Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

DESIGN OF OBJECT-ORIENTED SIMULATIONS IN C++

Jeffrey A. Joines
Stephen D. Roberts

Department of Industrial Engineering
Box 7906

North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

ABSTRACT

This tutorial shows how to design object-oriented simula-
tion models using C++. A set of object classes have
been written in C++ which can be used to create
simulation models and simulation packages. The
simulations built with these tools possess the benefits of
an object-oriented design, including the use of classes,
inheritance, encapsulation, polymorphism, run-time
binding, and parameterized typing. These concepts are
illustrated by creating a network queuing simulation
language which has several notable features not available
in other similar languages. Object-oriented simulations
provide full accessibility to the base language, faster
executions, portable models and executables, a multi-
vendor implementation language, and a growing variety
of complementary development tools.

1 INTRODUCTION

In previous WSC tutorial papers (see Joines, Powell, and
Roberts 1992, 1993), we described the benefits of an
object-oriented simulation through a network queuing
simulation language. This paper will focus on the
fundamental class structure (Section 2) and the design of
a complete simulation system (Section 3). The network
simulation language, YANSL, is then described as an
illustration within the context of this design (Section 4).
Everything is implemented in C++, which impacts the
implementation of the object-oriented simulation
package. C++ is an object-oriented extension to the C
programming language (Lippman 1991).

1.1 The Object-Oriented Context
The general conceptual design of the object-oriented

context for simulation, as conceived in this approach, is
illustrated in the figure below:

157

Foundation Classes
Simulation Classes

Simulation Modeling Package

Simulation Models

]

The convention (which will be explained latter) is to
refer to the top of this figure as “lower level” and to the
bottem of this figure as a “higher level.” Thus the lowest
level of the design is the C++ general programming
lanugage. Specific simulation models are at the highest
level. The common notion of a simulation language falls
somewhere in the middle of this design.

“Users” may “relate” to this design at any of the
design levels. Persons interested only in the results may
simply execute the models, while very knowledgeable
persons may employ “raw” C++. The concepts at each
level are “‘encapsulated” so that simulation model users,
for example, need not be concerned about the concepts at
a lower level. The more sophisticated user, however, can
delve deeper into the design, eventually reaching the
C++ level. Implicit in this design is a “hierarchy” of
information, ranging from specific behavior of specific
models to general program behavior.

In comparison, general computer users vary in their
“use” of computer software. Many computer users
simply execute software applications, like a spreadsheet
or word processor. Some users may write computer
programs that perform important needed tasks, which
others may execute. More knowlegeable persons may
write fundamental software like compilers that other
programmers use. Sometimes those who write software
for others are called “system software programmers”
while those who write programs to solve specific
problems are called “application programmers.”

158 Joines and Roberts

One perspective on the contribution of object-oriented
simulation is that full “simulation software engineering”
is now being added to “simulation applications
engineering.” This addition will provide simulation
users with not only a full array of simulation tools, but
also the means to add new tools.

1.2 OOS Appeal to Simulation Application Users

The idea of an "object-oriented" simulation has great
intuitive appeal in applications, because it is very easy to
view the real world as being composed of objects. In a
manufacturing cell, objects that should come to mind
include the machines, the workers, the parts, the tools,
and the conveyors. Also, the part routings, the schedule,
as well as the work plan could be viewed as objects.

It is also quite easy to describe existing simulation lan-
guages using object terminology (see Joines, Powell, and
Roberts 1992, 1993). A simulation language/package
provides a user with a set of pre-defined object classes
from which the simulation modeler can create needed
objects. The modeler creates objects and specifies their
behavior through the parameters available. The inte-
gration of all the objects into a single package provides
the complete simulation model.

1.2.1 Problems with Extensibility

Because many simulation languages offer pre-specified
functionality produced in another language (assembly
language, C, FORTRAN, etc.), the user cannot access the
internal function of the language. Instead, only the ven-
dor can make modifications to the internal functionality.

Also, users have only limited opportunity to extend an
existing language feature. Some simulation languages
allow for certain programming-like expressions or state-
ments, which are inherently limited. Most languages
allow the insertion of procedural routines written in other
general-purpose programming languages.

None of this is fully satisfactory because, at best, any
procedure written cannot use and change the behavior of
a pre-existing object class. Also, any new object classes
defined by a user in general programming language do
not coexist directly with vendor code. The Arena
software (Collins and Watson 1993) provides some
upward extensibility by a template approach to
representing blocks of Siman statements (which may
include the graphical representation). SLX (Henriksen
1993) will provide both higher and lower extensiblity.

1.2.2 An Object-Oriented Simulation Approach

Object-oriented simulation deals directly with the limi-
tation of extensibility by permitting full data abstraction

as well as procedural abstraction. Data abstraction means
that new data types with their own behavior can be added
arbitrarily to the programming language. When the new
data type is added, it can assume just as important role as
implicit data types. For example, a user-defined data
type that manages complex numbers can be as fundamen-
tal to a language ("first class") as the implicitly defined
integer data type. In the simulation language context, a
new user-defined robot class can be added to a language
that contains standard resources without compromising
any aspect of the existing simulation language and the
robot may be used as a more complex resource.

2 CLASSES in C++

The class concept is fundamental to object-oriented
software. The class provides a "pattern" for creating
objects and defines the “type.” An example (as it
appears in C++) is the following Exponential class,
which is used to obtain exponential random variates:

#include "random.h"

/* expon.h contains Class Exponential. This
class describes an inverse transformation
generator for Exponential variables. */

class Exponential: public Random

{

public:
Exponential (double, unsigned int=0, long=0);
Exponential(int, unsigned int=0, long=0);
virtual double sample();
void setMu(double initMu) {mu = initMu;}
double getMu() { return mu; }

private:
double mu;

}i

The class definition determines the object’s properties.
2.1 Class Properties

Properties of classes, namely their data objects and func-
tions, are generally grouped into "public" and "private"
sections (C++ also permits another grouping called pro-
tected). The public properties can be accessed from
outside the object. The private properties are informa-
tion kept strictly locked within an object and are avail-
able only to object functions. For example, the double
object mu is private and cannot be directly obtained.
However, a public function called getMu does return the
value of mu. Making a property private restricts un-
authorized use and encapsulates the object’s properties.

2.2 Inheritance

The Exponential class was not defined "from
scratch.” For instance, it doesn't say anything about its
use or origin of random numbers. Because the random

Design of Object-Oriented Simulations in C++ 159

number generator establishes the source of randomness
for all random processes, it is defined in its own class.
Hence, the Exponential class is derived from the
Random class so the Exponential class has access to
all the public properties of the Random class without
having to re-code them. This use of prior classes is
called "inheritance." In fact, this inheritance makes the
Exponential class a "kind of" Random class. In
object-oriented terminology this is a "is-a" relationship.

The other major kind of relationships between two
classes is the "has-a." In the case of the Exponential, the
exponential has a double object called mu. A has-a
relationship is not the result of inheritance.

2.3 Construction and Initialization of Objects

When a class object is needed, the creation and
initialization of it is provided by a function called a
"constructor.” C++ will provide one if it isn't included in
the class definition. In the case of the Exponential
class, there are two constructors. One takes a double and
the other takes an integer. Notice that some of the
arguments have specified defaults, so the user doesn't
have to specify all the potential features of an
exponential object (these additional arguments pertain to
the control of the random number stream). Within the
constructors (details not shown), space is allocated for
the object and parameters are assigned.

Although, not used in Exponential, C++ permits
user specified destructors. A destructor will clean-up
any object responsibilities (like collecting statistics) and
deallocate the space.

2.4 Run-time Binding

The sample () function is specified as a virtual func-
tion in Exponential because we don’t know what
variate will be sampled at run-time. Because the sample
function is virtual, at run-time the program will decide
from which random variate to sample. This binding the
variate to the sample at run-time is also called "delayed"
or "run-time" binding. Run-time binding may extract a
small run-time penalty, but makes this entire
specification of sampling from variates much easier to
write, maintain, and use. Without run-time binding, the
programmer must explicity specify which function to
call, causing very complex code to be carefully written.

2.5 Polymorphism

The Exponential class has two constructors so users
may specify either floating point or integer arguments for
the mean interarrival time. Although it is not necessary
in this case (C++ will make the right conversions), it

does illustrate the use of polymorphism -- where the
same property applies to different objects. Thus, the
exponential object is appropriately specified, regardless
of whether an integer or double is given. This encapsula-
tion of the data makes the addition of new types for pa-
rameters very easy and localized. Under other
circumstances, polymorphism allows users to produce
the same behavior with different objects. For instance,
the act of obtaining a material handling device need not
depend on which device is sought.

3 THE SIMULATION CLASS HIERARCHY

A key to the creation of a fully integrated simulation
package is the use of a class inheritance hierarchy
(introduced in Section 2.2). With C++ being the most
abstract form (lowest level) of a simulation package,
more concrete elements are added so that, at the highest
level, the final product may be a specific simulation
model. A specific simulation is also a kind of simulation
model, which is a kind of simulation, which is a kind of
programing project, which is a kind of C++ program.

An inheritance heirachy can be viewed as a tree. The
base of the tree is the most abstract class and the leaves
present the most specific class. Thus, the convention is
that the “base” is known as the lower level, whereas the
leaves are considered the higher level..

3.1 Foundation Classes

The hierarchy for the foundation classes of the
simulation package are given in the following tree:

I AbstractObject |

I Iterator< Type > | I String] FC()llcclion<Typc>J l Link<Type >]

LSudenIIectinn<Typc> I

| LinkedList<Type> I I Array<Type> I
]

l DynamicArray<Type> I

l

I DynamicArrayRC<Type> l

Classes in the prior figure provide a variety of general
support which are wuseful in building simulation
languages and simulation packages. While not specific
to simulation, they provide a foundation framework from
which more simulation-specific classes may be created.

3.1.1 AbstractObject

The AbstractObject forms the fundamental base
class for the entire design and all other classes are

160 Joines and Roberts

derived from this base class. The AbstractObject
class defines and characterizes all the essential properties
every class in this design should possess. No instances
or objects of AbstractObject can be created since
its primary purpose is to insure that all classes have the
same basic form. Such a common form gives uniform
character to the design and allows all classes to share
common properties.

The AbstractObject provides for the following
general common properties:

1. Testing and Identifying Objects: by getting the class
name, class identification numer, the number objects
of this class and testing if this object is a member of a
particular class, a kind of class (may be a parent class
of this object’s class), and associated with a class
based on some arbitrary association function.

2. Comparing Objects: by checking to see if the current

object is the same object (object is itself), or is an

exact copy of this object.

Printing, Tracing, and Reading Objects.

Copying Objects: by making shallow or deep copies.

5. Object Operators: by providing stream insertion and
extraction, equality (but not from the same class) and
inequality.

W

Any class derived from the AbstractObject will
need to either inherit these properties or provide them
within the class.

3.1.2 Foundation Support Classes

The foundation support classes provide useful classes for
the general manipulation of objects found important in
creating simulation languages/packages. These include
the classes for string, arrays, and linked lists. Arrays
may be dynamically dimensioned and may have their
index range automatically checked.

These classes augment the C++ language with some
widely employed object classes generally associated with
containers. Similar classes are now widely available in
object libraries such as those in the NIH Class Library
(Gorlen, et al. 1990), the Borland object library(Borland
1993), and others. These libraries make quick work of
many other elements that may be needed to build a
simulation language or package.

3.2 Simulation Classes

The simulation classes provide basic simulation
functionalty including random number and random
variate generation, statistics collection, and base
simulation elements. The simulation class hierarchy is
shown below:

AbstractObject
I Rundnnj I Stntistics—l I SimulationElement I
rExpnnentiuIJ[Normal I

I Weighted I I TimeWeighted ” Batch<Type > I

Unweighted

As can be seen, all the clsses are derived from
AbstractObject in order to maintain the
commonality.

3.2.1 Random Numbers and Random Variates

Random number generation is obtained from the
Random class. Random variate generators are derived
from the Random class so that each source of variate
generation has its own random number generator(or
generators). This design has two benefits. One, it
facilitates the use of inverse transform method of random
variate generation, and two, by associating each variate
generator with its own random number stream, variance
reduction through correlated sampling is possible.
Random number and random variate generation
properties include: (1) setting and getting generator
parameters, (2) obtaining random numbers/variates, and
(3) creating antitthetic sampling.

3.2.2 Statistics Collection

Basic statistics can be collected on Weighted,
Unweighted, and TimeWeighted variables. Also,
statistics may be “batched” from any of the basic statistic
types. Tables, plots, and histograms may be displayed
for basic or batched statistics.

Statistics collection properties include: (1) stopping
and starting statistics collection, (2) clearing the
statistics, and (3) reporting statistics. Basic statistics are
collected during the simulation and provide: (1)
observation base of (weighted) observations or time, (2)
mean and standard deviation, and (3) minimum and
maximum observations. Batched statistics are also
collected during the simulation and provide both over-
batch and current batch results. Batchs can be based on
time intervals or numbers of observations.

3.2.3 Simulation Component Classes

SimulationElement contains the simulation time
and manages the event calendar. It provides for event
and time management by being capable of: (1)
scheduling events, (2) getting the next event, and 3)

Design of Object-Oriented Simulations in C++ 161

getting and setting the current time. This class provides
an important base class from which modeling classes are
derived.

The Simulation class has the run control proper-
ties which manage the complete simulation and include:
(1) getting the current replication number, (2) setting the
number of replications, (3) setting the length of the run,
(4) stopping the simulation or current replication, and (5)
printing summary and individual output reports.

3.3 Simulation Modeling Classes

To aid in the construction of network queueing languages
and packages, several simulation modeling classes have
been implemented. The components are events, nodes,
transactions, and resources. These components are
derived from both the SimulationElement and the

Link classes:
l AbstractObject |

SimulationElement

Link<Type >

ID:slinationNndesI I DepartureNodes<BranchChoice> I Ll'runsuc(ionl[ResourccBuseI

Events contain the properties related to event
management and provide: (1) the means for setting and
getting the event time, (2) setting and getting other event
information, and (3) processing the event. Nodes
contain the properties which include: (1) getting and
setting the node count, (2) getting node identification
number, (3) obtaining the node type, (4) accessing a list
of all nodes in the network, and (4) finding the entities at
the current node. Derived from nodes are the
Destination and Departure nodes. A destination
node can be entered while a departure node may be
exited. Departure nodes have branches connected to
them and therefore need a "BranchingChoice." The
properties of the destination node include the entering
process while the departure nodes provides the exiting
process, the branching method, and related branching
functions.

Entities contain general properties of active
elements of the network simulation. These properities
include: (1) getting and setting the entities creation time,
(2) obtaining its status, (3) getting its current location,
and (4) obtaining the status entry time. Transaction
and ResourceBase classes are derived from
Entities. The Transaction class provides
entities that may demand service and have properties for:
(1) acessing the list of captured resources and (2) getting
and setting the node entry time. The ResourceBase
class provides entities that can provide service and have

properties for: (1) getting and setting the resource name,
(2) getting resource states, and (3) defining the resource
states.

4 CREATING A SIMULATION PACKAGE

Special simulation languages and packages may be
created from these object classes. In this section we
present the YANSL network queuing simulation
language that has been presented in the prior WSC
papers (Joines, Powell, and Roberts 1992, 1993).
YANSL is an acronym for “Yet Another Network
Simulation Language.”

4.1 Basic Concepts and Objects in YANSL

YANSL was developed to illustrate the importance of
object-oriented simulation. YANSL is a network
queuing simulation package of roughly the power of a
GPSS (Schriber 1991), SLAM (Pritsker 1986), SIMAN
(Pegden, Shannon, and Sadowski 1990), or INSIGHT
(Roberts 1983), but without the "bells and whistles." Us-
ers familiar with any of these languages should recog-
nize, however, that it is a very powerful alternative.

4.1.1 Classes Specific to YANSL

Several classes have been dervied from the general
simulation classes to create the YANSL modeling
package. The general simulation support classes, such as
the variate generation, statistics collection, and time
managment, are used directly. The node and resourse
classes are further enhanced and a “choices” class is
introduced.
The node hierarcy for the YANSL nodes is:

| Node I

I DestinationNodes I I DepamureNndc.KBmnchChoicc>—|

Sink IQucue<RunkM> ” Activity<Req, BC> ” Assign<BCT| I Source<Tran, BC>1

Sink and queue nodes can have transactions branched to
them and are therefore destination nodes. An activity
node is both a departure and a destination node, so it
inherits from both the departure and destination node
classes. This inheritance from multiple parents is called
"multiple inheritance." The properties of the YANSL
nodes allow transactions to be created at source nodes,
wait at queue nodes, receive attribute assignment at
assign nodes, be delayed at activity nodes, and exit the
network at sink nodes. Resources may service
transactions at activity nodes.

162 Joines and Roberts

The resource heirarchy enhanced for YANSL is:

| SimulationObject I | Entities I

I RequirementsBase I

I ResourceBase l

[ResourceTcaml IRcsourccAIl:rnatives<RcSeIM>I IRcsource<RcsDcsM>l

The resource classes allow resources to be identifed as
individuals, as member of alternative groupings at an
activity, or as members of teams. When there is a choice
of resource service at an activity, then a resource
selection method is employed. The ability to request a
resource service at run-time without specifying it
explicitly is another example of polymorphism.

The Choices available in YANSL are shown in the
following class heirarchy:

BranchingChoice

QueueRankingChoice

I Probabilistic] LDel.erminislic I

I ResoureSelectionChoice I I ResourceDecisionChaice '

[orDER| [LONGIDLE| |PRIORITY| [LONGESTQ|

The choices available add wide flexiblity to the decision-
making functions in the simulation without having
different classes for each different function. Instead,
classes are parameterized with these choice classes. The
choices consist of the following methods. They allow for
the selection of alternative branches from a departure
node, selection among alternative requirments at an
Activity, as well as provide the decision making
ability for resources to choose what to do next, and
ranking choices among transactions at an Queue. The
choices are used to represent the time-dependent and
changing decisions that need to be modeled.

4.1.2 Modeling with YANSL

When modeling with YANSL, the modeler views the
model as a network of elemental queuing processes
(graphical symbols could be used). Building the simu-
lation model requires the modeler to select from the pre-
defined set of node types and integrate these into a net-
work. Transactions flow through the network. and have
exactly the same interpretation it has in the other
simulation languages. Transactions may require
resources to serve them at activities and thus may need to
queue to await resource availability. Resources may be
fixed or mobile in YANSL, and one or more resources
may be required at an activity. Unlike some network lan-

guages, resources in YANSL are active entities, like
transactions, and may be used to model a wide variety of
real-world items (notice this feature is, in fact, more
powerful than some existing languages).

4.2 The TV Inspection and Repair Problem

As a portion of their production process, TV sets are sent
to a final inspection station (refer to Joines, Powell, and
Roberts, 1992 and to the harbor problem in Joines,
Powell, and Roberts, 1993). Some TVs fail inspection
and are sent for repair. After repair, the TVs are returned
for re-inspection. Transactions are used to represent the
TVs. The resources needed are the inspector and the
repairman. The network is composed of a source node
which describes how the TVs arrive, a queue for possible
wait at the inspect activity, the inspect activity and its re-
quirement for the inspector, a sink where good TVs
leave, a queue for possible wait at the repair activity, and
the repair activity. Transactions branch from the source
to the inspect queue, are served at the inspect activity,
branch to either the sink or to the repair queue, are
served at the repair activity and return to the inspect
queue. The data used in the simulation is that the inter-
arrival time of TVs is exponentially distributed with a
mean interarrival time of 5.0 minutes, the service time is
exponentially distributed with a mean of 3.5 minutes, the
probability a TV is good after being inspected is .85, and
a repair time that is exponentially distributed with a mean
of 8.0 minutes.

4.3 The YANSL Model

The YANSL network has all the graphical and
intuitive appeal of any network based
simulation language. A graphical user
interface could be built to provide
"convenient" modeling with error checking and
help offered to the user. Whatever the model-
ing system used, the ultimate computer readable
representation of the model would appear as
follows:

#include "simulation.h"

main ()

{

// SIMULATION INFORMATION

Simulation tvSimulation(1);
// One replication

// DISTRIBUTIONS

Exponential interarrival(5),
inspectTime(3.5),
repairTime(8.0);

// RESOURCES
Resource< PRIORITY > inspector, repairman;

Design of Object-Oriented Simulations in C++ 163

// NETWORK NODES

/** Transactions Arrive **/
Source< Transaction, DETERMINISTIC >
tvSource(interarrival, 0.0, 480);
// Begin at 0.0 and quit at 480.0

/** Inspection **/
Queue< FIFO > inspectQueue;
inspector.addQueue(inspectQueue);
Activity<PROBABILTIY> inspect(inspectTime);
inspect.addRequirement (inspector);
inspectQueue.addActivity(inspection);

/** Repair **/
Queue< FIFO > repairQueue;
repairman.addQueue(repairQueue);
Activity<DETERMINISTIC> repair(repairTime);
repair.addRequirement (repair);
repairQueue.addActivity(repair);

/** Transactions Leave **/
Sink finish;

/ /NETWORK BRANCHES
tvSource.addBranch(inspectQueue);
inspect.addBranch(finish, .85);
// 85% are good and leave
inspect.addBranch(repairQueue, .15);
// 15% need repair
repair.addBranch(inspectQueue);

//RUN the Simulation

tvSimulation.run();

}

The previous model has all properties of any network
simulation language. There is an almost one-to-one
correspondence to the entities describing the problem.
No more information is needed than necessary. The
statements are highly readable and follow a simple for-
mat. The pre-defined object classes grant the user wide
flexibility.

While the “statements” in YANSL are very similar to
those in SIMAN, SLAM, or INSIGHT, it is all legitimate
C++ code. Also this model runs in less than half the time
a SIMAN model runs on the same machine! But the real
advantage of YANSL is its extensibility.

4.4 The Objects and their Specification

Lets take a closer look at the YANSL "statements." The
model is enclosed in a recognizable C/C++ framework,
namely having a #include statement that includes all
the simulation requires, a main () function header, and
{} which enclose the block of code (YANSL state-
ments). This framework is left only to reveal it is C++
code, as even these could be eliminated by the C pre-
processor commands that would take a Begin and End
and StartSimulation for the conventional C to-
kens. Also the more clever programmer could accept
other more intuitive information and convert it to the

YANSL format.

There are two types of statements. The first is the
declaration of objects in the model and the second is
function calls to structure the model. The same division
of statements occurs in existing simulation languages.
The only order requirement for statements is that an
object must be declared before it is used. Thus we
decided to order the statements by declaring first the
general information needed (like the distributions) and
then we specified the network entities (resources, nodes,
and branches).

4.4.1 Object Declarations

The objects in YANSL are declared in a form consistent
with C++ . The object class is specified first, then the
objects are named. Initialization of specific objects are
done in parentheses. For instance,

interarrival(5),

inspectTime(3.5),
repairTime(8.0);

Exponential

creates three exponential distributions whose names are
interarrival, inspectTime, and repairTime
and whose initialization parameters are given in paren-
thesis. It is important to note that the mean interarrival
time is specified as an integer 5, but in fact it is assumed
to be a floating point 5.0. This illustrates a simple case
of "overloading." Here, initialization of the interarrival
object can take either an integer or a floating point pa-
rameter. In object-oriented terminology, exponential
objects are initialized by either an integer or floating
point object.

Some object declarations appear more complex be-
cause the object class is also parameterized by informa-
tion in <>. In object-oriented terminology, these are
called "parameterized types." Parameterized types are
created by class templates so that the ultimate
specification of a class is not known until that class is
declared in the model to create the object (both the class
and the object are created). Templates make it easy for a
user to specify a kind of class rather than having a whole
bunch of classes whose similarities are greater than their
differences. A parameterized type is used when the
object class needs some information. This should not be
confused with initialization of objects where the object
needs some information. As an example, consider

Activity< PROBABILITY > inspect(inspectTime);

where the Activity class needs some branching
choice class called PROBABILITY, while the object
inspect is initialized with a reference to the in-
spectTime object. Notice that a class will be parame-
terized with another class, while an object is parameter-
ized with another object.

164 Joines and Roberts

Because YANSL is really C++, all the "built-in"
classes from C++ are directly available to the YANSL
user. These include integer, float, char, etc.
Because an object-oriented language doesn't distinguish
any differently between the C++ classes and the ones we
have added, use of all these classes is very similar. In the
computer literature, this property of having user objects
treated like built-in objects means everything is treated as
a "first class" object.

4.4.2 Using the Objects

The other "statements" in YANSL provide direct use of
the objects. These are actual function calls in C++. In
object-oriented terminology, it is called "message pass-
ing." For example,

inspector.addQueue(inspectQueue);

the message addQueue with inspectQueue object
as a parameter is sent to the inspector object. In
C++ terminology the addQueue function in the
inspector object is passed the inspectQueue
object. The purpose of this message/function is for the
inspector to know that it is to service the queue of the
inspection activity when it is free to choose what to do.

Notice the "encapsulation” of functionality. The re-
source class obviously has the ability to accept informa-
tion about what a resource is to do when it is available.
All this is contained in the resource class. Suppose you
want some different functionality of resource behavior.
Now all the changes would be confined to the code in the
resource class.

The YANSL functions are used to specify the func-
tioning of the objects in the simulation. The addQueue
specifies what queues the resources serve, the
addBranch specifies how transactions branch from the
departure nodes, the addActivity associates the
activity with the queue, and the addRequirement
specifies the resource requirements at the activities. Fi-
nally, the tvSimulation.run causes the simulation
execution to begin.

4.5 Running the Simulation

The prior model is compiled under a C++ compiler(a
compiler should be AT&T version 3.0 compatible),
linked with the YANSL simulation library, and executed.
Currently, the YANSL simulation library has been
compiled under Borland C++ 4.0 (Borland 1993). C++
is strongly typed, so error checking is very good.

Also, the simulation is easily linked into other C++ li-
braries which may be used for graphics and statistical
analysis. In a sense, YANSL has the same relationship
to C++ that GASP IV (Pritsker 1974) has to FORTRAN.

The major difference is that whereas GASP was a set of
FORTRAN functions that the model builder called,
YANSL is a set of both the functions and their data
organized about simulation objects (rather than
simulation functions). As such, YANSL is more like
SLAM, but fully compatible with the entire C++ lan-
guage, rather than simply permitting general procedures
to be "inserted” into a specific simulation structure like
SLAM.

4.6 Embellishments

There is no distinction between the base features of
YANSL and its extensions, illustrating the "seamless"
nature of user additions. Many more embellishments are
simply parallel application of the approaches used in the
prior sections. For example, the embellishments shown
in the earlier papers (Joines, Powell, and Roberts 1992,
1993) could be applied here. These embellishments can
be added for a single use or they can be made a perma-
nent part of YANSL, say YANSL II. In fact, a different
kind of simulation language, say for modeling and
simulating logistics systems, might be created and called
LOG-YANSL for those special users. Perhaps the
logistics users would get together and share extensions
and create a more general LOG-YANSL II. And so it
goes! For those familiar with some existing network
simulation language, consider the difficulty of doing the
same.

6 CONCLUSIONS

Modeling and simulation in an object-oriented language
possesses many advantages. We have shown how inter-
nal functionality of a language now becomes available to
a user (at the discretion of the class designer). Such ac-
cess means that existing behavior can be altered and new
objects with new behavior introduced. The object-ori-
ented approach provides a consistent means of handling
these problems (other general object oriented languages
include Smalltalk (Goldberg and Robson 1989) and
Eiffel (Meyer 1992)). Object-oriented simulation Sys-
tems include Smalltalk, Modsim II (Belanger and Mul-
larney 1990, and Sim++ (Lomow and Baezner 1991).
C++ based simulation packages include Sim++ and Sim-
pack (Fishwick 1992).

The user of a simulation in C++ is granted lots of
speed in compilation and execution. The C language has
been a language of choice by many computer users and
now C++ is beginning to supplant it. With the new C++
standard (Ellis and Stroustrup 1990), all C++ compilers
are expected to accept the same C++ language. We can
build an executable simulation on one machine and run it
on another, only as long as the operating systems are

Design of Object-Oriented Simulations in C++ 165

compatible -- you don't need a C++ compiler on both
machines. Most commercial simulation languages
require some proprietary executive.

Because C++ has many vendors, the price of com-
pilers is low, while the environments are excellent. For
example, the Borland package includes a optimizing
compiler, a fully interactive debugger, an object browser,
a profiler, and an integrated environment that allows you
to navigate between a code editor and the other facilities.
Also numerous class libraries for windowing, graphics,
and so forth are appearing that are fully compatible with
C++. Graphical user interfaces for simulation modeling,
animation of simulation, and statistical analysis of simu-
lation results could be offered by individual vendors.
Their interoperability would be insured by their use of a
common means for defining and using objects.

To take full advantage of object-oriented simulation
will require more skill from the user. However, that
same skill would be required of any powerful simulation
modeling package, but with greater limitations.

REFERENCES

Belanger, R., and A. Mullarney. 1990. Modsim II tu-
torial. CACI Products Company, La Jolla, CA.

Borland. 1993. Borland C++ version 4.0. Borland
International, Inc. 100 Borland Way, Scotts Valley,
CA 95066-3249.

Collins, N. and C. M. Watson. 1993. Introduction to
Arena. In Proceedings of the 1993 Winter Simulation
Conference, ed., G. W. Evans, M. Mollagasemi, E. C.
Russell, and W. E. Biles, 205-212. Institute of
Electrical and Electronics Engineers, Los Angeles,
CA..

Ellis, M, and B Stroustrup. 1990. The annotated C++
reference manual. Reading, Massachusetts: Addison-
Wesley.

Fishwick, P. A. 1992. Simpack: getting started with
simulation programming in C and C++. In Proceed-
ings of the 1992 Winter Simulation Conference, ed., J.
J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson,
154-162. Institute of Electrical and Electronics Engi-
neers, Washington, D.C.

Goldberg, A., and D. Robson. 1989. Smalltalk-80: the
language. Reading, Massachusetts: Addison-Wesley.

Gorlen, K. E., Orlow, S. M., and P. S. Plexico. 1990.
Data Abstraction and Object-Oriented Programming
in C++. New York: John Wiley & Sons.

Henriksen, J. O. 1993. SLX, the successor to GPSS/H.
In Proceedings of the 1993 Winter Simulation Confer-
ence, ed., G. W. Evans, M. Mollagasemi, E. C.
Russell, and W. E. Biles, 263-268. Institute of
Electrical and Electronics Engineers, Los Angeles,
CA.

Joines, J. A., K. A. Powell, Jr,, and S. D. Roberts. 1992.
Object-oriented modeling and simulation with C++. In
Proceedings of the 1992 Winter Simulation Confer-
ence, ed., J. J. Swain, D. Goldsman, R. C. Crain, and
J.R. Wilson, 145-153. Institute of Electrical and Elec-
tronics Engineers, Washington, D.C.

Joines, J. A., K. A. Powell, Jr., and S. D. Roberts. 1993
Building object-oriented simulations with C++. In
Proceedings of the 1993 Winter Simulation Confer-
ence, ed., G. W. Evans, M. Mollagasemi, E. C.
Russell, and W. E. Biles, 79-88. Institute of Electrical
and Electronics Engineers, Los Angeles, CA..

Lippman, S. B. 1991. C++ primer, Second Edition.
Reading, Massachusetts: Addison-Wesley.

Lomow, G., and D. Baezner. 1991. A tutorial introduc-
tion to object-oriented simulation and Sim++. In Pro-
ceeding of the 1991 Winter Simulation Conference,
ed., B. L. Nelson, W. D. Kelton, and G. M. Clark,
157-163. Institute of Electrical and Electronics Engi-
neers, Phoenix, AZ.

Meyer, B. 1992. Eiffel: the language. New
York:Prentice Hall.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski.
1990. Introduction to simulation using SIMAN. New
York: McGraw-Hill.

Pritsker, A. A. B. 1974. The GASP 1V simulation lan-
guage. New York: John Wiley and Sons.

Pritsker, A. A. B. 1986. Introduction to simulation and
SLAM II, Third Edition. New York: Halsted Press.
Roberts, S. D. 1983. Modeling and simulation with IN-
SIGHT. Indianapolis, Indiana: Regenstrief Institute.
Schriber, T. J. 1991. An introduction to simulation using

GPSS/H. New York: John Wiley and Sons.

AUTHOR BIOGRAPHIES

JEFFERY A. JOINES is currently pursuing a Ph.D in
the Department of Industrial Engineering at North Caro-
lina State University. He received his B.S.LLE, B.S.E.E,
and M.S.LE from NCSU. He is a member of Phi Kappa
Phi, Alpha Pi Mu, Tau Beta Pi, Eta Kappa Nu, IIE, and
IEEE. His interests include object-oriented simulation,
artificial neural networks, and genetic algorithms as ap-
plied to manufacturing.

STEPHEN D. ROBERTS is Professor and Head of the
Department of Industrial Engineering at North Carolina
State University. He received his B.S.I.LE., M.S.LE., and
Ph.D. from Purdue University. He has been the
Modeling Area Editor for TOMACS. He has served as
Proceedings Editor and Program Chair for the Winter
Simulation Conference. He is the TIMS/CS representa-
tive to and past Chair of the Board of Directors of WSC.

