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ABSTRACT

This paper discusses certain classes of uniform ran-
dom number generators which have been studied and
better understood in the recent few years. Most of the
attention is devoted to combined generators. We also
mention others and point out some pitfalls. Com-
bination is a good way to obtain fast and reliable
generators, but the structural properties of the com-
bined generator should be carefully examined before
it could be recommended. Nonlinear generators offer
some promise, but still require deeper investigation
before specific instances can be safely recommended.

1. INTRODUCTION

Random numbers are the nuts and bolts of all
stochastic simulations. Simple linear congruential
generators (LCGs) (Bratley, Fox, and Schrage 1987;
Knuth 1981) are still in widespread use for gener-
ating uniform random numbers, mainly because of
their simplicity and ease of implementation. How-
ever, LCGs have several well-known defects and no
longer satisfy the requirements of today’s computer-
intensive simulations, especially when their modu-
lus fits into a 32-bit computer word (L’Ecuyer 1992;
L’Ecuyer 1994c; Marsaglia 1985; Niederreiter 1992b).

Practically all random number generators (RNGs)
used for simulation are deterministic automata with
a finite state space, and so have a periodic behav-
1or. Quality requirements for a general purpose RNG
include a huge period length, good statistical prop-
erties, high speed, low memory usage, repeatability,
portability, ease of implementation, and availability
of jumping ahead and splitting facilities.

We will discuss the important questions of period
length and statistical behavior in a moment. For cer-
tain simulation applications (e.g., in particle physics),
billions of random numbers are required, and the
generator’s speed remains a critical factor, regard-
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less of the available computing power. Memory uti-
lization could become important when many “vir-
tual” generators (many substreams) must be main-
tained in parallel. This is required, for example,
for proper implementation of certain variance reduc-
tion techniques; see Bratley, Fox, and Schrage (1987),
L’Ecuyer and Coté (1991), and L’Ecuyer (1994c).
Portability means that the generator can be imple-
mented efficiently in a standard high-level language,
to produce exactly the same sequence (at least up
to machine accuracy) with all “standard” compilers
and on all “reasonable” computers. Being able to re-
produce the same sequence of random numbers on a
given computer or on different computers (repeata-
bility) is important for program verification and for
variance reduction (Bratley, Fox, and Schrage 1987;
Ripley 1990). Repeatability is a major advantage of
pseudorandom sequences with respect to sequences
generated by physical devices. Of course, for the lat-
ter, one could store an extremely long sequence on a
disk and reuse it as needed. But this is not as con-
venient as a good pseudorandom number generator
which stands in a few lines of code. Jumping ahead
means the ability to quickly compute, given the cur-
rent state s,, the state s,y4, for any large v. This
is useful for breaking up the sequence into long dis-
Joint substreams and jump ahead quickly from one
substream to the other. The package described by
L’Ecuyer and Coté (1991) implements such facilities.

In terms of understanding the theoretical proper-
ties of a given generator, knowing the period length
is not enough, even if it is astronomical. Suppose
that our generator is to produce iid (independent. and
identically distributed) uniform variates over the in-
terval [0, 1] and let u,, be the value generated at step
n. Consider for example the set of all t-dimensional
vectors of successive observations:

Qt = {un = (Un...., Unjpt—1); n >0},

over the full period of the generator, for a given
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Common practice is to demand that these points are
very evenly distributed in the t-dimensional unit hy-
percube [0, 1]’. One may argue that points that are
too evenly distributed do not look random and fail to
imitate iid uniform variates as well as points whose
distribution is too far from even. However, if the
period length is astronomical and the starting point
(or generator’s seed) is selected at random, then one
may view §2; as a sample space from which points
are taken at random (one by one) by the generator,
without replacement. If the points are very evenly
distributed over [0, 1]%, then a good way to generate
an iid sample from (approximately) the uniform dis-
tribution over [0, 1] would be to pick up points ran-
domly from Q;, with replacement, and use all the
components of each vector. Picking with or with-
out replacement will make practically no difference
if the cardinality of €, is several orders of magni-
tude larger than the number of values that we need.
This (heuristic) argument suggests that (1) ; be as
evenly distributed as possible over [0, 1]* and (2) the
RNG should have a period length several orders of
magnitude larger than whatever can be exhausted in
practice.

“Superuniform” multidimensional distributions
over the entire period, as just described, improve
our confidence in the statistical behavior of the RNG
over the fraction of the period that we use. That
may be complemented with additional empirical sta-
tistical tests. However, empirical tests do not easily
discriminate between good and mediocre generators.
One should first select a generator on the basis of
its theoretical properties, and then submit it to ap-
propriate empirical tests. Some “standard” tests are
described in Knuth (1981) and Marsaglia (1985). Ide-
ally, the tests should be selected in relation with the
target application. So, before using a general purpose
generator, it may be wise to submit it to additional
“specialized” empirical testing. In principle, for any
RNG whose output sequence is periodic, it is possi-
ble to build a statistical test that the generator will
fail miserably, if enough time is allowed. The idea
of empirical statistical testing may then seem mean-
ingless. However, from a pragmatic point of view,
people usually feel good if the RNG passes a certain
set of statistical tests which can be run in “reason-
able” time. Further discussion of statistical testing
can be found in L’Ecuyer (1992).

In the next section, we describe several popular
classes of RNG based on linear recurrences. That in-
cludes the LGC, MRG, Tausworthe, GFSR, TGFSR,
and AWC/SWB generators. In Section 3, we sur-
vey some recent developments regarding the combi-
nation of such linear-type generators. Section 4 dis-

cusses the lattice structure associated with those gen-
erators and the equidistribution properties over the
entire period. In Section 5, we give a quick assess-
ment of certain classes of nonlinear generators pro-
posed in the last few years. For more extensive re-
cent surveys and deeper treatments of RNGs, see
Eichenauer-Herrmann (1992), James (1990), Knuth
(1981), L’Ecuyer (1990), L’Ecuyer (1992), L’Ecuyer
(1994c), Niederreiter (1991), Niederreiter (1992b),
and Tezuka (1992). This paper is based largely on
L’Ecuyer (1994c).

2. GENERATORS BASED ON LINEAR
RECURRENCES

Multiple recursive generators (MRGs) (L’Ecuyer
1990; L’Ecuyer, Blouin, and Couture 1993; Niederre-
iter 1992b), defined as follows, generalize the LCGs:

r, = (ai1Tp-1+ -+ axZp_k) mod m; (1)

Unp = l'n/m‘ (2)

Here, the modulus m and order k are positive inte-
gers, while each a; belongs to Z,, = {0,1,...,m—1}.
For prime m and properly chosen coefficients a;, the
MRG has a (maximal) period length p = m* — 1.
This can be achieved with only two non-zero coeffi-
cients a;; e.g.,

zp = (arZp—r + axTn_x) mod m. (3)

Few non-zero coefficients makes the implementation
faster, but also yields unfavorable limitations on the
quality of the generator. Indeed, a necessary condi-
tion for an MRG to have “acceptable” behavior is
that (1) have several non-zero coefficients a;, whose
sum of squares is “large enough” (L’Ecuyer 1994a).
However, the generator then runs slower.

Taking m = 2¢ for e > 1 makes the implementa-
tion fast and easy, because the modulo operation just
amounts to discarding the higher-order bits. How-
ever, the maximal period is then bounded above (for
k > 1) by (2¥ — 1)m/2, which is much smaller than
mF for large k. Also, the maximal period for the dth
least significant bit is at most (2¥ — 1)2¢-1, and for
i=2"9"2> 0and d > 2, all the points (Zn, Zn4)
lie on at most 29~ parallel lines. Furthermore, if
the period is split into 2¢ equal segments, all those
segments are identical except for their d most signif-
icant bits. For these and other similar reasons, we
recommend that power-of-two moduli be avoided.

Division by m as in (2) is not the only way of pro-
ducing the output. A slightly more general way is to
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use s terms of the recurrence (1) at each stage:

L
Un = ans+j—lm_]» (4)
ij=1

where s and L < k are positive integers. The se-
quence {un} is then called a digital multistep sequence
(L’Ecuyer 1994c; Niederreiter 1992b). If (1) has pe-
riod p and ged(p,s) = 1, then (4) also has period
p. The digital expansion (4) yields a better resolu-
tion than just u, = z,/m, and permits one to take
smaller values of m. An important special case of (4)
is when m = 2: each u, is then constructed by taking
blocks of L successive bits from the binary sequence
(1), with spacings of s—L > 0 bits between the blocks.
This results in the so-called Tausworthe generator
(Knuth 1981; Niederreiter 1992b; Tausworthe 1965),
whose implementation is discussed in Bratley, Fox,
and Schrage (1987), L’Ecuyer (1994c), and Tezuka
and L’Ecuyer (1991).

Another way of producing the output is to have L
copies of the recurrence (1) running in parallel, with
different initial values, and to use one of those copies
for each digit in the fractional expansion of u,. Let
{z;n} denote the jth copy and suppose that it was
started d; values ahead of the sequence {z,}; that is,
Tjn = Tn4q, for all j and n. One then has

L L
Up = ij'"m_J = Zzn.,.djm_]. (5)
j=1 j=1

If the lags between the successive copies are iden-
tical, say d; = (j — 1)d for some integer d, and if
ged(d, p) = 1, then n+d; = n+(j—1)d = (ns+j—1)d,
so (5) becomes equivalent to (4) if we replace the se-
quence {z,} by {yn = Zna}; which can be accom-
plished by changing the coefficients of the recurrence
(1) appropriately. If m = 2 and if there are only
two non-zero coefficients as in (3), then the gener-
ator (b) is called a generalized feedback shift regis-
ter (GFSR) generator (Fushimi and Tezuka (1983),
Fushimi (1989)). If X, denotes the (k-bit) vector
(Z1,ny.--, %k n), then the GFSR lends itself to the
speedy implementation:

Xn = Xn—r &b Xn—k,

where @ denotes the bitwise exclusive-or.

A modification of the GFSR is the so-called lagged-
Fibonacci generator, for which @ can be replaced by
any arithmetic or logical operation. One example is
the additive generator (Knuth 1981):

Xn = (Xn-r + Xn_) mod m, (6)

where m = 2L, 1t is called subtractive if + is replaced
by —. This is a special case of the MRG, but with
a power-of-two modulus. Its maximal period length,
for suitable choices of 7 and k, is (2% — 1)2L-!
2k+L-1 " which is 2£~! times larger than that of a
GFSR with the same values of L and k, but falls way
short of 2¥L. Marsaglia (1985) and Marsaglia and
Tsay (1985) give more details and specific examples
with the operators +, —, and X, in arithmetic modulo
9L However, these additive generators turn out to
have bad structural properties: all triples of the form
(¥n, Untk—r>Untk), 7 > 0, lie in only two planes in
the three-dimensional unit cube (see L’Ecuyer 1994a);
so this author believes that they should be avoided.

Slight variations of additive and subtractive gen-
erators, called add-with-carry (AWC) and subtract-
with-borrow (SWB), were proposed recently by
Marsaglia and Zaman (1991). The modification is
that a carry (or borrow) bit is maintained with the
recurrence (6). This permits a period length of up
to M — 1, where M = m* + m" & 1 (depending on
the variant). It is a tremendous increase. Unfortu-
nately, as shown by Tezuka, L’Ecuyer, and Couture
(1994) and L’Ecuyer (1994a), these generators have
the same bad structural properties as the additive
and subtractive generators.

In a similar vein, Matsumoto and Kurita (1992)
proposed a modification of GFSR generators main-
taining the speed but increasing the period from 2 —1
to 2L — 1. They called them twisted GFSR. Again,
those generators turned out to have bad structural
and statistical properties (L’Ecuyer 1992; Tezuka
1992). Matsumoto and Kurita (1994) recognize that
problem and propose an improved version.

~

3. COMBINED GENERATORS

Combination has long been advocated as a way of in-
creasing the period length and improving the statis-
tical properties of generators (Knuth 1981; L ’Ecuyer
and Coté 1991; L’Ecuyer 1994c; Marsaglia 1985;
Tezuka and L’Ecuyer 1991; Wang and Compagner
1993). Unfortunately, many combined generators
were not so well understood when they were designed,
and this gave rise to not so good proposals in the liter-
ature. Some classes of combined generators have been
successfully analyzed theoretically only very recently.
We now discuss two of those classes: (a) combined
MRGs and (b) combined Tausworthe/ GFSR. genera-
tors.
Consider J MRGs running in parallel (J > 2):

Tjin = (@j1%Tjn-1+ "+ ajk,Tjn-k,;) mod m;.

(7)
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Suppose the m;’s are pairwise relatively prime and
that each recurrence j is purely periodic with period
length p;; so, £ny,, =z, for alln > 0.

Let 41,...,0; be arbitrary integers such that
gced(d;, m;) =1 for each j and define the two combi-
nations:

J
2w =D &izin
=

and

mod my; Un = zp/m;  (8)

J
8;z;n
Wp = Z Jijj mod 1. 9)
=1

Let k = max(ky,... k;); m = H;=1 mj; n; be the
inverse of m/m; modulo m;; and

J
ajin;m
a;i= (> 1) modm
; m;
ji=1
for i =1,...,k, where a;; = 0 for ¢« > k;. Consider

now the MRG (1-2). One can prove (see L’Ecuyer
and Tezuka 1991 for k¥ = 1 and L’Ecuyer 1994b for
k > 1) that (9) is equivalent to (1-2), and has period
length p = lem(py, .. ., pj). These references also give
tight bounds on |u, —@,|, which are close to zero when
the m;’s are close to each other. In other words, (9) is
just a practical way of implementing an MRG with a
large composite modulus, while (8) is a (slightly more
efficient) way of implementing an approximation of
that same MRG.

Advantages of the above combinations are (a) the
increased period length; (b) the fact that (1) can have
many non-zero coefficients even if the recurrence (7)
of each component has only two non-zero coefficients;
(c) addition of noise to the lattice structure in the case
of the combination (8) (see the next section).

In terms of period length, the best one can achieve

. k; o
is pj = m;” —1, when each m; is prime. In that case,

each p; is even, so p < (mf' —1)- o (mbr —1)/27- 1
The total number of states for the combined genera-
tor (including the trivial states) is equal to H;__.l mfj ,
since each component has m;j possible states. If the
k;’s are not all equal, this could be much less than
m¥, in which case not all values of (zo,...,Zntk-1)
in (1) can be obtained as combinations of values
of (zj0,...,Tjn+k—1) through (9); see Couture and
L’Ecuyer (1994b). The states (zo,...,Zntk-1) that
can be obtained as a combination are recurrent states
for (1), whereas those states that are not the result
of a combination turn out to be transient.
Tausworthe and GFSR generators based on the
recurrence (3) have important statistical defects

(Matsumoto and Kurita 1988; Matsumoto and Kurita
1992; Compagner 1991) but may again be improved
by combination. Tezuka and L’Ecuyer (1991) and
Wang and Compagner (1993) propose to run J “easy-
to-implement” Tausworthe generators in parallel, the
jth producing a sequence {u;,, n > 0}, and to com-
bine them by taking the bitwise exclusive-or of the
ujn’s at each step n: {up =u1n® - Buyn, n 2 0}.
This combination is equivalent to a Tausworthe gen-
erator whose recurrence has a (reducible) characteris-
tic polynomial which is the product of the character-
istic polynomials of the individual components. If the
latter polynomials are pairwise relatively prime, then
the period is the least common multiple of the periods
of the components, and could reach szl(Q“i - 1),
where k; is the order of the jth recurrence (the de-
gree of the characteristic polynomial of component
J)- GFSR and twisted GFSR generators can also be
combined in a similar way. Such combinations can
be viewed as efficient implementations of recurrences
with “good” characteristic polynomials.

4. LATTICES AND EQUIDISTRIBUTION

For a given dimension ¢, the set of all overlap-
ping t-tuples of successive values produced by (1-
2), from all possible initial states, is 7; = {u, =
(U, Unge—1) | 2 > 0, 80 = (zo,...,Zk-1) €
Z5}. Let L, be the integer lattice generated by T,
and Z%, that is, the set of all linear combinations
of elements of T; and Z,, with integer coefficients.
The points of L, lie in a set of equidistant parallel hy-
perplanes (Knuth 1981). For the points to be evenly
distributed over the entire period, the distance d; be-
tween those successive hyperplanes should be small.
Computing d; is often called the spectral test. An-
other quality measure for L, is the Beyer quotient g;
(L’Ecuyer 1990; L’Ecuyer and Couture 1994), defined
as the ratio of lengths of a shortest and longest vec-
tors in a Minkowski reduced basis for the lattice, and
which should be close to one. There now exist com-
puter programs that permit one to compute d; and
¢: in dimensions up to around 40 or more (L’Ecuyer
and Couture 1994), whatever be the size of the mod-
ulus m. The results of searches for good parameter
values for simple and combined MRGs, with regards
to the spectral test, are reported in L’Ecuyer, Blouin,
and Couture (1993) and L’Ecuyer (1994b). Specific
generator implementations are also given there.

The recurrence (1) can be generalized to a non-
homogeneous recurrence, where a constant b (say) is
added to the right-hand-side of (1). The correspond-
ing lattice is then simply shifted with respect to the
origin (it becomes a grid), so its fundamental struc-
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ture is unchanged.

When there are both transient and recurrent states,
it is more appropriate to analyze the set T, . of t-
tuples which are recurrent, since only those states
are obtained by the combination. One has T;, C T;,
and the inclusion is strict when the k;’s are not all
equal. Couture and L’Ecuyer (1994b) explain how
to construct a lattice basis for the lattice L,: as-
sociated with T, (or its shifting) and give several
results and special techniques for computing d; effi-
ciently in large dimensions for combined generators.
They also give an illustration using the “RANMAR”
generator proposed by Marsaglia, Zaman, and Tsang
(1990), which combines a LCG with an MRG of order
97. That generator turns out to have a relatively bad
high-dimensional structure.

The points @, = (Un,...,Untt—1), 7 > 0, pro-
duced by the combined generator (8) no longer belong
to the lattice described above, because of the “noise”
€n. If we equate (or join) the opposite faces of the
t-dimensional unit hypercube [0, 1]%, we obtain the
t-dimensional unit torus. Computing the Euclidean
distances in that torus is equivalent to “neglecting”
the modulo 1 operation in (9). Then, the Euclidean
distance between u, and wu, in the unit torus is
bounded by Av/%, where A = max(|A*t]|,|A~|). Typ-
ically, the values of ¢, are also evenly distributed be-
tween A~ and A* and, when AV/7 is larger than d;,
the hyperplane structure usually becomes unrecog-
nizable.

Instead of T, one may want to consider vectors
of non-successive values produced by the genera-
tor: fix a set of non-negative integers (called la-
cunary indices) I = {i1,is, - -, 1}, put T,(I) =
{(u,-H.n, R ui‘+n) l n > 0, sp = ($0, .. .,.‘L‘k_l) €
Z*} and let L,(I) be the integer lattice generated
by T:(I) and %an The points of L;(I) again lie
in equidistant parallel hyperplanes spaced, say, d;(I)
apart. L’Ecuyer (1994c) explain how to construct a
lattice basis and compute d;(I) for this more general
case. Building on the results of Couture and L’Ecuyer
(1994a) and Couture and L’Ecuyer (1994b), L’Ecuyer
(1994a) examines the behavior of d;([) for certain
types of MRGs. He obtains large lower bounds on
d¢(I) for specific sets I, in small dimensions t, for
some classes of generators. Bad behavior occurs in
particular when (1) has few of small non-zero coef-
ficients, or when £ = 1 and the modulus m can be
expressed as a linear combination of powers of the
multiplier a;, with small coefficients. More specifi-
cally, if I contains the indices ¢ such that ax_;41 # 0,

then i 172
do(I) > (1+Za?)
=1

Ifk=1and m = z;.=1 C; jai’ for some integers ¢,
¢ €I, then

-1/2
. /

d() > [ e

j=1

It follows that for the AWC/SWB and additive
or subtractive lagged-Fibonacci generators, the set
Ts(I), for a certain set [, is contained in only two
planes in the three-dimensional space. This is ob-
viously a serious defect. The two combined gener-
ators proposed in Marsaglia, Narasimhan, and Za-
man (1990) and Marsaglia, Zaman, and Tsang (1990)
can also be approximated by linear congruential gen-
erators for which dg(I) > 1/v/6 ~ 0.408 for cer-
tain sets I. For simulation applications dealing
specifically with random points in high dimensional
space, those bad structures could have a dramatic ef-
fect (Ferrenberg, Landau, and Wong 1992; L’Ecuyer
1992).

Tausworthe generators (simple or combined) can
be viewed as LCGs in a space of formal series and
so have a lattice structure in that space, which can
be used to analyze their equidistribution proper-
ties (Couture, L’Ecuyer, and Tezuka 1993; L’Ecuyer
1994c; Tezuka and L’Ecuyer 1991). Suppose we par-
tition the unit hypercube [0,1]* into 2! cubic cells
of equal size. If each cell contains the same number
of points of Q; (assuming that we take the union of
all subcycles of the generator to define €, including
the zero vector, so Q; = T;), we say that the se-
quence is (t, £)-equidistributed. It is possible only for
£ < |k/t], since this Q; has cardinality 2¥. When the
sequence is (t, |k/t])-equidistributed for t = 1,. ..k,
1t is called mazimally equidistributed, or asymptoti-
cally random. Generators that are almost maximally
equidistributed are proposed by Tezuka and L’Ecuyer
(1991), while several other numerical illustrations
are given in Couture, L’Ecuyer, and Tezuka (1993).
Tezuka (1994) shows how to analyze the equidistribu-
tion of combined GFSR and twisted GFSR generators
in a similar way.

A different way of measuring the uniformity of
the distribution of a set of points in ¢ dimensions is
through the notion of discrepancy. Consider the set
Q(N) = {un = (Un,..., Un4t-1), 0 < n < N — 1}
For any box of the form R = H;=1[aj, B;), with
0 < a; < B; <1, let I(R) be the cardinality of
U(N)NR, and V(R) = H;.:l(ﬁj — a;) be the vol-
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ume of R. If R is the set of all such regions R, then
(t) _ _
DY) = max|V(R) - I(R)/N|

1s the t-dimensional (extreme) discrepancy for the set
Q¢(N). With the additional condition a; = 0 for all
J, we obtain a variant called the star discrepancy.

The discrepancy of a “truly random” sequence
should be approximately in O(N~1/2) (Niederreiter
1992b). If true randomness is to be imitated, the set
of points that are used during a simulation should
then have a discrepancy approximately of that order.
Note that a too low discrepancy is no better than a
too high discrepancy. However, following our heuris-
tic argument given in the introduction, we might seek
a very low discrepancy for N equal to the period
length of the generator, and use only a negligible frac-
tion of the period during the simulation, hoping that
the discrepancy will be in the “right order” over that
portion. Niederreiter (1992b) gives general discrep-
ancy bounds for several classes of generators, mostly
for N = p. However, no efficient algorithm is avail-
able for computing the discrepancy exactly, except
for a few special cases. This is a strong limitation for
its practical utilization.

5. NONLINEAR GENERATORS

Many authors argue that since the structure of linear
sequences is too regular, nonlinear generators should
be used instead (Eichenauer-Herrmann 1992; Nieder-
reiter 1992a; Niederreiter 1992b). Nonlinearity can
be introduced by either (a) using a linear-type genera-
tor but transforming the state nonlinearly to produce
the output, or (b) constructing a generator based on
a nonlinear recurrence.

A simple example of (a) is the explicit inversive
generator of Eichenauer-Herrmann (1993): take z, =
an + ¢, for n > 0, where a # 0 and ¢ are in Z,,, m
prime, z, = z;' = (an + ¢)™~ % mod m, and u, =
z,/m. The period is p = m and it can be shown
that in all dimensions t < m — 2, the set ; generates
the complete lattice Z*/m. Niederreiter (1992a) and
Niederreiter (1994a) shows that every hyperplane in
IR' contains at most ¢t points from the set ;. He
also obtains discrepancy bounds which have the same
asymptotic orders as the discrepancy of truly random
sequences.

Other variants of inversive nonlinear generators
have been proposed and studied by Eichenauer et al.
(1987), Eichenauer, Lehn, and Topuzdglu (1988),
Eichenauer-Herrmann and Niederreiter
(1992), Eichenauer-Herrmann (1992), Eichenauer-
Herrmann and Grothe (1992), Eichenauer-Herrmann

(1994), Eichenauer-Herrmann and Ickstadt (1994),
Niederreiter (1992b), Niederreiter (1994a), Niederre-
iter (1994b), and the references given there. See also
L’Ecuyer (1994c). Most of them enjoy similar nice
theoretical properties: they avoid the planes and have
the right asymptotic orders of magnitude for their dis-
crepancies.

Several nonlinear generators have also been pro-
posed in the field of cryptology. The best known
is perhaps the BBS generator, proposed by Blum,
Blum, and Schub (1986). It evolves according to:

2
Tn, = z,_; mod m,

where m is the product of two distinct k-bit primes,
both congruent to 3 modulo 4, and ged(zo, m) = 1.
At each step, the generator outputs the last v bits
of &, where v is in the order of log(k). Under the
assumption that factoring is hard, and that m and z
are chosen somewhat “randomly”, it is proven that no
polynomial-time (in k) statistical test can distinguish
(in some specific sense) a BBS generator from a truly
random one. This means that for large enough &, the
generator should behave very nicely from a statistical
point of view. This and other cryptographic genera-
tors have been studied empirically by L’Ecuyer and
Proulx (1989) and Boucher (1994). The results are
that BBS performs much better than its competitors
but that k should be taken relatively large (say over
500), which makes (a software implementation of) the
generator too slow for many practical simulation ap-
plications.

A common property of several classes of proposed
nonlinear generators is that they behave rather well
(in general) in terms of asymptotic discrepancy. How-
ever, specific well-tested parameter values with fast
implementations are currently not available. The fact
that the points do not lie in hyperplanes does not
preclude the presence of another (nonlinear, perhaps
more sneaky) structure. Moreover, it seems that the
discrepancy bounds that are available are sometimes
rather wide (the upper bound is in some cases larger
than 1) when computed for specific parameter values
of reasonable sizes. Therefore, practically speaking,
the arguments about the right order of discrepancy
and that the points avoid the planes are perhaps not
as definitive as they may appear. This question is
still open and nonlinear generators certainly deserve
much further investigation.
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