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ABSTRACT

We present a state-of-the-art review of ranking, se-
lection and multiple-comparison procedures that are
used to compare system designs via computer sim-
ulation. We describe methods for four classes of
problems: screening a large number of system de-
signs, selecting the best system, comparing all sys-
tems to a standard and comparing alternatives to a
default. Rather than give a comprehensive review,
we present the methods we would be likely to use in
practice and emphasize recent results. Where possi-
ble, we unify the ranking-and-selection and multiple-
comparison perspectives.

1 INTRODUCTION

Simulation experiments are typically performed to
compare, in some fashion, two or more system de-
signs. The statistical methods of ranking and selec-
tion and multiple comparisons are applicable when
comparisons among a finite and typically small num-
ber of systems (say 2 to 20) are required. The partic-
ular method that is appropriate depends on the type
of comparison desired and properties of the simula-
tion output data. In this state-of-the-art review we
describe methods for four classes of problems: screen-
ing a large number of system designs, selecting the
best system, comparing all systems to a standard and
comparing alternatives to a default. Rather than give
a comprehensive review, we present the methods we
would be likely to use in practice. And where possi-
ble, we unify the ranking-and-selection and multiple-
comparison perspectives.

Ranking and selection procedures (R&S) are statis-
tical methods specifically developed to select the best
system, or a subset of systems that includes the best
system, from among a collection of competing alter-
natives. Provided certain assumptions are met, these
methods usually guarantee that the probability of a
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correct selection will be at least some user-specified
value. Multiple-comparison procedures (MCPs) treat
the comparison problem as an inference problem on
the performance parameters of interest. MCPs ac-
count for the error that arises when making simul-
taneous inferences about differences in performance
among the systems. Both types of procedures are rel-
evant in the context of computer simulation because
the assumptions behind the procedures can frequently
be satisfied: The assumption of normally distributed
data can often be secured by batching large numbers
of (cheaply generated) outputs. Independence can be
obtained by controlling random-number assignments.
And multiple-stage sampling—which is required by
some methods—is feasible in computer simulation be-
cause a subsequent stage can be initialized simply
by retaining the final random-number seeds from the
preceding stage.

To facilitate the discussion that follows we de-
fine the following notation: Let Yj; represent the
jth simulation output from system design ¢, for i =
1,2,...,k alternatives and j = 1,2,.... For fixed 1,
we will always assume that the outputs from sys-
tem ¢, Y;1,Y;2,..., are independent and identically
distributed (i.i.d.). These assumptions are plausible
if Y;1,Yia,... are outputs across independent repli-
cations, or if they are appropriately defined batch
means from a single replication after accounting for
initialization effects. Let pu; = E[Y;;] denote the ex-
pected value of an output from the ith system, and
let ¢ = Var[Y;;] denote its variance. Further, let

pi =Pr {YzJ > I'l;l:;xylj}

be the probability that Y;; is the largest of the jth
outputs across all systems when Yi;,Yoj, ..., Yr; are
mutually independent.

The methods we describe make comparisons based
on either y; or p;. Although not a restriction on ei-
ther R&S or MCPs, we will only consider situations
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in which there is no known functional relationship
among the p; or p; (other than Zle pi = 1). There-
fore, there are is no potential information to be gained
about one system from simulating the others—such
as might occur if the u; were a function of some ex-
planatory variables—and no potential efficiency to be
gained from fractional-factorial experiment designs,
group screening designs, etc.

The paper is organized into four additional sec-
tions, one for each type of comparison problem.

2 SCREENING PROBLEMS

Example 1 A brain-storming session produces 15
potential designs for the architecture of a new com-
puter system. Response time is the performance mea-
sure of interest, but there are so many designs that a
careful simulation study will be deferred until a ptlot
simulation study determines which designs are worth
further scrutiny. Smaller response time is preferred.

If the expected response time is the performance
measure of interest, then the goal of the pilot study is
to determine which designs are the better performers,
which have similar performance, and which can be
eliminated as clearly inferior.

2.1 Multiple Comparisons Approach

Let u; denote the expected response time for archi-
tecture i. Multiple comparisons attacks the screen-
ing problem by forming simultaneous confidence in-
tervals on the parameters p; — p; for all i # j. These
k(k — 1)/2 confidence intervals indicate the magni-
tude and direction of the difference between each pair
of alternatives. The most widely used method for
forming the intervals is Tukey’s procedure, which is
implemented in many statistical software packages.
We review the procedure here and cite some recent
advances. General references include Hochberg and
Tamhane (1987) and Miller (1981).

Suppose that the systems are simulated indepen-
dently, and we obtain i.i.d. outputs Yi1,Yi2, ..., Yin,
from system i. Let ¥; = E;’;l Yij/ni be the sample
mean from system ¢, and let
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be the pooled sample variance. Tukey’s simultaneous
confidence intervals are

Q@ 1
pi—pi €Yi-Y £ ﬁs n—i+;;;

for all i # j, where Qiag is the 1 — a quantile of
the Studentized range distribution with parameter
k and v = Zf___l(n,- — 1) degrees of freedom (see
Hochberg and Tamhane 1987, Appendix 3, Table 8,
for instance).

When the Y;; are normally distributed with com-
mon (unknown) variance, and ny = ng = -+ = N,
these intervals achieve simultaneous coverage proba-
bility 1 — a. Hayter (1984) showed that the coverage
probability is strictly greater than 1 — o when the
sample sizes are not equal.

When there are a large number of comparisons, as
in the example above, then the confidence intervals
should be displayed a manner that allows the ana-
lyst to easily perceive the magnitude and direction
of significant differences, and to recognize systems
that are practically equivalent. Hsu and Peruggia
(1994) recently proposed the mean-mean scatter plot
for this purpose. The plot is constructed by letting
each pair (V;,Y;) with ¥; > ¥; be a point in two-
dimensional Euclidean space, then drawing a line seg-
ment of length C,)g:’gfo'1 2 + ;11- with —45° slope cen-
tered at the point. Since it is easier to perceive verti-
cal and horizontal alignments, the entire plot may be
rotated 45° counterclockwise.

An example is shown in Figure 1 for k = 4 systems.
Notice that line segments that do not cross the diag-
onal “0” line indicate differences that are statistically
significant.
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Figure 1: Mean-Mean Scatter Plot of Tukey’s All-
Pairwise Comparisons
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2.2 Subset Selection Approach

The subset selection approach is a screening device
that attempts to select a (random-size) subset of the
k = 15 competing designs of Example 1 that contains
the design with the smallest expected response time.
Gupta (1956, 1965) proposed a single-stage procedure
for this problem that is applicable in cases when the
data from the competing designs are balanced (i.e.,
ny = --- = ng = n) and are normal with common
(unknown) variance o2.

First specify the desired probability 1 — « of actu-
ally including the best design in the selected subset.
Calculate the k sample means Y; = 2;;1 Y;;j/n, for
1 = 1,2,...,k, and an unbiased pooled estimate of

a?,

k n Y,
Zi:l Zj:l(yij - Yi)2
k(n—1) i
Include the ith design in the selected subset if

s =

Y; < 121}2): {}_’J + gS\/2/n}

where g = Tlgi)l.k(n—l),o.s is an equicoordinate criti-
cal point of the equicorrelated multivariate central ¢-
distribution; this constant can be found in Hochberg
and Tamhane (1987), Appendix 3, Table 4; Bech-
hofer, Santner and Goldsman (BSG) (1995); or by
using the FORTRAN program AS251 of Dunnett
(1989). Gupta and Huang (1976) proposed a simi-
lar procedure (requiring more obscure tables) for the
unbalanced case.

3 SELECTING THE BEST

Example 2 (Goldsman, et al. 1991) For the purpose
of evaluation prior to purchase, simulation models of
four different airline-reservation systems have been
developed. The single measure of system performance
is the time to fatlure (TTF), so that larger TTF 1s bet-
ter. A reservalion syslem works if either of two com-
puters works. The four systems arise from variations
in parameters affecting the TTF and lime-lo-repair
distributions. Differences of less than aboul two days
are constdered praclically equivalent.

3.1 Indifference-Zone Selection Approach

If expected TTF is taken as the performance mea-
sure of interest, then the goal in this example is to
select the system with the largest expected TTF. In
a stochastic simulation such a “correct selection” can
never be guaranteed with certainty. A compromise
solution offered by indifference-zone selection is to

guarantee to select the best system with high proba-
bility whenever it is at least a user-specified amount
better than the others; this practically-significant dif-
ference is called the indifference zone. In the example
the indifference zone is é = 2 days.

Law and Kelton (1991) present indifference-zone
procedures that have proven useful in simulation,
while BSG (1995) provide a comprehensive review of
R&S procedures. We present two procedures, one
due to Rinott (1978) that is applicable when the out-
put data are normally distributed and all systems are
simulated independently of each other, and the other
due to Matejcik and Nelson (1993) that works in con-
junction with common random numbers.

Multiple comparisons attacks the problem of deter-
mining the best system by forming simultaneous con-
fidence intervals on the parameters y; —max;z; p; for
1 = 1,2,...,k, where u; denotes the expected TTF
for the i¢th reservation system. These confidence in-
tervals are known as multiple comparisons with the
best (MCB), and they bound the difference between
the expected performance of each system and the best
of the others. The first MCB procedures were devel-
oped by Hsu (1984); a thorough review is found in
Hochberg and Tamhane (1987).

Matejcik and Nelson (1992) and Nelson and Mate-
Jeik (1993) established a fundamental connection be-
tween indifference-zone selection and MCB by show-
ing that most indifference-zone procedures can simul-
taneously provide MCB confidence intervals with the
width of the inlervals corresponding to the indiffer-
ence zone. The procedures we display below are
combined indifference-zone selection and MCB pro-
cedures. The advantage of a combined procedure is
that we not only select a system as best, we also gain
information about how close each of the inferior sys-
tems is to being the best. This information is useful
if secondary criteria that are not reflected in the per-
formance measure (such as ease of installation, cost
to maintain, etc.) may tempt us to choose an inferior
system if it is not deficient by much.

In the combined procedures below we use the con-
vention that a “” subscript indicates averaging with
respect to that subscript. For example, Y;. is the
sample average of Y;1,Yis, ..., Yine-

Rinott + MCB (independent sampling)

1. Specify 6, & and ng. Let h solve Rinott’s integral
for no, k and « (see the tables in Wilcox 1984 or
BSG 1995).

2. Take an i.i.d. sample Y;;, Yio, .. ., Yin, from each
of the k systems simulated independently.



Ranking, Selection and Multiple Comarisions 195

3. Compute the marginal sample variances

o T (Y = i)

ng—1

fori=1,2,... k.
4. Compute the final sample sizes
N; = max {no, [(hS;/6)?]}

for © = 1,2,...,k, where [-] is the integer
“round-up” function.

5. Take N; — ng additional i.i.d. observations from
system %, independently of the first-stage sample
and the other systems, for:=1,2,...,k.

6. Compute the overall sample means

- 1 X
ji=1
fori=1,2,... k.

7. Select the system with the largest Y. as best.

8. Simultaneously form the MCB confidence inter-
vals
My —maxu; €
b

- +
[— (f’. —-max)z/JA —8) , (f’i.—maxf/J.+5) }
I# I

fori =1,2,...,k, where (a)* = max{0,a} and
—(b)~ = min{0, b}.

Rinott’s procedure, and the accompanying MCB
intervals, simultaneously guarantee a probability of
correct selection and confidence-interval coverage
probability greater than or equal to 1 — o under the
stated assumptions.

A fundamental assumption of the Rinott+MCB
procedure is that the k systems are simulated in-
dependently (see Step 2 above). In practice this
means that different streams of (pseudo)random num-
bers are assigned to the simulation of each system.
However, under fairly general conditions assigning
common random numbers (CRN) to the simulation
of each system decreases the variances of estimates
of the pairwise differences in performance. Unfor-
tunately, CRN also complicates the statistical anal-
ysis when k > 2 systems are involved. The fol-
lowing new procedure provides the same guaran-
tees as Rinott+MCB under a more complex set of
conditions, but has been shown to be quite robust
to departures from those conditions. And unlike
Rinott+MCB, it is designed to exploit the use of CRN
to reduce the total number of observations required
to make a correct selection.

NM + MCB (common random numbers)

1. Specify é, o and ng. Let g = Tlgi)l,(k—l)(no—l),O.S
(see Hochberg and Tamhane 1987, Appendix 3,
Table 4; and BSG 1995).

2. Take an i.i.d. sample Y;1, Yio, . .., Yin, from each
of the k systems using CRN across systems.

3. Compute the approximate sample variance of the
difference of the sample means

k Y > S\ 2
2 _ 22:‘:1 Z?il (yz] =Y. -Y; + Y..)

g k=~ D(no—1)

4. Compute the final sample size
N = max{no, [(95/6)*]} .

5. Take N — ng additional i.i.d. observations from
each system, using CRN across systems.

6. Compute the overall sample means

- 1 &

fori=1,2,... k.
7. Select the system with the largest }=’,z as best.

8. Simultaneously form the MCB confidence inter-
vals as in Rinott+MCB.

3.2 Multinomial Selection Approach

Another approach to the airline-reservation problem
is to select the system that is most likely to have
the largest actual TTF. To this end, one can de-
fine p; as the probability that design : will pro-
duce the largest TTF from a given vector-observation
(Y1;,Y2j,...,Y%;). The goal now is to select the de-
sign associated with the largest p;-value. This goal
is equivalent to that of finding the multinomial cat-
egory having the largest probability of occurrence;
and there is a rich body of literature concerning such
problems.

More specifically, suppose that we wish to select
the correct category with probability 1 — o whenever
the ratio of the largest to second largest p; is greater
than some user-specified constant, say § > 1. The in-
difference constant 6 can be regarded as the smallest
ratio “worth detecting.”

The following single-stage procedure was proposed
by Bechhofer, Elmaghraby and Morse (BEM) (1959)
to guarantee the above probability requirement.
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BEM

1. For the given k, and («, 6) specified prior to the
start of sampling, find n from the Tables in BEM
(1959), Gibbons, Olkin and Sobel (1977) or BSG
(1995).

2. Take a random sample of n multinomial ob-
servations X; = (X1j, X2j, .-y Xij), for j =
1,2,...,n, in a single stage, where

X = 1, ifYj > maxgxi{Yej}
v 0, otherwise.

3. Let W; = Z;’:lXU for i = 1,2,....k. Select
the design that yielded the largest W; as the one
associated with the largest p; (randomize in the
case of ties).

A more efficient procedure, due to Bechhofer and
Goldsman (1986), uses closed, sequential sampling;
that is, the procedure stops when one design is “suf-
ficiently ahead” of the others.

BG

1. For the given k, and (v, 8) specified prior to the
start of sampling, find the truncation number
(i.e., an upper bound on the number of vector-

observations) no from the tables in Bechhofer
and Goldsman (1986) or BSG (1995).

2. At the mth stage of experimentation (m > 1),
take the random multinomial observation X,, =
(X1m, Xam, - - ., Xem) (defined above) and calcu-
late the ordered category totals Wjjm < Wigim <
-+ < Wikjm; also calculate

k=1
T = (1/0)(W[k]m_w[l]m)‘
1

i

3. Stop sampling at the first stage when either
Zm <af(l—a) or m=ng

or Wiim — Wik-1jm 2 0o —m,
whichever occurs first.

4. Let N (a random variable) denote the stage at
which the procedure terminates. Select the de-
sign that yielded the largest Wiy as the one asso-
ciated with the largest p; (randomize in the case
of ties).

4 COMPARISONS WITH A STANDARD

Example 3 Several different invesiment stralegies
will be simulated to evaluate their ezpecled rate of
return. The strategy ultimately chosen may not be
the one with the largest ezpected return—since fac-
{ors such as risk could be considered—but none of the
strategies will be chosen unless ils ezpected relurn is
larger than a zero-coupon bond that offers a known,
fized return.

Here the goal is to select the best investment strat-
egy only if it is beiter than the standard; if no strat-
egy is better than the standard, we continue with the
standard. More precisely, we have the following prob-
ability requirement: Denote the standard by po and
the ordered means by pp) < pp2) < -0 < - For
constants {8, Po, P1} with 0 < 6 < oo, 27F <Py«
and (1 —27%)/k < P, < 1, specified prior to the start
of experimentation, we require

P{Select the standard} > Py whenever pp) < po
and
P{Select best strategy} > P; whenever

pik) > max{po, pk-1} + 6.

We present a procedure due to Bechhofer and Turn-
bull (1978) for selecting the best system relative to a
given standard when the responses are normal with
common unknown variance o2. It requires that an
initial sample of ng > 2 observations be taken from
each system in order to estimate o2 in the first stage.

BT

1. For the given (k, o) and specified (8, Py, P1), fix
a number of observations ng > 2 to be taken in
Stage 1.

2. Choose constants (g, h) from Bechhofer and
Turnbull (1978) corresponding to the k, ng, Po
and P; of interest.

3. In Stage 1, take a random sample of ny obser-
vations Yi; (j = 1,2,...,n¢) from the k strate-
gies. Calculate the first-stage sample means,
Yi =772, Yij/no (i=1,2,...,k) and the unbi-
ased pooled estimate of o2,

k no
ST =" (Yij = Vi) k(no — 1).

i=1j=1
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4. In Stage 2, take a random sample of N — ng ad-
ditional observations from each of the strategies,
where

N = max {no, f(g.S'/(S)z]} .

5. Calculate the cumulative sample means

B N
)7,~ = ZY,-]'/N

ji=1
fori=1,2,..., k.

6. If the largest sample mean }—’[k] > po + hé/g,
select the strategy that yielded it as the one as-
sociated with pupy); otherwise, select no system,
i.e., select the standard as best.

5 COMPARISONS WITH A DEFAULT

Example 4 A manufacturing company will replace
an eristing storage-and-retrieval system if one can be
found that is superior to the system currently in place.
Five vendors have proposed hardware-software sys-
tems, and simulation models have been developed for
each. Systems will be evaluated in lerms of their re-
trieval times, but the system ultimately chosen might
notl be the one with the smallest retrieval time because
of differences in cost, ease of installation, elc.

If the expected retrieval time is the performance
measure of interest, then the goal of the simulation
study is to determine which designs are better than
the system currently in place, which we term the “de-
fault” (or “control”). Data on the performance of the
default system may be obtained either from the sys-
tem itself or from a simulation model of it.

5.1 Multiple Comparisons Approach

Let u; denote the expected retrieval time for system
i, where i = k corresponds to the default system. A
fundamental principle of multiple comparisons is that
we should limit ourselves to the comparisons that are
necessary for the decision at hand, because the fewer
confidence statements that are required to be true
simultaneously the sharper the inference. Therefore,
when comparing to a default we find simultaneous
confidence intervals for u; — py for all ¢ # k, rather
than p; — p; for all ¢ # j. Such comparisons are
called multiple comparisons with a control (MCC).
Further, if we know that only differences in a specified
direction are of interest—in the example we are only
interested in systems with smaller expected retrieval
time than the default—then we should form one-sided
confidence intervals.

Suppose that the data are acquired independently
from each system (a necessity if data are collected
from the default system itself), and we obtain i.i.d.
outputs Y;1, Yia, ..., Yin, from system . Let

: 1 ¥ 0
52 = — Z(Yij -Yi)?
: ji=1

be the sample variance from system . MCC proce-
dures are well known for the case when the variances
across systems are equal (see for instance Hochberg
and Tamhane 1987 and Miller 1981). Here we present
a simple procedure due to Tamhane (1977) that is
valid when variances may not be equal.

The simultaneous, upper one-sided confidence in-
tervals are

2 2 2 2
pi—pr <Yi =Y+ \/tn'_l’ﬁs2 + ns=1.%
n; Nk
for all i # k, where t, 5 is the 8= 1 — (1 — a)/(k=1)
quantile of the ¢t distribution with v degrees of free-
dom. When the output data are normally distributed,
these intervals are guaranteed to have coverage at
least 1 — « regardless of the system variances. If the
upper bound for p; — g is less than or equal to 0 then
we can conclude that system ¢ has lower expected re-
trieval time than the default.

5.2 A Selection Procedure

The problem considered here differs from that in §4
since we now consider selection with respect to a de-
fault system. The following single-stage procedure
was proposed by Paulson (1952) for the case in which
o? is known. For the given k and specified (6, Py, P,),
let h = Z,(cl__li"/)z be determined from, e.g., Table A.1
of BSG (1995). (These Z constants used to imple-
ment the procedure are upper equicoordinate points
of a certain multivariate normal distribution.) Fur-
ther, let n be the solution of

/m ® (H‘S_ﬁ _h\/§> o*-2 (1:+ %’_‘) dd(z) > Py

[
-0

where ®(-) is the standard normal c.d.f. This equa-
tion can be solved for n using the FORTRAN pro-
gram MVNPRD in Dunnett (1989).

P
1. Take a random sample of n observations

Yi1,Yi2,...,Yin in a single stage from each sys-
tem, including the default, k.
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2. Calculate the k sample means

Y = iyij/”
j=1

for = = 1,2,...,k, and let }7[k_1] =
max{Y7,...,Yx_1} denote the largest (non-
default) sample mean.

3. If 37[1;-1] > Y +_/w\/2/n, select the treatment
associated with Y[z_,); otherwise, select the de-
fault.
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