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ABSTRACT

Passive algorithms for global optimization of a func-
tion choose observation points independently of past
observed values. We study the average performance
of two common passive algorithms, where the average
is with respect to a probability on a function space.
We consider the case where the probability is on
smooth functions, and compare the results to the case
where the probability is on non-differentiable func-
tions. The first algorithm chooses equally spaced ob-
servation points, while the second algorithm chooses
the observation points independently and uniformly
distributed. The average convergence rate is derived
for both algorithms.

1 INTRODUCTION

We consider the problem of locating the maximum
of a real-valued function defined on the unit inter-
val by observing the value of the function at a set
of observation points. In this paper we consider pas-
sive algorithims that make no use of prior information
in choosing the next observation site. The two algo-
rithms we study are the uniform grid algorithm which
takes equally spaced observations and the random al-
gorithm which chooses the points as independent uni-
formly distributed random variables. Our purpose is
to analyze and compare the average performance of
these two algorithms. Our criterion for error is the
difference between the global maximum and the max-
imum observed value up to tirne n.

This paper complements a previous study (Calvin
1993) that compared the same two passive algo-
rithms under the assumption of a probability on non-
differentiable functions (Brownian motion). The av-
erage performance of passive algorithms for smooth
functions is of particular interest since many efficient
sequential optimization methods are based on the as-
sumption of a srnooth objective function. The aver-
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age performance of passive algorithms gives a base
performance level with which to compare the aver-
age performance of more sophisticated adaptive algo-
rithms.

The next section introduces the problem and the
notation. The convergence properties for smooth
functions are investigated in Section 3, and Section 4
gives an analysis of the average performance under
the assumption of Wiener measure.

2 BACKGROUND

A starting point for defining global optimization pro-
cedures Is a specification of a set F that contains the
function f to be maximized. If the set F is small
enough algorithms can be constructed that have an
acceptable worst-case performance. Given a continu-
ous real-valued function f defined on the unit interval
(0,1], let f* = maxo<.<: f(t) denote the global max-
imum of the function. Suppose we are allowed to
choose n points ¢;,ts,...,t, in the unit interval at
which to observe the value of the function. Denote
the rnaximum of the n function values by

Mn = i)
RS f(t:)

(1)

Our goal is to choose the sites in such a way that M,
1s a good approximation to f*, where we define the
approximation error by

ARX(f) = f* - M, (2)

for algorithm 4. An example of a worst-case result
(see Torn and Zilinskas 1989) is for F the Lipschitz
continuous functions f for which |f(z)— f(y)| < L|z—
yl- In this case the uniform grid algorithm (tx =
(k= 1)/(n — 1)) is worst-case optimal, with

sup AS(f) = L/n. (3)
JeF

(nge the superscript G signifies the uniform grid al-
gorithm.) If the set F is too large for a worst case



Methods for Global Optimization 263

analysis (for example, if F is all continuous func-
tions), then another criterion that can be used is that
of average performance. A probability measure P is
put on F, and we use the average error

EAA(S) = / (f* = Ma)dP(f)  (4)
feF

to compare algorithms.

In this paper we will analyze only algorithms that
choose all the sites without using knowledge of pre-
viously observed function values. Such algorithms
are called passive or non-adaptive. The uniform grid
algorithm is defined by t; = (i — 1)/(n — 1) for
t=1,2,...,n, and the random algorithm is defined
by choosing the sites independently and uniformly
distributed. When referring to a specific algorithm,
we will write AS for the uniform grid algorithm and
AF for the random algorithm. In the following sec-
tions we derive the normalized limiting distribution of
A,, for the two algorithms under certain probabilistic
assumptions.

3 PROBABILITIES ON SMOOTH FUNC-
TIONS

A typical setting for studying global optimization
problems in one dimension is to consider functions
defined on the unit interval. We will find it conve-
nient to consider the space C(7) of continuous pe-
riodic functions defined on the unit interval (equiva-
lently, continuous functions on the circle group, which
we take to be [0, 1) with arithmetic modulo 1). As a
model for an unknown function confronted by a global
optimizer, it is natural to assume that the probabil-
ity distribution corresponds to a strictly stationary
process; i.e.,

P (N {f(t: + 1) € Bi}) = P(Ni,{/ (i) € Bi})
(5)
for any n, 7, and Borel sets By,...,By. (Al arith-
metic involving function arguments is understood to
be modulo 1.)

There are several advantages to considering peri-
odic functions. First, it allows us to deal with uncon-
strained instead of constrained optimization and still
work with a compact set for the function’s domain.
Second, the distribution of the maximizer of a strictly
stationary process on the circle is obviously uniformly
distributed. This is not the case for strictly stationary
processes on the line; the location of the maximizer of
a stationary process over a finite interval is typically
concentrated near the endpoints. Much of our analy-
sis will rest on the assumption that the maximizer is
uniformly distributed.

An example of a class of stationary continuous
functions on 7 is the class of stationary Gaussian
processes. The covariance function of a stationary
Gaussian process on the circle is of the form

K(t) = e*'p;, (6)
j

for some probability {p; : j € Z}. A real-valued
process has the representation

f@t) = Z uj cos (2mjt) + vj sin (27jt), )
J

where the uj,v; are mutually orthogonal random
variables with u;j, v; ~ N(0,p;). The function f will
be smooth, for example, if all but finitely many of the
pj’s are zero in (6).

The question of average-optimal passive algorithm
is non-trivial even for the case of stationary Gaussian
processes. It is tempting to think that choosing ob-
servations according to a uniform grid is optimal for
stationary processes. This is not the case, however,
as the following example illustrates.

Example 1 Let p; = 1 in (6), so that (7) gives
f(t) = ug cos (4nt) + v sin (4nt), (8)

or equivalently f(t1) = A cos(4n(t — 8)), where § is
uniformly distributed between 0 and 1 and A has the
Rayleigh distribution with density ze "2 for z >0
see Leadbetter et al. (1983). Since f(0) = f(1/2), it
is clear that the optimal algorithm for two observa-
tions does not observe at 0 = 1 and 1/2 (recall that
we are “wrapping’ the interval around a circle, so a
uniform grid of 2 points is 0 and 1/2) since either
observation contains the information of the other.

Here we list the assumptions we make on the func-
tion class F and the probability P on F. We take
the probability distribution P to make the process
strictly stationary. As a consequence the global max-
imizer z* is uniformly distributed on the unit interval
(or circle). For y > 0, set

G(y) = Mz : f* = f(z) <y}, (9)
where A denotes Lebesgue measure. We assume that
. G(ty)
lim —=* = y©
im G =Y (10)

for some a > 0.

We will compare the two algorithms based on a
fixed sample function f, and so our notation does not
show the dependence of G and @ on f. The random-
ness is in the choice of random observations sites in
the case of the random algorithm, and in the choice
of a random offset or phase for the uniform grid al-
gorithm.
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3.1 Uniform Grid Algorithm

In this section we analyze the average performance of
the uniform grid algorithm. We begin with the limit-
ing distribution of the (suitably normalized) random
variable AS with the function f (and thus G and a)
fixed. Set a, = G~1(1/n).

Theorem 1 For f € F,

G
A.(4) = AC (11)
an
as n — oo, where
G _ 1 yZ lr
Pacsy={,. Y21

and = denoles weak convergence.

Proof: By assumption of a unique global maximizer,
there exists a number g such that for y < ¢, the set
{z : f* — f(z) < y} is an interval containing z*. For
the uniform grid, if y < g,

g < ={lgy Bzl ay

Therefore,

_ 1 G(any) > l/n»
P(AT/an <) = {nG(any) G(any) < 1/n. (14)
By (10),
G(any) _ G(any) e
Glan) _ 1n Y7
and so
P~ {1 LZP a9

which is the desired result.

3.2 Random Algorithmn

In this section we will analyze the average perfor-
mance of the algorithm that chooses the observation
sites independently and uniformly distributed. In this
case AR is the minimum of independent, identically
distributed random variables with distribution func-
tion G, which belongs to the minimum domain of at-
traction of the Weibull distribution. Let AR denote
a random variable with the Weibull distribution with
parameters 1 and a; that is,

P(AR<zy=1-¢", z>0. (16)

The following result is a routine application of ex-
treme value theory; see for example Theorem 3.3, p.
241 in Barlow and Proschan (1975).

Calvin

Theorem 2 For f € F,
R

Sn AR (17)
an

The modes of convergence of the two algorithms
are different; the uniform grid algorithm converges
for each f € F, while the random algorithm converges
with probability one for each f € F.

If we compare the expected errors of the two lim-
iting distributions derived in this section, we obtain
that the limiting ratio of expected errors for the ran-
dom and deterministic algorithms is

“+1r(l). (18)

a? a

In particular, if f is locally quadratic in a neighbor-
hood of the global maximizer (so @ = 1/2), the de-
terministic grid is asymptotically 6 times as efficient
as the random algorithm.

4 PROBABILITIES ON NON-SMOOTH
FUNCTIONS

In the following sections we derive the mean of A,
for the two algorithms under the assumption that f
has the Wiener distribution; i.e., f is taken to be a
sample path of a Brownian motion process (we view
{f(t) : t € [0,1]} as a stochastic process). The
Wiener measure on C([0,1]) is characterized as fol-
lows. For each ¢ € [0,1], f(¢) has the normal distri-
bution with mean 0 and variance t, and for any

0<to<ty < <t <1, (19)

the random vari-
ables f(t2) = f(to), f(tz) — F(t1), -, f(te) — F(te-1)
are independent. It follows that the random variables
f(t:) — f(ti—1) are normally distributed with mean 0
and variance ¢; — t;_,. Furthermore, the global max-
imum, f*, has the same distribution as the absolute
value of a standard normal random variable; i.e.,

. 2 [* 2
P(f Sxﬁ=¢;/ eV 12 dy, z>0. (20)
y=0

The mean is therefore E(f*) = \/2/x.

We now analyze the average performance of the
uniform grid algorithm under the Wiener measure.
The convergence of the uniform grid algorithm is
clear; for any f € C([0, 1)), M,, T f* as n — oo.

The key to the following analysis is the fact that
with the uniform grid algorithm, the maximurmn ob-
served up to time n, M,,, is the maximum of a random
walk with normally distributed increments.

The following two results are proved in Calvin

(1993).
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Theorem 3 For the uniform grid algorithm,

14¢/2

E(AS)y = —=LZ 4 0(1 2
(af) === +o0/m), ()
where 1
Xt |t
C:/t=1 e dt ~ 0.9207. (22)

Theorem 4 For the random algorithm,

E(AR) = # +0(1/n). (23)

Finally, we consider the mode of convergence of AR
to 0. Clearly, we can not make as strong a statement
as we made for the uniform grid algorithm. However,
for the random algorithm, A® — 0 with probability
one for every continuous function.

5 CONCLUSIONS

For the probabilistic analysis of the global optimiza-
tion problem, several decisions must be made regard-
ing sensible probabilities on problem instances. As
we have seen, assumptions such as smoothness of the
functions have a great impact on the average perfor-
mance of algorithms. We have taken the view that
in order to gain insight into the relative performance
of general global optimization algorithms it is sensi-
ble to assurne that the probability corresponds to a
strictly stationary process.

We have analyzed only passive algorithms that
make no use of past observed values in choosing
new observation points. Instead of addressing the
question of optimal passive algorithm for a par-
ticular probability (which is non-trivial) we simply
compare the performance of two simple, commonly
used passive algorithms; the simplest examples from
the classes of deterministic and random algorithms.
Aside from the relative efficiency, the random algo-
rithm has perhaps one advantage in that the total
number of observations need not be determined in
advance for it to be employed effectively. A uniform
grid can not be maintained as more observations are
made.

Comparing the asymptotic expected error for the
two algorithms for Brownian motion, the relative ef-
ficiency of the random algorithm compared with the
uniform grid algorithm is approximately 82%; that is,
the ratio of the expected errors converges to approx-
imately 0.82 as the number of observations grows.
This relative efficiency may seem surprisingly high.
In contrast, the uniform grid algorithm is relatively
more efficient for smooth functions.
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