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ABSTRACT

Discrete-event simulation almost invariably makes
uses of random quantities drawn from given probabil-
1ty distributions to model chance fluctuations. This
advanced tutorial discusses how to choose appropri-
ate distributions. The two main points addressed are
(a) the factors which should be considered in selecting
input distributions, and (b) how the effect of errors
in making an inappropriate or inexact choice will in-
fluence the accuracy of final simulation results.

1 INTRODUCTION

I should mention at the outset that I have given two
introductory WSC tutorials (Cheng 1992, 1993) on
input distribution selection and on variate genera-
tion. Those tutorials concentrated on the elemen-
tary aspects of distribution fitting and variate gen-
eration. The question of distribution selection was
only touched upon. The methodologies of how to fit
distributions and how to generate variates are well de-
veloped and are relatively easy to understand. Once
these aspects have been dealt with then the most in-
teresting problem, from the point of view of the prac-
titioner, is how to select or choose candidate distri-
butions.

In this advanced tutorial I take up the story where
the introductory tutorials left off, focusing on two
particular aspects of input modelling. Firstly, there
are the wider issues underlying distribution selection.
In particular I shall try to consider rather broader
classes of distributions than usually considered. The
other aspect that will be considered is the effect on
the accuracy of the final simulation output when er-
rors are made in the choice or fitting of input distri-
butions. This is a topic that has received relatively
little attention in the literature. The accuracy of the
final results of a simulation is clearly influenced by
the accuracy of the input variate streams. The tu-
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torial will try to quantify this more precisely. It is a
question that deserves a lot more attention not least
because of its practical importance.

The references drawn on in this tutorial are under-
standingly more widely scattered than for the intro-
ductory tutorials. Many interesting ideas have been
proposed through this Conference in previous years.
Good basic references which I have found useful are
Law and Kelton (1991, 2nd Ed.), Lewis and Orav
(1989) and Bratley, Fox and Schrage(1983). Since
the aspects to be discussed are mainly statistical, the
books by Devroye (1986) and Ripley ( 1987) might
also be consulted as they focus more on statistical
aspects.

2 THE SIMULATION MODEL

We wish to highlight the use of empirical data in sim-
ulations. We shall assume that the simulation re-
quires k streams of variates. For each stream we have
available a sample of empirical data:

X; = (milxziz,"')zil,) 1= 1,2, ...,k. (1)

Each sample is assumed to have a joint distribu-
tion with probability increment DFj(x;,8) (i =
1,2,...k). We assume that the distribution depends
on a vector § = (0,0, ...,6,) of p parameters which
are unknown. If the sample is a random sample
then the probability increment becomes a product
of I; copies of a univariate increment: DF; (x;,0) =
H] =1 DFi(z;;,0), but in our general discussion we do
not necessarily have to assume this.

The variates used in one simulation run will be de-
noted by

* * *
X; = (xil)zi%"-)

e )i=1,2,.k (2

It will be convenient to regard these as having been
obtained by transformation

x; = ¢i(uy,0) (3)
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of a corresponding set of independent uniform U(0, 1)
variates:

u; = (uil)ui2) "~;uim.-) i= 1, 2, ,k (4)

Note that we assume the uniforms to be independent,
but the components of the x} are not necessarily so.
The output of interest from the simulation run, y,
can then be thought of as being a function of the u;,
albeit a complicated one:

y= y(U’0)1 (5)

where
U = (uj,uy, ..., ug). (6)

We regard the objective as being to estimate the ex-
pected value of y, and note that this is a function of
6 only:

n(0) =E(y,0) = y(U,0)dU. (7)

As we have already remarked, we wish to consider
how the empirical data can be used in the simulation
and how its use affects inferences about 7(6). There
are three main possibilities. We can either directly
use these data as the input variable streams, or we
can use some resampled version of these samples as
occurs for instance in ’jackknife’ methods, or we can
fit parametric models which exactly reproduce, or at
least accurately approximate, the F;(x;,0) and then
sample variates from these fitted distributions for use
in the simulation.

We shall consider asymptotic properties which ob-
tain when l; — oo, all i. To simplify the notation
we shall assume that I; = a;l where the proportions
a; are assumed fixed with Y a; = 1. This allows us
to give asymptotic results in the form I — co rather
than consider each I; separately. Obvious variations
to the results apply if the I; — oo at different rates.

In principle the m; can also be thought of as being
variable. However it is more convenient to think of
the length of a simulation run as being fixed so that
the m; are thus also fixed. We consider the overall
simulation experiment as being made up of n runs.
The responses or outputs from these runs will be writ-

ten as:
y;(U;,0) = n(8)+ ¢;(U;,0), j=1,2,....,n. (8)

Note that these outputs depend on the parameter
vector 8. The ’error’ variable e; is the random dif-
ference between the jth simulation run output and
n(6). We shall assume E(e;) = 0 and Var(e;) = o?
for j = 1,2,...,n. Thus, assuming that 6 is fixed for
the moment, we have

Ely;(U;,0)] = n(6), (9)

and the mean of the outputs
n
§=§(U1, Uz, ..., Up,8) = >_u;(U;,0)/n, (10)
j=1

is an unbiased estimator of 7(#) with

Var[g) = o%/n. (11)

3 FITTING MODELS BY MAXIMUM
LIKELIHOOD

We gather together some well-known facts involving
mazimum likelihood (ml) estimation that we shall use
in what follows (see for example Efron and Tibshirani,
1993). In a number of situations we will suppose that
some particular distribution has been selected to be
an input model that is dependent on the vector 6
of unknown parameters. The likelihood is simply the
joint distribution probability element evaluated at the
observed values, and then treated as a function of 6.
It is usually easier to work with its logarithm (log-
likelihood):

k
L(6) =) _log Dfi(x:,0). (12)
i=1
Let 6y denote the unknown true parameter value.
Its maximum likelihood estimate, 5, is the value of
# which maximizes the loglikelihood. The derivative
of L(6), L'(8) =0L(6)/06, is called the score func-
tion. When the loglikelihood is maximized at an in-
terior point of the parameter space then § satisfies
L'(8) = 0. The observed and expected information
are defined as

1(8) = —0%L(0)/06? and i() =E[I(8)].  (13)

Under general regularity conditions the ml estimate
has the important property that its distribution is
asymptotically normal as the sample size | — o0, i.e.

f ~ N(60,i(80)™1) | — .
In practice, as g 1s unknown, use is made of one of the
asymptotically equivalent versions: 6 ~ N(8,i(6)~1)
or  ~ N(0,1(6)~1). A typical application of this re-
sult is its use in the construction of confidence inter-

vals which contain the unknown true parameters with
prescribed degree of confidence.

4 SELECTING INPUT MODELS

4.1 Univariate Models

Input models or distributions are the probability dis-
tributions of random variables used to drive the sim-
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ulation. We begin by considering univariate mod-
els. In discrete event simulation relatively few theo-
retical distributions are used in practice. The main
continuous distributions are the uniform, normal, ex-
ponential, gamma, lognormal, Weibull, beta of the
first and second kinds, the triangular and the inverse
Gaussian. The main discrete distributions are the
discrete uniform, Bernoulli, binomial, geometric and
negative binomial. A good review of these distribu-
tions is given for example by Law and Kelton (1991).
Many statistical packages, whether they are specifi-
cally targetted for the simulation community or not,
contain fitting routines for many of these. For exam-
ple Palisade Corporation’s 'BestFit’ allows fitting of
a whole range of distributions, together with ranking
based on goodness of fit criteria so that the user has
guidance on which distribution will be satisfactory or
best.

There are two provisos. Firstly, despite the ap-
parent choice, there are limitations. Only the most
widely known models tend to be considered and these
tend to be the ones implemented in packages. For ex-
ample, despite its clear analytic tractability and its
useful provenance, the inverse Gaussian distribution
is often not listed in simulation texts as a possible
model, and not always included as a possible candi-
date in packages. Such omissions are clearly just a
matter of taste.

The second proviso is more serious. Use of stan-
dard distributions tends to limit the amount of con-
trol one has over the shape of the fitted model. Most
of the models listed above contain two parameters
which in some sense control the location and scale
of the variable, though often one or other will influ-
ence the shape of the distribution as well. Thus, for
example, the gamma model with density

f(z,8,7) =T~ HB)yy PP~ te™*/", 2 >0, (14)

has mean v and variance 8y2. The shape of the dis-
tribution is determined exclusively by $. Obviously
we cannot separately select the location, scale and
shape with only two parameters.

With increasingly wider applications of computer
simulation has come the need to consider more flexi-
ble distributions. One natural extension is to consider
known families of more generality than the above
listed distributions. UniFit II (Vincent and Law
1992), in addition to the above models, includes the
Pearson Type V and VI families. Swain, Venkatra-
man and Wilson (1988) consider use of the Johnson
system of distributions. This extends the number of
parameters to four in most cases.
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An even more comprehensive solution is to use
methods which extend the parameterization in an un-
restricted way. Hora (1983), Avramidis and Wilson
(1989) discuss such techniques. Flanigan-Wagner and
Wilson (1993) address this issue and discuss an inter-
esting approach using what they call the Bézier dis-
tribution. The advantage of such a technique is that
it brings into play the power and intuitive graphic
properties of interactive Bézier curve fitting. The dis-
advantage of such an approach is that it is difficult
then to assess the statistical properties of the method,
such as significance of the goodness of fit.

Despite advances in such flexible methods, there is
nevertheless still scope for considering simple exten-
sions of well known distributions. The reasons are:

(i) Standard distributions are still widely used, so
simple variations of them which extend their scope
will be convenient and may therefore gain more ready
acceptance.

(i) Simple extensions often have some practical in-
terpretation making their use more meaningful than
more elaborate models.

(iti) It will be easier to generate variate values from
simple extensions.

We now discuss some extensions of this kind.

4.2 Three Parameter Models

There are several ways that an additional parameter
can be incorporated into a standard distribution to
give more flexibility for fitting purposes.

One method is to incorporate a power transform.
For example the gamma model (14) becomes:

f(x,0,8,7) =| | T7Y(B)y PzP1e=2"/7 2 > 0.

The statistical properties of this generalized gamma
model were considered by Stacy (1962). Variates are
easily generated using Y = X/ where X has the
gamma. density (14). Another example occurs in cer-
tain generalizations of the inverse Gaussian model
considered by Jgrgensen (1982).

Another method is to include a shifted threshold
parameter. For example the gamma model (14) be-
comes:

f(z, 0, B,79) = T=1(B)y~P (2 — a)P—le=(==a)/7,
> a.

There is an extensive literature on the problems of
fitting this type of distribution, see for example Smith
(1985) and Cheng and Iles (1990) and the references
therein. The interesting thing that occurs with this
type of model is that it contains a non-degenerate two
parameter embedded model obtained as certain of the
parameters tend to zero. In the gamma model this
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occurs if we substitute 8 and v by i and o using the
reparameterization:

B=[(n—a)/o)® and y=0%/(p— ).

Now if we let « — —o0, keeping g and o constant,
we get the normal model with density:

f(=z,p,0) = (270%) "2 exp[—(z — 1)*/(207)]

in the limit. This possibility must be allowed for if
numerical instability is not to occur in the fitting pro-
cess.

A third method is to use tilling. Tilted distri-
butions are useful in importance sampling methods.
Nakayama (1992) describes efficient methods for gen-
erating certain exponentially tilted variates.

A final method is to treat one of the parameters
as being random with a distribution of its own. An
extra parameter can then be introduced via this mix-
ing distribution. Scattered examples of such models
occur in the literature. An interesting example is the
generalization of the two parameter Weibull to a three
parameter Burr distribution (see for example Dubey,
1968). For the gamma model we proceed as follows.
Suppose that given Y, X has the conditional gamma
distribution with density:

f(z,B,7/Y) = T-XB)(Y/7)PzP~ e=¥]7, z > 0.

Now let Y be a random variable in its own right, with
gamma density

9(y,a) = F'l(a'l)a"llayé_le’y/a, y>0.

Then the unconditional distribution of X is the Beta
distribution

(aB/v)’ =" .
B(B,1/a)(1 + aBz/y)’*=

f(x,a,ﬂ,*y) =

Cheng, Evans and Traylor (1993) review a number of
such models. Again the problem of embedded mod-
els occurs and this must be allowed for in the fitting
process. Generation of variates from this type of mix-
ture model is easy. We generate Y from the mixing
distribution, then, given this value of Y we generate
from the conditional parent X distribution.

The effect of the mixing parameter is to spread
the distribution so that it generally has thicker tails.
When extreme values are expected more often than
occurs with standard distributions then such models
may be useful, especially as the mixing parameter
may have a sensible interpretation in the context of
the application.

4.3 Multivariate and Correlated Variables

We end this section with some brief comments on
the fitting of correlated variables and their genera-
tion. These topics are increasingly being studied.
However, except for certain families of models, an
established methodology has yet to be properly de-
veloped. I think there are several reasons why more
work is needed before methods of satisfying general-
ity might be thought to exist. Firstly there is the
sheer range of processes of practical interest when
we extend from the univariate and independent case
to situations with multivariate and correlated struc-
tures. Fitting methods then tend to depend on graph-
ical and interactive techniques which are too complex
or ill defined to be amenable to tractable analysis
of their statistical properties. Methods and models
like those described by Flanigan-Wagner and Wilson
(1993) and by Melamed, Hill and Goldsman (1992)
perhaps fall into this category. Finally there is the
problem of devising methods of variate generation
which possess sufficient generality to have wide ap-
plicability.

Areas which have received particular attention
where progress has been made include the genera-
tion of correlated time-series. Examples of sophisti-
cated generators of this kind include those proposed
by Melamed, Hill and Goldsman (1992), by Chen and
Schmeiser (1992) and by Song and Hsiao (1993). Such
models are complex. More accessible flexible methods
should perhaps be based on more general theoretical
models. The recent work on characterizing mixture
models for time series done by Jalali and Pemberton
(1994) might prove a useful basis for such develop-
ments.

One notable area where the methodology is more
clear is the use of Markov chains to fit and generate
correlated series. A good example of use of such a
model is given by Keezer, Fenic and Nelson (1992)
who also cite various other previous applications of
such modelling. A good reference concerning the fit-
ting of Markov chains, and indeed the fitting of gen-
eral stochastic processes is the book by Basawa and
Rao (1980).

Finally it should be mentioned that the modelling
of spatial processes, especially with reference to image
processing, has received huge interest in recent years.
Here the methodology is well established and rich. A
good introductory reference is given by Ripley (1988).
However as the topic falls rather outside our discrete-

event simulation remit, we shall not pursue it further
here.
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5 THE EFFECT OF ESTIMATING INPUT
DISTRIBUTIONS

5.1 Bias and Variance

We consider three ways of using empirical data in a
simulation:

1. Generate variates for use in the simulation by
sampling directly from the empirical cdf. This
is what has come to be called the ’bootstrap’
method in statistics.

2. Carry out some form of smoothing of the empir-
ical cdf, including extension to allow sampling
outside the range of observed values. Sample
variates from this smoothed distribution for use
in the simulation. A number of ’smoothed boot-
strap’ methods fall into this category.

3. Fit a theoretical parametric model to the data
and sample variates from the fitted model for
use in the simulation. This is what is fashionably
called the ’parametric’ bootstrap.

There are two potential sources of error when using
an input model that has been fitted to empirical data:

(a) The bias error that occurs through fitting an
incorrect model.

(b) The variance error arising from the variability
of estimators of parameters even if the model fitted
is the correct one.

The bootstrap technique is attractive in that it
does not suffer from bias error. It does not however
remove variance error as this is a consequence of the
finiteness of the empirical data, i.e. the finiteness of
l. The attraction of the bootstrap method is that
it allows this variability to be accurately gauged by
increasing n. The classic technique (see for example
Efron and Tibshirani, 1993) translates into the sim-
ulation context as follows: Group the n runs into B
blocks of r runs each. For the bth block calculate the
sample variance, sZ, from the y; of that block . The
average of the sZ, S? say, of the B blocks estimates
the variance of the mean of the y; in each block. The
bootstrap claim is that as B — oo this accurately
estimates the variance of the population block mean.

The weakness of the standard bootstrap is that if
the sample size of the empirical data is small then
the bootstrap observations take rather a restricted
set of values. Moreover the tail behaviour is severely
curtailed by the restricted range of empirical values.
Barton and Schruben (1993) suggest smoothed ver-
sions of the bootstrap using a two step strategy. In
the first step a standard bootstrap resample is ob-
tained (alternatively a uniform resample is obtained
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- this latter suggestion is in effect the method sug-
gested by Rubin, 1981, for a Bayesian resample). In
the second step the empirical cdf of this bootstrap
sample is smoothed and then used in the simulation
to generate variates.

Given that sampling of the smoothed empirical cdf
takes place in the second step, and this is in effect a
bootstrap strategy, it is not clear that the first step is
necessary or even helpful to carryout. In most cases
I suspect that the first stage can be omitted alto-
gether. The method becomes the standard smoothed
bootstrap method (see Efron 1982). Banks (1989)
shows that in many situations this smoothing leads
to improved estimator characteristics over the stan-
dard bootstrap technique.

An attractive variation is the method suggested by
Bratley, Fox and Schrage (1987) for adding an ex-
ponential tail to the smoothed empirical cdf. The
effect of this method on the bias error has been the-
oretically analysed for certain queues in interesting
work by Shanker and Kelton (1994). They develop
a methodology for testing alternative input models
which should therefore help to reduce this bias error.

The analysis of bootstrap techniques usually be-
comes bogged down in rather intractable algebra.
Even where progress is possible the resulting formu-
las tend to be complicated and not easy to inter-
pret. The third technique, the parametric bootstrap,
is probably the most widely used method in practice
at present. It suffers from bias error more notice-
ably than the other two methods. However assuming
that we have been careful in our choice of model then
analysis of the effect of variance error is more readily
carried out, and this is what we turn to in the next
sub-section.

5.2 Parametric Bootstrap

We assess the effect of estimating 6y on the estima-
tion of 7(6). When 6 is estimated then the expression
(8) for the observations should be written as:

y;(U;,8) = n(0)+e;(U;,0) j=1,2,...,n  (15)

where both § and U; are random. We can calculate
the variance of the estimate of the response using:

Var(TiLv(Us, 0)/m =
6Var{u; E[ ;. v;(U;,0)/n | 6]} (16)
+0E{w;Var[y_, y;(U;,0)/n | 6]}.

As § and the U; are mutually independent, and as
Ele;(U;,0) | 6] =0, the first term on the right hand
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side reduces to:

évar{u,-E[Z v (Uj,0)/n | 0]} =0V ar[n(d)]. (17)

ji=1
If we expand 17(5) as a Taylor series about 6,:

7(8) = n(80) + 1 (96)" - (& - )
+0[(8 - 6,)?],
where

n'(Bo) = 9n(6)/96 |s,,

and evaluate the variance of this, we have to first
order:

Varln(8)] = n'(60)"V(9)n'(d),  (18)
where V(8,) = i(6,)"! is the Variance-Covariance
matrix of § as previously defined. The sec-
ond member of (16) involves terms of the form
u;Var[y;(U;j,0) | ). These can be evaluated by
writing y;(U;,8) as n(d) + e;(U;,0) and expanding
e;(U;,0) as a Taylor series:

ej(Uj,é) = ej(Uj, 90) :i- e;-(Uj,0o)T . (é - 0)
+0[(6 - 60)?],

where
e;(Uj,80) = 0e;(U;,6)/06 |s,

We have to first order

u; Var(y;(U;,0) | 6] =u;Varle;(Uj, 6,)]
+ zuicov[ej (UJ') fo), e;(pj’BO)T (6 — 6o)]
+ (6= 60)T W (80)(9 — 60).
(19)
where W(6) is the variance-covariance matrix of
e;(Uj,80). Now

u;Varle;(Uj,60)] = o2,
0E{u;Covle;(Uj,b0), €i(U;,00)T - (9 — 60)] | 0}
=0(@™),
and
GE[(8 - 60)TW (60)(8 — 8o) | 8] = O(171).

Combining these results we find to first order that
(16) becomes:

Var(3} ., 4i(U;,6)/n] = 0'(80)7V (80)n' (60)
+02/n
=0(I"1) + O(n7?).
(20)
This result shows that to first order the variability
resulting from estimating parameters from empirical

data can be separated from that arising from the sim-
ulation experiment. The result should be interpreted
with a little care. Second order terms, viz. those
of order O(1=?), O(n~?) and O(I-'n~!), have been
omitted. This means that if, say, we have a large
number of runs, i.e. n is large compared to [, then
the term of order O(I~!) will dominate. However
the next most important contribution would not be
the O(n~') term, but the O(I~2) term, which is not
shown.

An obvious, but important consequence of the re-
sult is that there is little point in making the sim-
ulation over exact compared with the quality of the
empirical data. In the limit, as n — oo, Var(y) |
Varg(9)].

The overall variance can be estimated using the
formula (20). The variance o2 can be estimated from
the sample variance of the observed responses (15).
The gradient vector g(#,) = n'(6o) can be estimated
by making runs in sets of (k + 1) with ; =8 used in
the first run but replaced by 8, =0 + bey_1, for s =
2,3,..,k + 1 where e,_; is the k dimensional vector
with zero entries except for unity in the (s — 1)th
component. The small displacement, 6, has to be
appropriately chosen. The same uniforms should be
used in all the runs of a given set:

yj(ijos) = 77(0,)+ej(Uj,0,)
i=1L2..,n
s=1,2,..,k+1

The ith component, g;(6o), of the gradient vector
g(8,) is estimated by:

9:(60) = 721 [yi (U;, 6i41) — v; (U;, 6))/ (),
1=1,2,. k.

Confidence intervals for (6o) should be based on (20)
and not on (11) alone.
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