Tp) is the overshoot at
time Tp. Suppose we use a pj(-) with § = 6*, where
6” is the solution to

Y1 log(Ae,e)
iy B Ae)

(6)

and 6>0. (M
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(it can be shown that this set of equations has a
unique solution). Substituting # = 6* in Equation 6
and using the relationship between A(Tg) and B(Ts)
described above, we get that

LI_(G')e‘o‘Be‘O(TB) < Lo-(X) < eo‘B’ﬁ(a-u).

Since all the MMAP’s have finite number of
states, the O(T) is bounded from above. Hence
Ly-(X) satisfies Equation 2 with f(B) = e=¢"5.
If in addition, we are able to prove that
liminfpe Ep:, (1{xecas}) > O then we will also
have bounded relative error. Intutitively, pj.(-) is such
that it makes the queue unstable and so this lower
bound is very likely to be true.

Changes of measure with the bounded relative error
property may also be found for arrival processes other
than MMAP’s. The key is the connection between
effective bandwidth and fast simulation (Chang et.
al. 1993a). For any general arrival process, let A(t)
be the number of arrivals in time (0,t]. Then the
effective bandwidth is defined to be

log[E(e?4("))]
6t

(if the limit exists). For example, consider the MMAP
described above. Let l4(t) denote the likelihood ratio
accumulated till time ¢ if we use the change of mea-
sure given by pj(:). Then Equation 6 holds with T
replaced by t and Ly(X) replaced by lg(¢). Using that
equation we see that

10 El eoA(t)l t l K A
a*(e) — tlir{.lo g[ Pa( at 0( ))] — og(l—L‘;l k,o).

“@) =1y

Hence the 8* used in the simulation for the queue
with the MMAP’s is the solution of what is termed
in the literature as the effective bandwidth equation,
i.e., a*(8) = c. More generally, suppose that for any
general arrival process {A(t) : t > 0}, there exists a
family of change of measures py(-) such that

e“'(t)lg(t) _
efv(8)t < H(o)

for some functions H(6), H(6) and v(f) that are in-
dependent of t. Then a*(#) = v(#). Furthermore, if
we use the change of measure py-(-), where 6* is the
solution of the equation a*(6) = ¢, then Equation 2
is satisfied.

Now consider the case of intree networks. Intree
networks are feed forward networks where the queues
are arranged in the form of tree. The feed forward
is in the direction of the root of the tree. External
arrivals can also occur at the intermediate queues.
The extension of the previous concepts to these net-
works is based on the following. Consider a queue

with capacity ¢ and arrival process {A(t) : t > 0}. Let
{B(t) : t > 0} denote the departure process (which
is also the arrival process to the next queue) from
the queue. Suppose there exists a family of change of
measure py, 4(-) on {A(t) : t > 0} such that

eaA(t)La,A(t) _
for some functions H(6) and a*(6) (which is the same
as the effective bandwidth). Then

eo‘B(t)Lg A(t) _
where b*(6) is defined to be the following. If § is the
root of the equation %(Gagﬁ)) = ¢, then b*(8) = a’ 6)
for 6 < 8 and b*(8) = c—(6/6)[c—a*(6)] for 6 > O (see
Chang et. al. 1993a for an intuitive explanation; see
de Veciana et. al. 1993 for independent development
of similar ideas).

Let {B(t) : t > 0} feed into another queue, that
also has an external arrival process {A(t) : ¢ > 0}
and service capacity ¢. Assume that there exists p,
so that )

efalt L, l(t) -
eoa.‘(o’)t s A(g)
for some functions X(G) and d*(0) independent of t.
Then

ee(B(t)+a{(¢))Lo,1(t)Lo,A(t)
e8(2* (8)+*(6))t

< A(e)B(6). (8)

Define an A-cycle to start when the second queue
becomes empty and let Ap be the event of buffer over-
flow in the second queue during an A-cycle. Equa-
tion 8 implies that if we use the changes of measure
pe+, () and Po',.«{(')’ where 6* is given by the root of
the equation @*() + b*(6) = &, then we will get the
upper bound in Equation 2. This will guarantee a
large variance reduction in the estimation of P(Ap).
However, because we do not have a lower bound, it is
difficult to prove the bounded relative error property.

The exact simulation procedure uses a splitting
technique combined with batch means (Nicola et. al.
1993). We first run a few A-cycles so that the sys-
tem (approximately) reaches steady state. After that,
each time the queue empties (i.e., an A-cycle starts),
we split a process from the original process. The split
process uses the importance sampling change of mea-
sure as described in this section. We use this split
A-cycle to get a sample of W and Lg.(X), say W;
and Lg- ;(X), and use the original A-cycle to get a
sample of D, say D;. Each original A-cycle together
with the corresponding split A-cycle, is referred to
as an A-cycle pair. If we simulate n A-cycle pairs
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(after the initial transient deletion), then Equation
suggests that a may be estimated by

& = 2?:1 WiLoo,,'(.X) ]

E?:l D’:

Note that if the A-cycles were mutually indepen-
dent we could have used the regenerative simulation
method (Crane and Iglehart 1975) to construct confi-
dence intervals on this estimate. However, since this
is not the case here, we have to use a batch means
type of procedure where we combine consecutive A-
cycle pairs into fixed size batches. Then as is usual,
we assume that if the batch size is sufficiently large,
then the batches may be treated as being (approxi-
mately) independent. For details of this procedure,
the reader is referred to Chang et. al. (1993) or
Nicola et. al. (1993).

4 APPLICATION TO FAST SIMULATION
OF ATM NETWORKS WITH PRIORI-
TIES

In this section we will show how the theory described
in Section 3 can be used to simulate for the loss
probabilities in networks with priorities. We consider
the different priority schemes described in Section 1.
First we introduce some notation. We label the high
priority packets to be of Class 1 and the low priority
packets to be of Class 2. Let W(1) (resp. W(?)) be
the number of Class 1 (resp. Class 2) packets lost in
an A-cycle and D) (resp. D(?)) be the total number
of Class 1 (resp. Class 2) packets that arrive in an A-
cycle. Let a3 and a5 be the loss probabilities of Class
1 and Class 2 packets respectively. We assume that
out of the K sources, the first K; sources produce
Class 1 packets and the next K, = K — K; sources
produce Class 2 packets.

Priority Rule 1 - Service Priority: We can again
express o)), i = 1,2, as

5 _ EOTO)
= Fom) ©)

As for the single packet class case, E(D()) ’s are easy
to estimate using standard simulation, but estimat-
ing the E(W())’s are difficult because of the rareness
of the buffer overflow event. Again define Ap to be
the buffer overflow event (i.e., when the total popula-
tion in the system exceeds B). Then we can express
E(W®) = E(W®|Ap)P(Ag). The probability of a
Type i packet being lost, given that Ap has ocurred
is not rare. Hence techniques used for the efficient es-
timation of P(Ap) will also work for the E(W({#))’s,

Priority Rule 2 - Service and Buffer Priority:
For estimating the loss probability of Class 2 pack-
ets, we use the same change of measure as described

in Section 3. This works for estimating E(W(?)) as
the probability of a Class 2 packet being lost given
that Ap has occurred, is very high. In fact, the prob-
ability of a Class 2 packet being lost, at the instant
the buffer is crossed, is very close to 1. This is be-
cause, given that the buffer is crossed at time ¢, the
only scenario where a Class 2 packet is not lost at
time ¢, is when at time ¢ — 1 the buffer only had Class
1 packets (which itself has a very small probability
of occurring because Class 1 packets get service pri-
ority) and all the arriving packets at time ¢ are of
Class 1. Consequently E(W{?)|Ap) is very small and
hence techniques that work for estimating P(Ag) are
not likely to be efficient here.

However, note that because Class 1 packets gets
both service and buffer priority, they are totally un-
affected by the arrival pattern of the Class 2 packets.
Hence from their point of view, they are the only
packets in the system and the same change of mea-
sure as described in the last section can be used here
(where now we assume that the system only has the
sources that transmit Class 1 packets).

Priority Rule 1 and Rule 2 applied to intree
networks: Now consider the case of a two queue in-
tree network as described in the Section 3. Consider
estimating the loss probabilities in second queue for
the two priority rules. As before we now define an
A-cycle to start at the points when the second queue
becomes empty. Consider the case of Priority Rule
1. As for the single queue case, we want to make the
total number of packets in the second queue reach
its buffer level within the A-cycle. Once this hap-
pens, then we are assured of a significant probabil-
ity of packet loss within the A-cycle, for each of the
packet types. Hence we need to do the change of
measure described in the intree section of Section 3.

For the case of Priority Rule 2, the Class 1 packets
are again not affected by the arrival stream of Class 2
packets. Hence to estimate the Class 1 packet loss at
the second queue, we simulate the network with only
Class 1 arrival sources, using the change of measure
described in Section 3. For Class 2 packets, we again
have to make the event .Ap happen more frequently.
Conditional on A, the probability of Class 2 packet
loss at station 2 is significant. Hence we again need

to do the change of measure that was suggested in
Section 3.

5 EXPERIMENTAL RESULTS

Priority Rule 1 - Service Priority: We consider
an example from Chang et. al. (1993a). There is
a single switch with 16 MMAP sources of the type
described in Section 3. Each source may be in either
of two states: 0 or 1. The p(0,0)’s and pi(1,1)’s of
the two sources are given by
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and

(0.7,0.8,0.6,0.5,0.3,0.6,0.6,0.4
0.8,0.5,0.9,0.6,0.5,0.8,0.6,0.9]

respectively. Note that pi(0,0) + px(1,1) -1 > 0 so
that all the generated streams are positively corre-
lated as one would expect in practice. The example
in Chang et. al. (1993a) assumed that all packets
have the same priority. However, we assume that the
first 15 sources generate Class 1 packets and the last
source generates Class 2 packets. The total arrival
rate from the sources, r, is computed to be 6.517.
The rates for each class are r; = 4.14 and r, = 2.37,
respectively. The capacity ¢ is taken to be 8. We es-
timate the steady state loss probabilities for different
values of the buffer size.

Solving 7 we get 6* = 0.34375. In the actual sim-
ulation, for each value of the buffer size, we first run
300 A-cycles without importance sampling so that
the simulation reaches steady state. Then we simu-
late for 60000 A-cycle pairs. The 60000 A-cycle pairs
are divided into 2000 batches, with 30 A-cycle pairs
in each batch. For each value of the buffer size, we
also ran standard simulations for the same CPU time
as the one with importance sampling. In the stan-
dard simulation, we again run 300 A-cycles so that
the system approximately reaches steady state. The
instead of simulating A-cycle pairs, we just simulate
single A-cycles, without importance sampling, until
the CPU time expires. We get a sample of W and
L(X) from each A-cycle. Then we form batches of
30 A-cycles each, and use the batch means type of
procedure mentioned before to estimate confidence
intervals on the estimate.

Results of the experiments are given in Table 1.
The third column gives the estimate and the rela-
tive error (RE) using importance sampling and the
fourth column gives the same using standard simula-
tion. Note how the RE in the importance sampling
estimate remains bounded as B increases, whereas in
standard simulation the RE seems to increase with-
out bound. In cases indicated by ‘?’, the variance had
not stabilized in the standard simulation. Note that
in some of the standard simulation cases, there was
no buffer loss in any of the simulated A-cycles.

Priority Rule 2 - Service and Buffer Priority:
We use the same example as in the case of Priority
Rule 1. As mentioned in the previous section, for each
buffer size, we have to run two different simulations.
The first simulation is with only Class 1 packets (the
first 15 sources) and it is used to estimate ;. The
#* for this simulation came out to be 1.25. After the
initial transient deletion, we again ran for 60000 A-
cycle pairs (2000 batches of 30 A-cycle pairs each.

The second simulation is with both classes of packets
and is used to estimate a. The 8* here is the same as
the Priority Rule 1 case. The number of A-cycle pairs
simulated was the same as for estimating ;. Finally
we ran standard simulations for the sum of CPU times
that was utilized in estimating @; and «2. Results are
presented in Table 2. Again note that the RE using
importance sampling remains bounded, whereas the
RE using standard simulation tends to grow without
bounds.

Let r; and 7, be the total arrival rates of of Class
1 and Class 2 packets, respectively. Then, the total
rate of packet loss, ajr; + agrg, should be the same
for both Priority Rule 1 and Priority Rule 2. This is
because, in the original system, the arrival processes
and the buffer sizes in the two cases are the same.
Only how one labels the packets that are lost, is dif-
ferent. Let us estimate airy + azry by &1r1 + &aora.
The value of this estimator for B = 10 is 7.58 x 10~2
and 7.70 x 1072 in the two cases, respectively. As
expected, these two estimators are very close.

Priority Rule 1 and Rule 2 for Intree Net-
works: As mentioned in the previous section, both
Priority Rule 1 and Priority Rule 2 can easily be ex-
tended to intree networks. For brevity, we will only
consider the case of Priority Rule 2. We modify an
example of an intree network from Chang et. al.
(1993a) by attaching priorities to the external arrival
streams. The network is composed of two queues.
Departures from the first queue feed into the second
queue. There are eight MMAP sources feeding into
the first queue, each with two states 0 and 1. For all
these sources p(0,0) = 0.8 and px(1,1) = 0.5. The
first seven of these sources generate Class 1 packets
and the last one generates Class 2 packets. In ad-
dition to the departures from the first queue that
feed into the second queue, there are also two ex-
ternal sources feeding into the second queue. These
are also two state MMAP’s with p(0,0) = 0.6 and
pe(1,1) = 0.7. The c for each of the two queues is
taken to be 4.

We will only estimate the loss probabilities in the
second queue. We fix the buffer size in the first queue
at 25 and estimate the loss probabilities for various
values of the buffer of the second queue. As in the
single queue case, we have to run two different sim-
ulations. The first simulation is with only Class 1
packets in the system, and is used for estimating ;.
For this simulation, 6 and 6* for the importance sam-
pling came out to be 0.4688 and 0.2734, respectively.
The second simulation is with both types of packets
in the system, and is used for estimating ;. Here the
6 and 6* came out to be 0.613 and 0.875, respectively.
As mentioned before, for both these simulations, an
A-cycle is defined to start whenever the second queue
is empty. The run lengths used for the importance
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sampling estimates were again 60000 A-cycles divided
into 2000 batches. Results for experiments are pre-
sented in Table 3. Again note the order of magni-
tude increase in simulation efficiency by using impor-
tance sampling. Also note that in the importance
sampling cases, the RE remains almost constant for
a wide range of values of the loss probabilities ranging
from 10~°% to 10~2! (though no theoretical bounded
relative error proof is available yet).

6 CONCLUSION

We reviewed some basic concepts and techniques used
in the fast simulation of ATM networks with a single
class of packets. We then described some new applica-
tions of these concepts to estimating the packet loss
rate in an ATM networks with two priority classes.
Investigations were carried out for two different prior-
ity rules, but the same importance sampling method
applies to some more general priority rules. For ex-
ample, instead of first serving only high priority pack-
ets and then using the remaining capacity on the low
priority ones, we can allot capacities ¢; and ¢z (with
¢1 + ¢2 = ¢) to the higher and lower priority pack-
ets, respectively. This is called generalized proces-
sor sharing (see, e.g., De Veciana and Kesidis 1994).
Each priority class definitely gets the capacity allot-
ted to it. It may also consume any capacity that is
remaining from the other class. The Priority Rule
1 described in this paper was a special case of this
priority rule with ¢; = ¢ and ¢; = 0. Using simi-
lar arguments as in Section 4, one can see that the
importance sampling method for Priority Rule 1 will
remain unchanged if we use this more general type of
service priority. However some complications arise in
the case of Priority Rule 2 with ¢ > 0, as now Class
1 packets, can no longer be treated independently of
the Class 2’s.

Similar to partitioning the service capacity, we can
also partition the buffer. We can allot buffers B; and
B, to the high and low priority packets respectively.
Each priority first fills its own buffer space. If they
find their buffer space full, then they can encroach on
the buffer space of the other priority, provided they
find some space (they migrate to their own buffer
once there is some space there). But then they have
to leave the system when a packet of the other priority
arrives and finds its allocated buffer full. The second
case we studied was a special case of this one with
By = B and B, = 0. For By > 0 and B, > 0,
the simulation is no longer straightforward and more
research is needed.
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APPENDIX A: TABLES

B | Loss Import. Samp. Standard Sim.
Prob. Estimate Estimate
10 ay 4.40 x 10~* +£9.3% 452x10~* +£19%
az 3.12x 10~ £ 2.9% 3.12x 10~%+ 4.8%
20 ay 1.47x10~° £ 7.9% 1.22x 10™° £ 72%
as 8.45 x 10~ T £3.2% || 7.82x 10~* £ 26.5%
40 oy 1.69 x 10~% + 7.9% 0.00+7?
a2 1.00 x 10-° £ 3.4% 0.00+7
60 oy 2.15 x 10t £ 7.3% 0.00+?
ay 1.21 x 10~° £+ 3.3% 0.00+7?%

Table 1: Estimates of steady-state loss probabilities
for Priority Rule 1 applied to single queue example

B | Loss Import. Samp. Standard Sim.
Prob. Estimate Estimate

10 [ o 339 x 10-° £6.4% 0.00£7

az 3.19x10~%2+29% 3.21x 10~% + 4.0%
20 ay 6.95 x 10~ £ 6.2% 0.00+?

o 8.70 x 10~* £ 3.3% 8.80 x 10~* + 20%
40 | o 6.40 x 10—22 £ 7.9% 0.00£7

az 1.03x 10~ £ 3.4% 0.0047
60 ay 5.45 X 10~ + 6.5% 0.00£7?

as 1.24x 107° £ 3.3% 0.00x7?

Table 2: Estimates of steady-state loss probabilities
for Priority Rule 2 applied to single queue example.

B | Loss Import. Samp. Standard Sim.
Prob. Estimate Estimate
10 a; 4.00 x 10~° + 4.2% 5.16 x 10~° + 47%
as 3.99x 107 £ 3.6% 4.02x 10~ £5.7%
25 ay 2.92 x 107 4: 7.4% 0.00+7?
) 6.03x 10-*£3.9% || 6.81x 10-° £21% |
50 ay 4.07 x 10~ £ 9.9% 0.00+?
a 6.43 x 10~" + 3.9% 0.00£?

Table 3: Estimates of steady-state loss probabilities
for Priority Rule 2 applied to intree network example




