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ABSTRACT

The stochastic root-finding problem is to find the root
of the equation g(z) = 7, where g(z) can be esti-
mated. There are many applications, including con-
tinuous and convex stochastic optimization, which
is the problem of finding the zero of the gradient
function. We propose a family of retrospective ap-
proximation algorithms that numerically solve a se-
quence of sample-path equations with increasing sam-
ple sizes. Algorithms in the family differ by the
choice of several parameters including the determin-
istic root-finding method, sample sizes, the stopping
rule of the numerical search, the point estimator, and
the stopping rule of the entire algorithm. Under
weak conditions, retrospective approximation con-
verges. We also propose a simple version of the fam-
ily: bounding retrospective approximation. General-
use algorithm parameter values are suggested. In our
empirical comparison with the classical approach of
stochastic approximation, bounding retrospective ap-
proximation is more efficient and less sensitive to pa-
rameter values.

1 INTRODUCTION

We consider the stochastic root-finding problem
(SRFP), which is to find the root z* of the equa-
tion g(z) = 7, using only an unbiased estimator
Y (z) of g(z). Such problems arise in stochastic sys-
tems design: z is the design parameter, g(z) is the
corresponding system performance, Y (z) is the esti-
mated performance obtained from a (simulation) ex-
periment, and 7 is the desired system performance.
We want to find the design value z* that gives the
system performance y. Chen and Schmeiser (1994)
discuss examples of the SRFP, as well as solution ap-
proaches.
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To be more specific, we define the

Stochastic Root Finding Problem (SRFP):

Given:
(a) a constant vector vy € R¢,

(b) a(computer) procedure for generating an ob-
servation of the d-dimensional Y (z) for any
r € R4,

find the root z* satisfying g(z*) = 7 using only

the estimator Y, where g : R¢ — ¢, and g(z) =

E[Y(z)] for any z € %

We are interested in algorithms that do not use the
structure of the root-finding function g, but rather
only the computer procedure in (b). Evaluating g
numerically may be possible, but computationally ex-
pensive. The computer procedure, however, conducts
a simulation experiment that mimics the stochastic
system to obtain an unbiased estimate of g. Although
SRFPs are defined in multiple dimensions, we con-
sider here only problems in one dimension, i.e.,d = 1.

There are two approaches to solving the SRFP—
prospective and retrospective. A prospective algo-
rithm explores the set of feasible solutions z to look
for the root z*, much like a prospector searches for
gold: a spot is chosen for exploration because good re-
sults are foreseen. A classical prospective algorithm
is stochastic approximation, first proposed by Rob-
bins and Monro (1951). (See Section 4.1.) Chen and
Schmeiser (1994) propose a more-general framework
of prospective algorithms that iteratively update root
candidates based on the entire history. They discuss
three specific approaches within the framework.

Rather than looking to the future, a retrospective
algorithm looks to the past. A sample-path approxi-
mation to the real problem is generated, and the root
to this existing problem is sought. As its sample size
grows larger, the sample-path approximation is more
precise and hence its root produces an approximation
to the true root z*.
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We propose a subclass of retrospective algorithms,
called retrospective approrimation (RA), which iter-
atively solve a sequence of sample-path approxima-
tion problems with increasing sample sizes. A so-
lution satisfying an error tolerance is obtained for
each sample-path approximation; the root estimator
is then a function of those solutions. Under proper
conditions, this estimator converges to the true root.

The organization of this paper is as follows. Sec-
tion 2 defines the family of retrospective approxima-
tion algorithms. Related literature and RA’s conver-
gence are discussed. In Section 3, we propose a simple
version of the family, bounding retrospective approxi-
mation. In Section 4, we empirically compare the effi-
ciencies of our bounding retrospective approximation
and Robbins and Monro’s stochastic approximation
algorithms.

2 RETROSPECTIVE APPROXIMATION

Here we propose a family of retrospective approxima-
tion algorithms for the SRFP: finding z* satisfying
g(z*) = v using no more than a computer program
that gives an unbiased estimate y(z) of the system
performance g(z). We define RA in Section 2.1, which
is followed by the review of related literature in Sec-
tion 2.2. In Section 2.3, we discuss RA’s consistency.

2.1 Definition of RA

RA iteratively solves a sequence of sample-path ap-
proximation problems. Solutions of these approxima-
tion problems are computed by a deterministic root-
finding method. The root estimator is then a func-
tion of those solutions. Before stating the RA logic,
we discuss the sample-path approximation.

Let Fo(y) = Pr{Y(z) < y}, the distribution func-
tion of Y(z). Since Y(z) is an unbiased estimator
of g(z), the root-finding equation g(z*) = v can be
rewritten as

/ y(z") dFe(y) = 7. (1)

Since the left-hand side of Equation (1) is unknown,
a sample-path approximation of Equation (1) is the
sample-path equation

m

> ui(XT)/m=7, (2)

j=1

where the root X* is random, each y;(z) is generated
from the distribution F;, and typically the m obser-
vations are independent. Iow to solve Equation (2)

may not be obvious because each y;(X*) is gener-
ated from the distribution Fx., with unknown X*,
and many candidates z of X* may be considered.

Ilence, we consider a distribution function F(.)
that defines Y(z) and is independent of z. If w is
an observation from the distribution F', then y(z) is
a function of z and w, say y(z,w). For a fixed w, the
function y(z,w) is a deterministic function of z. Let
Q be the support of the distribution function F(.).
Then the root-finding equation g(z*) = v is equiva-
lent to Equation

(P*) /n Yz w) dF()=7.

Based on a random sample w = {wi,...,wn} gener-
ated from the distribution F', the sample-path equa-
tion equivalent to Equation (2) is then

(P) WXL w)=

where §(z, w) = Y70, y(z,w;) /m. Using this fixed
{w1, ...,wm} for different values of z, the sample mean
9(z,w) is a deterministic function of £. Then, to solve
Equation (2) for X*, we merely solve Equation (P)
via a deterministic root-finding method. Notice that
the random root X* may not exist or may not be
unique for a finite sample size.

The choice of F, which is the user’s, affects RA
efficiency. The least efficient choice is to let the w’s
be the initial random-number seed, which is always
independent of z. The most efficient choice is to in-
clude in F all random values that are not a function
of z. The efficiency of RA depends on the choice
of F because to solve the sample-path equation, the
sample w is generated only once but §(z,w) may be
computed for many 2’s. (See Chen, 1994, p. 34.)

RA, stated below, iteratively solves a sequence of
sample-path equations

(P)  9(X{w)=17 i=12.,
where y(z,w;) = Y0 y(z,w;) /mi, and w; =

{wi1,...,wm,} is generated independently for each i.
RA uses a strictly increasing sample-size sequence
{mi}. At each iteration, RA finds a solution X; sat-
isfying [ X; — X} | < €;, where ¢; € [0, 0] is a specified
constant. We call X} the i*P retrospective root, X;
the i*" retrospective solution, and i the retrospec-
tive iteration number. The point estimator X; after i
retrospective iterations is a function h(-) of the past
trajectory of solutions X1, ..., X;. More specifically,
RA algorithms work as follows.
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RA Algorithms:
Given:

1. method for solving Equations { ()},

2. initial sample size m; and rule for successively
increasing m;, for i = 2,3, ...,

3. rule for computing error tolerance {e;},

functional form of h such that z; = h(zy, ..., z;),

5. stopping rule of the entire algorithm.

»

Find: the root z* using:

0. Initialize £ = 0.

Let : — 7+ 1.

Independently generate w; = {w1,...,wm,}

Solve Equation (P;): y(z},w;) = v for z} by

the given deterministic method. Return z;, if z;

satisfies |z; — z}| < ¢;.

4. Compute Z; = h(zy, ..., ;) and its variance esti-
mate.

5. Stop? If yes, return z;. Otherwise, compute
m;+1 and go to Step 1.

LN

We call this algorithm RA (retrospective approxima-
tion) because each sample-path equation (P;) ret-
rospectively approximates the root-finding equation
(P*) and is solved only approximately. Chen (1994,
Section 5.2.1) discusses the setting of the five given
algorithm parameter values.

2.2 Related Literature

Literature related to RA includes M-estimators and
retrospective approaches for stochastic optimization.
We briefly discuss both. See Chen (1994, Section
5.2.2) for more discussion.

The retrospective root X satisfying Equation (P;)
is an M-estimator, as proposed by Huber (1964).
M-estimators are used with finite samples to esti-
mate a distribution property, e.g., the location or
scale parameter. The estimate y(z,w) is chosen so
that y(z*,w) satisfies the root-finding equation (P*),
and a better choice of y leads to a more robust M-
estimator. In the SRFP, however, y(z,w) is a user-
provided sampling routine that is made available to
the RA algorithm. Convergence of RA requires the
convergence of X} (Section 2.3). Serfling (1980) dis-
cusses the consistency of the M-estimator.

A problem related to the SRFP is stochastic opti-
mization, finding the optimal point z* of an objec-
tive function that can only be estimated. Ilealy and
Schruben (1991), Robinson (1994), and Rubinstein
and Shapiro (1993) discuss retrospective methods for
stochastic optimization.

The emphasis of both the M-estimator and the
stochastic-optimization literature is on sample-path

behavior as m increases, an important component of
our algorithms where multiple sample paths are con-
sidered with increasing values of m. They assume,
however, that the sample-path equations can be
solved exactly, whereas we assume that the sample-
path roots need to be approximated because the
sample-path function is intractable.

2.3 Consistency of RA

Chen (1994, Section 5.2.3) shows that RA algorithms
converge under mild regularity conditions. Recall
that RA estimates the root z* of the equation g(z*) =
v by solving a sequence of sample-path equations. We
consider here two cases: (i) RA solving only a single
and long sample-path equation, and (ii) RA solving
a sequence of equations { (P;) }£2;.

In Case (i), RA solves only one sample-path equa-
tion (P) : y( X*, w ) = . The root estimator X
is computed within € precision of the retrospective
root X*. Since X is an approximation of X*, con-
vergence of X includes two parts: (1) X* converges
to z* with probability one (w.p.1), and then (2) X
converges to z* w.p.1. If g(z,w) is a consistent es-
timate of g(z) and other conditions hold, then the
sample-path function converges to g as m goes to in-
finity. Hence, the retrospective root X* converges to
z* and yields the first convergence. The second con-
vergence requires that the absolute numerical error
|X — X*| goes to zero, i.e., the deterministic root-
finding method guarantees convergence and the error
tolerance goes to zero.

In Case (ii), RA solves a sequence of equations
{(P)}. The corresponding sample-size sequence
{mi} is an increasing sequence. For each Equa-
tion (P;), RA finds an approximation X; of X;
within error tolerance ¢;. At the " retrospec-
tive iteration, the root estimator X; is a func-
tion of all past solutions Xi,...,X;. Assume that
Xi = YioymiX;/ Y;_;m;, a weighted average
of X1, ..., Xi where each weight is proportional to the
sample size. Then, if the convergence conditions for
Case (i) holds, Chen (1994, Section 5.2.3) shows that
X; converges to £* as i goes to infinity.

3 DBOUNDING RA

We propose here a family of bounding retrospective
approximation (Bounding RA) algorithms, which is
a simple version of RA with good empirical perfor-
mance. As mentioned in Section 2.1, RA has five
types of algorithm parameters. Although RA con-
verges within a wide range of parameter values, the
real-time efficiency depends on the parameter set-
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tings. Our goal is a ready-to-use RA algorithm
that has no “magic parameters,” parameters whose
values strongly affect algorithm efficiency. Chen
(1994, Chapter 6) develops a probability model for
parameter-setting guidelines, which suggests Bound-
ing RA algorithms.

Bounding RA sets the five types of parameter val-
ues as follows: (1) a numerical algorithm that stops
when bounds of the retrospective root z; are found,
(ii) a geometric sequence of sample sizes {m;} : m; =
cym;_1, where ¢; > 1, (iii) a retrospective solution
z;, obtained by interpolating the bounds, (iv) an it-
erative root estimate Z; = Y 5_; m;j z; / 2;-, ™,
and (v) an estimate of var(Z;), stated below, to help
users decide the stopping point. The name Bounding
RA comes from parameter types (1) and (iii), which
together find bounds and then return the linear inter-
polation point of the bounds. We list here the general
Bounding RA algorithm.

Bounding RA Algorithms:

Given: default values of zg, a positive integer my,
c1>1,6;>0,and ¢z > 0.

Find: the root z* using:

0. Initialize 7 = 0.

1. Let ¢ e— 3+ 1.

2. Independently generate w; = {w1, ...,wm, }.

3. Numerically solve the sample-path equation
(P;) : g(z7,w;) = v for z} as follows:
3.1 Let £ = Z,_,, where Zg = zg.
3.2 If i > 1, compute

where & is from Step 5 of the (i — 1)h
iteration.

3.3 Find a bounding interval [z;, z; ] that
brackets z}:
(a) Initialize z;; = =, T;u =2, Uiy =
y+1, and i =7—-1.
(b) Compute y(z,w;).
(¢) Update upper bound or lower bound:
If y(z,w;) <7, let z;; =z and

Yig = 37(1!, ﬂi)'
Otherwise, let z;, =z and ¥y =
g(JZ, _“'_)i)'

(d) If the bounds are not found, update
the iterate and step size:

If (G —7)@iw —7) >0, let
r e { z+6; if g(z,gi)<7

z — 6; otherwise !

6 — 26,

and go to Step 3.3 (b).
3.4 Compute the linear interpolation:
i = zigH(i,u—2i) (=i )/ (iu—Tin ).

4. Compute the root estimate z; = E;=1 mj z;j /

z;:l mJ

5. Compute @(ii) =42 /z;=1 m;j, where

. Tiw—Tigy, (Tiw—Y) iy
o = Jmy — — ~ — 4
i ( Yiu — Yil Yiu — Yil
(v — %i,1) Siu }
Yiu — il ’
st, = [milmi — DIV [Y(zie,  wj)

=12 2
- %), and s, =

Yooy, wi) = gia 1%
6. Is Var(z;) small enough? If yes, return z;. Oth-
erwise, compute m;;, = ¢; m; and go to Step 1.

[mi(mi — 1]}

In our implementation, for reasons discussed in Chen
(1994, Section 7.1), we set the initial parameter values
tobezg =1, m =2, ¢ = 2, 6 = 107%, and
¢y = 1. A Fortran implementation is in Chen (1994,
Appendix B).

Convergence of Bounding RA is not guaranteed be-
cause parameter type (iil) results in an infinite er-
ror tolerance €; for ¢ > 1. Chen (1994, Section 7.2)
discusses a modification of Bounding RA that guar-
antees convergence; this modified algorithm is more
complex, however.

The rationale of Bounding RA is our assumption,
and the suggestion from empirical evidence, that as
the retrospective iteration number i increases, the
bounding interval becomes smaller. Since the sample-
path function y(-,w;) is nearly linear in small inter-
vals, one-step linear interpolation is sufficient for the
numerical search. Our empirical results show that, for
alarge ¢, the numerical search in the modified Bound-
ing RA usually reaches the error tolerance after the
first linear interpolation. Hence, we suspect that tak-
ing more linear interpolations is not necessary even
for the first few retrospective iterations. Therefore,
we propose the heuristic Bounding RA algorithm for
simplicity. Our empirical results in Section 4 show
that Bounding RA performs well in a real-time appli-
cation.

4 EMPIRICAL COMPARISON

This section shows the empirical comparison of
Bounding RA and Robbins and Monro’s classical
stochastic approximation (CSA), which is discussed
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in Section 4.1. The Monte Carlo experiments con-
sider a tolerance-constant SRFP, as described in Sec-
tion 4.2. We evaluate Bounding RA and CSA based
on the finite-sample convergence speed, as discussed
in Section 4.3.

Our empirical results show that, despite the lack
of guaranteed convergence, Bounding RA converges
quickly for a large range of parameter values. CSA
guarantees convergence, but the practical conver-
gence speed strongly depends on parameter values.

4.1 Classical Stochastic Approximation

Robbins and Monro (1951) propose classical stochas-
tic approximation (CSA), which iteratively estimates
z* by the formula

Xiyi=Xi—ai(Yi—7), i=0,1,..,

where X, is an arbitrary initial guess of z*, Y; =
2oy Yi(Xi)/m, {Y1(z), .., Ym(2)} given z is a sam-
ple from the distribution F, and {a;}{2, is a pre-
determined sequence of positive constants satisfying
Yoipai = oo and limj_e a; = 0. Under weak con-
ditions on ¢ and the Y’s, the sequence {X;} con-
verges to * with probability one. The step-size se-
quence {af} minimizing the asymptotic variance is
ay =1, and a} = [ig'(z")]7,i = 1,... (Sacks, 1958,
Venter, 1967). Then /m(X; — z*) is asymptoti-
cally normally distributed with mean 0 and variance
0% = Var[Y(z*)]/[¢'(z*)]?>. However, a} is usually
unknown because z* and the first derivative ¢’ are un-
known. There are several modifications (Andradéttir,
1991, Kushner and Clark, 1978, Ljung, Pflug, and
Walk, 1992, Wasan, 1969), but as the modifications
become more sophisticated, the algorithms tend to
have more parameters. Few guidelines exist for choos-
ing these parameter values. Hence Section 4.3 uses
CSA for comparison.

4.2 A Tolerance-Constant Example

The special case of the SRFP that motivated this
research is Thiokol Corporation’s need to find a
guaranteed-coverage tolerance constant z* for a non-
normal continuous distribution Fy with known shape
but unknown mean and variance. (See Chen and
Schmeiser, 1993, 1994.) Let W, ..., W, be a random
sample from the distribution F; let W and S? be
the corresponding sample mean and sample variance
(with denominator n — 1) . The a-coverage and 7-
confidence tolerance constant z* satisfies g(z*) = 7,
where

g(z) =Pry s { Prw {W>W -z 5} >a}

and o,y € (0,1). That is, if a tolerance interval
[W —z*S, o) is built, then with v confidence the tol-
erance interval contains population-coverage at least
a. Given n, «, v, and the distribution shape, we
want to find z*. For this root-finding problem, nu-
merical evaluation of g(z), a (n + 1)-dimensional in-
tegral, would be ineflicient. Nevertheless, we can
estimate g(z) by a (user-provided) unbiased estima-
tor Y(z) = I{ Prw{W > W — z S} > a}, where
I(A) = 1if A is true and I(A) = 0, otherwise.

4.3 Empirical Results

We empirically compare the convergence speed of
CSA and Bounding RA. Our empirical results show
that CSA suffers slow convergence for finite sample
sizes unless the parameter values are chosen magi-
cally. (Also see Fu and Healy, 1992.) Bounding RA
seems to converge quickly with the speed O(N~1/2)
and the asymptotic variance ko?, where N is the cu-
mulative number of estimates y generated, k is the
average number of function (y) evaluations to find
bounds for the limiting sample-path equation, and o2
is the asymptotic variance of CSA. Although k& > 2,
because finding bounds takes at least two function
evaluations, Bounding RA usually reaches asymptotic
efficiency faster than CSA in our empirical results.

The simulation experiment is designed as follows.
The parameter values of the tolerance-constant prob-
lem are sample size n = 5, minimum coverage a = .5,
normal population, and confidence v = .9, for which
z* = .68567 and 02 = 1.29. Furthermore, the
(user-provided) random w is set to random-number
seeds, which is the least efficient. (See Chen, 1994,
Section 8.1). The two design points for CSA are
zg € {z*, N(z*,1)} each with the asymptotically op-
timal step size {a}} (available because z* and ¢’ are
known for this experimental example) and the ap-
proximately optimal sample size (obtained from ex-
periments). The two design points for Bounding RA
are zo € {N(z*,1), N(z*,10%)} each with the default
values of parameters my, ¢, §;, and c,.

The performance measure for comparison is
“E(work x error)”. We use N to measure the com-
putational work because of w being random-number
seeds; we use “MSE = squared error of the root es-
timate using N observations” to measure the error.
If the algorithm converges, N x MSE goes to the
asymptotic variance as N goes to infinity.

Figure 1 shows the comparison of CSA and Bound-
ing RA with the same initial point distribution, zg ~
N(z*,1). CSA uses the corresponding approximately
optimal sample size m = 5 (see Chen, 1994, Figure
8.1), which would not be known in practice. Never-
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N = number of y’s generated

Figure 1: Comparison of CSA and Bounding RA:
CSA’s Parameter Values Are zo ~ N(z*,1) and
m = 5; Bounding RA’s Parameter Values Are zo ~
N(z*,1),m; =2,¢,=2,6 =10"% and c2 = 1

theless, CSA converges much slower than Bounding
RA for these values of N. Recall, however, that CSA
is asymptotically more efficient than Bounding RA.

Figure 2 illustrates that Bounding RA is relatively
insensitive to the initial point zq. Ilere, the initial
Bounding RA point is sampled with a standard devi-
ation of 100, yet for N > 1000, Bounding RA is more
efficient than CSA with optimal sample size m = 5
and initial point distribution with a standard devia-
tion of 1.

Figure 3 illustrates how well CSA would work if
the root were known in advance and a correspond-
ingly high sample size m were used. The figure shows
CSA starting at the true root (zo = z*) and using the
large sample size m = 100 (see Chen, 1994, Figure
8.1). Bounding RA’s parameter values are the same
as those in Figure 1. We see that CSA converges im-
mediately to its asymptotic variance o2 (Recall that
0? = 1.29) when the initial point is the true root z*
and the sample size is large. This magic situation
usually does not happen in practice. Figure 3 also
shows that Bounding RA has an asymptotic variance
a bit more than twice as big as that of CSA. Each
iteration of Bounding RA requires a bit more than
two function evaluations, because at least two are re-
quired to bound the root. Ilence, we speculate that
if Bounding RA converges, its asymptotic variance is
k times as large as CSA’s asymptotic variance.

Or——
CSA: x)~ NG 1), m=5 ——
50t Bowding RA: 7, ~ N*10),
m=2 ¢=2

0} b= 10, e7] —8= ]
m
2]
2 30+ 1
*
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0 1000 2000 3000 4000 5000 6000 7000 8000

N = number of y’s gencrated

Figure 2: Comparison of CSA and Bounding RA:
CSA’s Parameter Values Are zo ~ N(z*,1), and
m = 5; Bounding RA’s Parameter Values Are zo ~
N(z*,10%), m; =2,¢1=2,6:=10"% and c; =11

20 T T T T T T T

CSA: x) = x¥, m=100 —
Bounding RA: x, ~ N(x%,1),
15} m=2 ¢=2,
5= 16‘, =1 ——

m
%2}
% 101
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5t
0 L B ) 1
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N = number of y’s generated

Figure 3: Comparison of CSA and Bounding RA:
CSA’s Parameter Values Are zo = z*, and m = 100;
Bounding RA’s Parameter Values Are zo ~ N(z*,1),
my=2¢=246=10"% andcy; =1
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