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ABSTRACT

This paper summarizes information about a method,
called sample-path optimization, for optimizing per-
formance functions in certain stochastic systems that
can be modeled by simulation. We explain the
method, give conditions under which it converges,
and display some sample calculations that indicate
how it performs. We also describe briefly some more
extensive numerical experiments on large systems
(PERT networks with up to 110 stochastic arcs, and
tandem production lines with up to 50 machines).
Details of these experiments are reported elsewhere;
we give references to this and other related work. We
conclude with some currently unanswered questions.

1 WHAT IS SAMPLE-PATH OPTIMIZA-
TION?

In this section we explain briefly what sample-path
optimization is, and give some reasons why it might
be useful in practical situations. We also sketch the
related work that has appeared in the literature, and
give references where fuller discussions appear.

A general model for many problems in simula-
tion optimization is an extended-real-valued stochas-
tic process {X, | n = 1,2,...}, where the X, are
random variables depending on parameters 6 € R*.
That is, for each n and each 8, X,,(f) is a random vari-
able defined on the probability space (2, F,P), and
it may take either real values or the value +o0o (some-
times also —co). This is a convenient device for mod-
eling constraints, because we can set X, (8) = +oo for
those 0 that do not satisfy whatever constraints we
have to work with. When a particular sample point w
is fixed, we write X, (w,0) to display the dependence
on the sample point.

For simulation to be of interest we generally have
some a priori knowledge that there exists a deter-
ministic function Xo () such that the functions X,
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almost surely converge pointwise to X, as n — oo.
For example, in the case of static systems the strong
law of large numbers provides this kind of information
when X, is the average of n independent replications.
In the case of dynamic systems such as queues, if we
think of X, as the output of a simulation run of length
n (e.g., n service completions), we can often infer the
existence of X, from regeneration theorems. In this
paper we assume that X, exists for the systems we
are considering. Our interest will be to find the in-
fimum of X, and, if possible, a value of § at which
that infimum is attained (a minimizer of X ).

Of course, in general we cannot observe X, but
only X, (0) for particular (finite) n and particular 6.
Therefore, we have to use such observations to ap-
proximate the minimizer and minimum value that we
are seeking. The method that we consider here, which
we call sample-path optimization, is particularly sim-
ple: we fix n and the sample w, and use determin-
istic optimization methods to find a minimizer 8, of
Xn(w, -) (assuming one exists; we shall give condi-
tions in Section 2 under which it will). We simply
take this 6} as an estimate of a minimizer of X,.

This idea has several attractive features, as well
as some that may be less attractive. First, in many
cases we can apply very powerful methods to mini-
mize X,(w, -), even if the constraints on 6 are nu-
merous or complicated. The reason for this is that
by using existing simulation methodology, such as the
method of infinitesimal perturbation analysis (IPA),
we can compute not only the value X, (w,0) for a
given 0, but also its ezact gradient (when the gradient
exists). Therefore we can apply fast (superlinearly-
convergent) methods, such as the BFGS algorithm
and its relatives for constrained optimization, which
may permit us to minimize X, (w, -) to high accuracy
in relatively few function and gradient evaluations.
See, for example, Moré and Wright (1993) for a de-
scription of some of these methods and for further
references.
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The availability of very effective methods for con-
strained deterministic optimization is one reason why
sample-path optimization could be effective on prob-
lems with many variables and/or complicated con-
straints, with which simple gradient-step methods
may have difficulty. In particular, superlinearly-
convergent methods enable one to be fairly confi-
dent of the location and accuracy of the optimizer
of Xp(w, ), and thereby to separate the error due to
the approximation of X, by X,, from the error due to
inaccurate computation of a minimizer of X,. With
slower algorithms, such as stochastic approximation
or stochastic quasigradient methods, such separation
is likely to be difficult or impossible.

Second, because the method separates optimiza-
tion from the computation of function and gradient
values it is well suited to modular implementation.
For example, codes already in existence for simulat-
ing particular systems could be used as part of an im-
plementation (provided that they can accommodate
some method of gradient evaluation, such as IPA),
together with available optimization codes that call
external subroutines for function and gradient evalua-
tion. The simulation and the optimization codes need
not interact with each other except through the func-
tion and gradient values that the first code supplies
to the second. This modularity can be a substantial
advantage if the system being simulated is large and
complex, and/or if the optimization method being
used is fairly sophisticated.

On the other hand, such modularity has some ap-
parent disadvantages. For examiple, at this time we
do not know how to apply sample-path optimiza-
tion to multistage (dynamic) stochastic optimization
problems in such a way as to take advantage of the
time structure of such problems. This is an area of
current research; several others are mentioned in Sec-
tion 4. With numerous open questions such as these,
the overall effectiveness of sample-path optimization
is yet to be determined. Numerical experience to date
is quite encouraging, but there is still much that we
do not know about the method and its behavior.

In the rest of this section we give a brief survey of
some existing literature related to this method. The
method as described here has been analyzed and ap-
plied in three papers, two by Plambeck et al. (1993,
1994) and the other by Robinson (1994). The sec-
ond of these gave extensive computational results, to
which we return in Section 3 below; the third pre-
sented a convergence analysis. We shall extract parts
of that analysis in Section 2 immediately following
this one.

A method very similar in concept, but different in
execution, is the techuique of retrospective optimiza-

tion proposed by Healy and Schruben (1991). Healy
and Xu (1994) later analyzed this technique and gave
some additional computational results. A key differ-
ence between the method we treat here and that stud-
ied by Healy and Xu (1994) is that in their computa-
tional method they propose to store the information
generated during a simulation run, then operate on
that stored information to compute a minimizer. By
contrast, we do not envision storing the information,
but rather making repeated simulation runs using the
method of common random numbers to ensure that
we observe the same function X,(w, -) on each run.
Chen and Schmeiser (1994) applied retrospective op-
timization methodology to the problem of stochastic
root finding.

King and Wets (1991) studied a method of this
type applied to solution of stochastic programming
problems, and in particular to linear recourse prob-
lems. They imposed additional technical require-
ments, suitable to the class of problems they con-
sidered, and obtained convergence results and re-
lated information. Their problem class was some-
what different from that considered here; on the other
hand, Shapiro and Wardi (1994) and Rubinstein and
Shapiro (1990, 1993) considered simulation optimiza-
tion problems using likelihood ratio (LR) methods
of gradient estimation. In these cases one of the
main operational differences is the method of com-
puting gradients: for many of the problems we envi-
sion solving by sample-path optimization, the easiest
and cheapest way of computing gradients is by IPA.

This section has briefly described the sample-path
optimization method and has outlined connections
with existing literature. In the next section we look
at conditions under which the method can be shown
to be a priori convergent: that is, under which as we
lengthen the sample path indexed by n, the computed
optimizer 6 could be expected to approach the set
of optimizers of the limit function X, .

2 WHEN DOES IT WORK?

This section summarizes the conditions under which
we can prove that the sample-path optimization
method will converge. We do not give any proofs,
but we indicate where these can be found.

It is clear that the problem of convergence in
sample-path optimization is that of determining
when, and how quickly, a sequence of optimizers
of X,(w, ) will converge to an optimizer of Xoo.
The situation is complicated by the fact that ordi-
nary pointwise convergence of a sequence of func-
tions is well known to be insufficient for convergence
of their optimizers to optimizers of the limit func-
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tion. What is needed, generally speaking, is epicon-
vergence, which we now define.

Definition 1 A sequence f,, of extended-real-valued
functions defined on R* epiconverges to an eztended-
real-valued function fo, defined on R* if for each 8 €
RF the following hold:

a. For each sequence {0,} converging to 8,
foo(8) < liminfp oo fr(0n).

b.  For some sequence {0,} converging lo 0,
foo(8) > limsup, _, o, fu(6,).

In (b) we actually have fo,(8) = lim, oo fn(0n), be-
cause of (a).

It is known that epiconvergence is independent of
pointwise convergence. For a very readable elemen-
tary treatment of relationships among various no-
tions of convergence, see Kall (1986); a comprehen-
sive treatment of epiconvergence and related issues is
in Attouch (1984). The forthcoming book of Rock-
afellar and Wets (1994) will treat this area from the
perspective of optimization.

A rough (and incorrect) summary of the conver-
gence properties of this method would be the state-
ment that if the functions X,, almost surely epicon-
verge to the function X, then local minimizers of
the X, almost surely approach local minimizers of
Xoo as n — oco. Unfortunately, things are not quite
so simple. To state the conditions precisely we need
more terminology, in particular the concept of com-
plete local minimizing set (Robinson 1987), which ex-
tends the idea of isolated local minimizer to cases in
which the set of minimizers might not be a singleton.
The symbol “cl” denotes the closure of a set.

Definition 2 Let Z be a topological space and let
f be an ertended-real-valued function on Z. A
nonemply subset M of Z is a complete local mini-
mizing (CLM) set for f with respect lo an open sel
G D M, if the set of minimizers of f oncl G s M.

We say a function is properif it never takes —oo and
does not always take +0o0. We also use the notation
e(S,T) for the ezcess of a set S C R* over a set
T C RF: that is,

e(S,T) =supd(s,T); d(s,T) = inf ||s — t]|.

SES teT
If €(S,T) is small, then each point of S is close to
some point of T, even though T may be much larger
than S.

The following theorem summarizes the convergence
properties of this method. It does not give the most

general statement possible, but rather tries to strike
a balance between generality on the one hand and

simplicity on the other. For more general results see
Robinson (1994); the theorem here is a combination
of Theorem 3.7 and Propositions 3.8 and 3.9 of that

paper.

Theorem 1 Suppose that the following assumptions
hold:

a. Xoo is a proper delerminislic funclion whose
infimum is o, and whose sel of minimizers My, s
nonemply and compact.

b. With probability one, each X, (1 < n < o0) is
lower semicontinuous and proper.

c. With probability one, the X, epiconverge to X
as n — 0o.

Let G be any open bounded subset of R¥ containing
My,. Then there is a subsel T' of Q having measure
zero, with the following properties: suppose that w ¢
T, and define for 1 < n < oo

ﬂn(w) = inf Xn(w: ‘))
secl ¢

and
May(w) ={0 € cl G| Xpn(w,8) = fin(w)}.

One then has

1. limg oo fin(w) = poo, and poo s finile.

2. There is a finile positive integer N, such that for
each n > N, M,,(w) 1s a nonemply, compact CLM
sel for Xp(w, -) with respect to G.

3. limMp oo e(Mn(w), Mop) = 0.

If in addition X is conver and for each n X, tis
almost surely convez, then the above conclusions hold

with G = R*.

Theorem 1 describes exact minimization, but it is
also possible to obtain results for approximate mini-
mization; these can be useful in connection with nu-
merical methods that compute points near, but not
equal to, the actual minimizer. For these results we
refer to Section 4 of Robinson (1994).

A key hypothesis of Theorem 1 is that the X,, al-
most surely epiconverge to Xo,. It would be of inter-
est to have general results, for classes of stochastic op-
timization problems arising in applications, to guar-
antee such epiconvergence. However, we give here a
particular set of assumptions that, while rather spe-
cial, will cover the examples of Section 3. This re-
sult is a specialization of Proposition 2.5 of Robinson
(1994). The effective domain of an extended-real-
valued function f, written dom f, is the set of points
8 € R* at which f(8) < +o0.

Proposition 1 Suppose that the following hypothe-
ses hold:
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a. Xoo ts a deterministic closed proper conver func-
tion whose effeciive domain has a nonemply interior.

b. For each n, X, is with probability one a closed
proper convez funclion.

¢. There is a countable dense subset © of R¥ such
that whenever 6 € ©, then with probability one X, ()
converges 1o Xoo(0) as n — co.

Then with probability one the X, epiconverge lo
Xoo a8 N — 00.

The requirement that dom X, have a nonempty
interior does not prevent us from dealing with prob-
lems in which the presence of linear constraints may
cause the effective domain of X to have an affine
hull A of dimension less than k, provided that the
effective domains of the X, also lie in A. We then
simply apply Proposition 1 to the restrictions of the
functions X, and X, to the set A; the technique is
described in Section 2 of Robinson (1994).

We have summarized briefly the known results
about when the method of sample-path optimization
converges, in the sense that minimizers of the approx-
imating functions X, almost surely approach the set
of minimizers of the limit function X, as n — oo.
In the process, we saw that a key requirement was
that the X, epiconverge to X, and we showed that
for the particular case of convex functions, this epi-
convergence hypothesis held under mild assumptions.
We now turn from the question of theoretical conver-
gence to that of actual numerical convergence: that
1s, does the method work? The following section
presents a few numerical results to indicate what the
method can do, and refers to much more comnprehen-
sive numerical experiments reported elsewhere.

3 HOW WELL DOES IT WORK?

In this section we summarize the available computa-
tional evidence for the effectiveness of sample-path
optimization. We illustrate some interesting aspects
of the method’s performance by giving numerical re-
sults for small problems, and we describe the results
of applying the method to much larger problems of
different types.

The example problem we chose for the numerical
illustrations was a closed queueing network with four
servers. Customers move through Server 1, then go
either to Server 2 (with probability .3) or to Server
3 (with probability .7). After this they go through
Server 4, and then return to Server 1. Service time
at Server 17 is exponentially distributed with param-
eter 6; (a decision variable). Calculations presented
here are for this system with 20 customers, and we
assumed that the buffers at each server could ac-

commodate all customers, so that blocking did not
occur. The quantity of interest for optimization is
the steady-state throughput T'(9) consisting of service
completions at Server 4 per unit time. The decision
variable is the vector § consisting of the four service
rates.

The numerical results reported in this section were
obtained using the deterministic nonlinear optimiza-
tion code NLPQL (Schittkowski 1985/86). We thank
Prof. Dr. K. Schittkowski, Universitat Bayreuth,
Germany, for making this code available to us. The
code determined the total number of simulation runs
to make, one run being required each time either one
or both elements of a function/gradient pair were to
be computed. This decision was controlled by the ac-
curacy parameter ACC in the code, which we set to
10~%.

In order to use NLPQL one must be able to com-
pute both the objective function value and its gra-
dient. To compute the gradients we used the IPA
method for closed queueing networks described in
Suri (1989) and Leung (1990). IPA enabled us to
obtain the gradients in a single simulation run. The
effort expended in the IPA calculations was negligi-
ble compared to the effort required for the simulation,
and the only storage requirement was for a 4 x 4 ma-
trix.

Table 1 shows the results from unconstrained min-
imization of the function

4
Xn(6) = 400T(6) " + > 6.

i=1
We chose this functional form to model a problem
in which one wants to maximize throughput, but in
which there is some cost (in this case, 1) for increasing
the service rate of a server. The optimization prob-
lem then is to find the best tradeoff of cost against
throughput.

Table 1: Unconstrained, Closed Queueing Network

n 1 91 02 03 04 r4
1+4 20 12.080 4.078 8.617 12.069 .715
1+5 20 12.010 4.153 8.717 12.084 .942
1+6 16 12.057 4.111 8.758 12.066 .980
246 16 12.048 4.115 8.752 12.058 .954
346 15 12.048 4.106 8.757 12.043 .938
446 15 12.052 4.106 8.754 12.054 .937
o+6 16 12.047 4.119 8.754 12.050 .951

Each row of this table shows the final result of op-
timizing X, for a distinct n, including the simulation
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run length n (consisting of the total number of ser-
vice completions at Server 4, with the notation a + b
for a x 10%), the total number i of simulation runs of
length n required, the final values of the 6;, and the
quantity z consisting of the objective function value
less its integer part (which was 73). In each case the
starting point was 6; = 10 for all ;. We also ran the
optimization code starting from 6; = 1; the number
of iterations was larger, as would be expected.

We also experimented with a constrained version of
the same problem, in which we minimized 4007°(8)~!
subject to the three inequality constraints

The results are shown in Table 2, in which the quan-
tities shown are the same as those shown in Table 1
except that z is the objective function value reduced
by a different integer part (29 instead of 73). The
starting point and the tolerance ACC for these com-
putations were the same as for those of Table 1.

Table 2: Constrained, Closed Queueing Network

n ) 01 92 03 94 z
144 10 15.000 6.898 14.102 14.000 .40
1+5 8 15.000 6.955 14.045 14.000 .51
146 9 15.000 7.013 13.987 14.000 .55

We suspected that the number of iterations re-
quired for this constrained optimization would be less
than that required for the unconstrained problem, be-
cause of the well known dimensionality reduction pro-
duced by active constraints (with four variables and
three active constraints one is effectively minimizing
in a subspace of dimension 1). This was in fact the
case, as one can see by comparing the values of ¢ in
the two tables. This phenomenon, incidentally, pro-
vides another argument for handling constraints di-
rectly, rather than by devices such as unconstrained
minimization combined with projection.

One of the particularly interesting aspects of these
two tables is the rather small change in the solution
produced by a large increase in computational effort.
For example, in Table 1 the solutions produced using
a total of 2 million and 80 million service completions
are not very different (2nd and T7th lines of table).
Similarly, in the first and third lines of Table 2 one
sees that an increase from 100,000 to 9 million service
completions produced relatively little change. This
suggests that even a fairly small computational effort

may produce a solution accurate enough for practical
purposes. As we note below, a similar phenomenon
appeared in the numerical experiments carried out,
on much larger systems, by Plambeck et al. (1994).

These computational examples may help to give
some insight into how the method behaves in partic-
ular cases; however, they do not demonstrate that it
will be useful in solving larger or more complex prob-
lems. Solution of such problems was the object of the
work reported in Plambeck et al. (1993, 1994), which
we now briefly describe.

This work dealt with two different types of
problems: tandem queues, modeling manufactur-
ing lines, and stochastic PERT (Program Evaluation
and Review Technique) networks, modeling complex
projects in which some activities must be completed
before others can begin. The tandem queues con-
sisted of servers running at deterministic speeds but
subject to breakdowns. The volume of product pro-
cessed until breakdown and the time to repair after
a breakdown were random. The servers were sep-
arated by buffers of fixed sizes, and the presence of
these buffers subjected the servers to blockage and/or
starvation resulting from the behavior of the servers
downstream or upstream, respectively. The authors
of Plambeck et al. (1993, 1994) optimized lines with
up to 50 servers, so that simulation time was an im-
portant issue. To increase the speed of the simula-
tions, they employed continuous flow models instead
of discrete models, using methods described by Suri
and Fu (1991, 1994). The objective function to be
minimized was the reciprocal of throughput, the de-
cision variables were machine cycle times (reciprocals
of speeds) and these were subject to linear equation
and/or inequality constraints.

The PERT networks studied in Plambeck et al.
(1994) contained up to 70 nodes and 110 stochas-
tic arcs. Each stochastic arc had a duration specified
by a probability distribution that was either uniform
(with variable mean) or triangular (with a variable
scale factor in the maximum, minimum, and mode).
The problem was to minimize the sum of (1) ex-
pected project duration and (2) a cost term of the
form 3, Icizi_], where the k; were specified numbers
and the z; were the variable quantities in the proba-
bility distributions just described. The z; were also
subject to linear inequality constraints.

As both the limit function Xo and the approx-
imating functions X, in problems of these types
are convex but may be nonsmooth, it was neces-
sary to use a method designed for nondifferentiable
convex optimization; in this case, the bundle/trust
region method of Schramm and Zowe (Zowe 1989,
Schramm and Zowe 1990). Somie heuristic modifica-
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tions were also made to the basic sample-path opti-
mization method in order to re-use information from
past simulations.

Complete numerical results for these systems ap-
pear in Plambeck et al. (1994); however, we note
that in these computations, as in the small examples
illustrated above, substantial increases in computa-
tion time resulted in fairly small relative changes in
the decision variables. In most of these problems no
analytic formulas for the optimal solutions are known,
so one cannot tell for sure whether this means that
the earlier solutions (those with smaller computation
times) were fairly accurate or that none of the com-
puted solutions was accurate. However, in the one
case (2-server tandem queues) for which analytic for-
mulas were available, the solutions computed using
sample-path optimization were very accurate (errors
ranging from 1.8 x 107* to 1.4 x 1071%), and this is
an encouraging sign.

This section has presented computational results
using sample-path optimization for some small queue-
ing networks, and has briefly summarized much more
extensive results available elsewhere in the literature,
In the concluding section we discuss some of the areas
where we think more information about this method
would be very helpful.

4 SOME UNANSWERED QUESTIONS

Here we list a number of questions about the sample-
path optimization method to which we currently lack
answers. Research is currently underway which we
hope will answer some of these questions.

First, consider the question of whether the method
works at all: that is, whether optimizers of X,, con-
verge to optimizers of X as n becomes large. We
dealt with this question in Section 2; recall that a
key hypothesis of Theorem 1 in that section was that
the X, almost surely epiconverge to Xo,. As we in-
dicated above, it would be of great interest to have
general results, for classes of stochastic optimization
problems arising in applications, to guarantee such
epiconvergence.

Second, if the method in fact converges then one
can reasonably ask how fast the convergence is likely
to be. This means that we would like to have some
indication of the rate of convergence of an optimizer
07 of X, to the set of optimizers of X, as n in-
creases. There is a considerable amount of recent
work on asymptotic analysis applicable to stochas-
tic programming, some of which may help to answer
this question; for example, King (1989), King and
Rockafellar (1993), Shapiro (1993). However, since

this work focuses on the convergence in distribution

of solutions to stochastic optimization problems, and
since we are interested in the behavior of the solu-
tions along a single sample path, we do not yet know
whether these results can yield rate information of
the kind we need.

Finally, quite apart from the theoretical questions
of convergence and rate of convergence, there is the
practical question of whether this method can con-
tribute, over the long run, to the solution of signifi-
cant problems that otherwise could not be solved at
all, or could not be solved so well. Clearly, we do
not know the answer to this question now, and no
mathematical investigation will provide it. It will be
necessary to have more computational experience, on
a wide selection of problems from applications, before
we have an indication of the method’s overall useful-
ness.

Nevertheless, as we argued in Section 1 above, we
think this technique has very attractive aspects for
- in particular - the solution of constrained prob-
lems. It makes available for stochastic optimization
problems the immense amount of work invested over
the past 50 years in learning how to deal with con-
straints in numerical optimization. We hope that fur-
ther work, both numerical and theoretical, will clar-
ify the question of whether that availability can be
translated into a broadly effective family of solution
methods for important stochastic optimization prob-
lems.
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