Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

SIMULATION OF ADVANCED MANUFACTURING SYSTEMS

Gerald W. Evans
William E. Biles

Department of Industrial Engineering
University of Louisville
Louisville, KY 40292

ABSTRACT

This paper gives an overview of how simulation modeling
techniques can be employed in the design and analysis of
advanced manufacturing systems. The reasons for the
complexities of these systems, as well as the uses of
simulation software packages, are discussed. Finally,
examples of simulation models of advanced manufacturing
systems, as developed by the authors, are presented.

1 INTRODUCTION

Advanced manufacturing systems (AMSs) are those
which manufacture parts with the material handling
functions, machine operations, and machine tools under
the control of a computer (Herald and Nof, 1978). The
terms advanced manufacturing system, automated
manufacturing system, and computerized manufacturing
system have been used interchangeably in the literature
(Gupta, 1990).

Examples of AMSs include flexible flow systems,
flexible manufacturing systems, and flexible
manufacturing cells. These systems can be composed of
components such as robots, NC machining centers,
automated guided vehicle systems, etc. The key
characteristics of an AMS however include its flexibility
(i.e., ability to produce a wide variety of parts with low
set up times) and computer control.

The complexities of these systems basically result
from their flexibility. These complexities make AMSs
very difficult to design and operate. For example, Suri
(1985) identified five phases of problems associated with
the design and operation of flexible manufacturing
systems: initial design; detailed design; installation;
production planning, scheduling, and operation; and
ongoing modifications. Each category of problems has its
own particular set of design variables and performance
measures; and, each set of decisions made with respect to
one problem area affects the subsequent problem areas.

Examples of decisions which must be made in the

141

Michael W.Golway

SSOE, Inc.
1001 Madison Avenue
Toledo, OH 43624

design and operation of an AMS include the types of
parts to be produced, the types and numbers of
production machines and material handling equipment to
include in the system, the layout of the system, the
numbers of pallets/fixtures for each part type, the
potential routings for each part type, local and global
buffer capacities, lot sizes, sequencing rules, tool
assignments, production rates, dispatching rules, etc.
Some of these decisions (e.g., system layout) may be
made only once every few years, while others may be
made on a daily basis (e.g,. production schedules).

These decisions must be made while accounting for
a variety of performance measures, including system
cost and flexibility, due-date performance, quality of
parts produced, production rates, inventory levels,
machine utilizations, etc.

Simulation modeling can be a tremendous aid in the
design process for an AMS. The purpose of this paper
1s to give the reader a brief overview of how this can be
accomplished. Specifically, in the next section of the
paper, we discuss the complexities associated with
modeling AMSs. In the third section, we give a brief
review of simulation software packages available for
modeling AMSs. The fourth section of the paper
contains several examples of the modeling of AMSs
performed by the authors. Finally, the last section of
the paper contains a summary and conclusions.

2 COMPLEXITIES ASSOCIATED WITH THE
MODELING OF AMSs

In basic terms, advanced manufacturing systems are
complex because

1) A wide variety of parts are typically produced by
an AMS, and

2) A number of different resources must interact in a
complex fashion in order for the system to operate
efficiently.

The system may be able to produce various part



142 Evans, Biles and Golway

types simultaneously. Because of the typical AMS’s
flexibility, a particular type of part may follow any of
several different routes. In addition to the complex
routing decisions which may have to be modeled,
decisions regarding the sequencing and scheduling of parts
and resources must also be modeled. Again, this process
is made more complex as a result of the variety of part
types that can be produced by the system.

The types of resources associated with an AMS
include pallets, fixtures, tools, robots, machines,
conveyors, automated storage/retrieval systems, AGV’s,
AGV guidepaths, machine operators, maintenance
personnel, inspection and testing equipment, etc. The
simultaneous use of various resource types (e.g., a pallet,
a machine, a conveyor, and a human operator) may have
to be modeled. Hence, resource allocation decisions are
not trivial.

Many researchers have recognized that the material
handling subsystem of AMSs are typically very difficult
to model (Chapter 13 of Law and Kelton, 1991). Again,
this difficulty has to do with the complex interactions
between and among material handling resources (e.g.,
AGV'’s, AGV guidepaths, conveyors, robots), production
resources (e.g., machine tools), and parts.

Because of these modeling difficulties, some
simulation languages have included special material
handling modules. These modules can be viewed as
simulators that can be employed within a larger system
model constructed from the language. Asan example, the
SIMAN language allows an INTERSECTIONS element,
a LINKS element, and a NETWORKS element, among
other constructs for modeling AGV systems.

3 SIMULATION LANGUAGES AND SOFTWARE
PACKAGES

Recent releases of simulation software packages have
taken the modeling of AMS’s to a new level. The
previous clear cut boundaries between simulation
languages and simulators of the past have slowly
evaporated. Simulation packages such as Arena,
ProModel, and SimEngine have introduced the ability to
quickly develop models of complex systems without
sacrificing the flexibility of using a simulation language.
This new found speed with model development is
primarily due to the use of object oriented modeling
constructs and integrated graphical animations.

Object oriented modeling constructs have introduced
the single most important advancement in simulation
model building. The constructs combined with elaborate
graphical user interfaces (GUI's) provide for simple high
level programming. Holzner (1992) points out that the
driving force behind an object is modularity. This means
that we can think of the object in terms of its overall

function and not concern ourselves with detailed internal
data handling. Consequently, our programming effort
has better structure and promotes the ability to make
changes without disrupting existing code.

Joines, Powell, and Roberts (1993) note that object
oriented simulation modeling has great appeal because
its very easy to view the real-world as being composed
of objects. AMS objects come in the form of robots,
conveyors, and AGV’s to name a few. Users of
modern simulation languages/packages can build
complex simulation models of an AMS through the
integration of bitmap images (objects). Parameters for
each of these objects are entered into easy-to-use dialog
boxes. The modeling elements (e.g., resources,
material handling equipment, etc...) are created and
linked through a simple "point and click" mouse
interface.

Arena’s template concept provides a powerful
approach to integrating the robust SIMAN V simulation
language with industry specific applications (Collins and
Watson, 1993). Each template provides the user with
modeling constructs that combine common SIMAN V
commands into a single object. For example, the
SERVER construct is a general purpose object that is
derived from server data, ENTER and LEAVE
modules. Detailed constructs can also be created with
System Modeling Template Developers kit.  The
template concept provides the capability of allowing
simulation modeling to be used by a wide range of
users.

Packages such as Arena, ProModel, and SimEngine
also retain their conventional lower level programming
language power. The user always has the capability to
link external code or drop down into the simulation
language to model special situations.

Graphical animations have moved from a traditional
non-value added programming effort to powerful value
added visual tools. This stems from the fact that
developing graphical animations essentially coincide
with model building. Defining parameters for operator
walking paths to conveyor velocities are easily set
through dialog boxes. Furthermore, detailed alterations
of default bitmap images can be accomplished through
the program’s graphical editor.

Graphical animations provide one important
advantage when modeling a complex AMS. This
advantage is reduced verification time of the model.
Visual depictions of a system greatly increase a user’s
confidence in the correctness of its representation.
Take, for example, a combined continuous and discrete
system that has a non-accumulating conveyor and drum
filling station. The system’s bottleneck is the fill rate
into the drum. That is drums are "pulled” into the fill
station. Individual empty drums are indexed into the fill



Simulation of Advanced Manufacturing Systems 143

station one at a time where product is poured to a desired
level. Once the level is reached, the drum is indexed out
and a corresponding empty drum takes its place.
Verifying this system’s operation is easily accomplished
with a graphical animation. In Arena, the combined
discrete and continuous modeling of this system is quickly
accomplished. After the differential equation has been set
up to model product flow, a graphical representation in
the form of product level (tank level object) and the
instantaneous product level variable are accomplished in
a total of four steps. When the user starts the simulation
it is easy to verify that the drums are correctly indexing
into the fill station. Moreover, the user can visually see
the product fill into the drum, reach the desired level, and
index out of the station. Verification of this system
without animation would require faith in the output
report’s statistical averages. Non-graphical animations
often force the user to plant "feelers" in the code to try
and gain a better understanding of how the model is
performing.

4 EXAMPLES

In this section of the paper, we detail several
examples involving the modeling of AMS’s. The
purposes of these examples are, first, to illustrate some of
the complexities associated with the modeling of AMSs
and, second, to illustrate how to model these complexities
with a specific language/system.  The Arena and
SLAMSYSTEM packages were used, but these models
could have been constructed using any of several different
languages. In fact, alternative approaches even within
Arena or SLAMSYSTEM could have been used.

For other examples of simulation models of AMSs,
see any of several textbooks on simulation modeling (e.g.,
Pegden, Shannon, and Sadowski, 1990) as well as the
Proceedings of this Conference (e.g., Davis, 1986 and
Jeyabalan and Otto, 1991).

4.1 Modeling of a High Speed Package Line

The purpose of this project was to develop a
simulation model that would aid in the analysis of the
relocation and equipment upgrading of a high speed
packaging line. Specifically, management wanted to
answer the following questions:

1) What is the effect on cycle time of adding dedicated
docks to the product line?

2) How many docks should be added?

3) What are acceptable minimal raw material
inventories?

4) What effect does upgrading specific equipment
components have on the system’s bottleneck(s) and

cycle time?
5) What is the availability of the system based on
existing component jams and machine failures?

Due to the proprietary nature of this project, specifics
on product type, packaging components, and
manufacturing methods can not be disclosed.

The system was modeled as a combined continuous/
discrete simulation using Arena. There are a total of 22
resources used in the model. The resources represent
equipment in the package line, a single operator, and
component jam location points.  The equipment
components are linked together with 10 conveyors. In
addition, the system is fed with raw material
components from a warehouse by a transporter.

The finished product fill operation is modeled with
Arena’s continuous modeling capabilities. Product is
stored in a holding tank that’s supplied by a separate
mixing operation. Product is continuously pumped from
the holding tanks into an in-line surge tank. The tank
serves as buffer for the time required to index
packaging components in and out of the fill station.
From the surge tank, the product is discharged into the
finished goods packaging components.

The pre-fill operation primarily involves automated
component sorting. Raw material components are
transferred from their shipping boxes into holding bins.
The components then move through a series of
conveyors that properly orient them for filling. The
post mix operations involve batching and boxing, bar
coding, and automated palletizing.

There were two particularly difficult modeling
concepts associated with this simulation. In turned out
that Arena easily handled both concepts through its high
level programming interface. The modeling of this
system was also accomplished with the standard Arena
templates. The first modeling feature involved batching
of entities between two conveyors while maintaining a
"pull” production system. The second feature was the
integration of the continuous fill operation with a
discrete package component conveyor line. The third
feature involved using an infinite loop to check raw
material restock levels.

4.1.1 Pull System Batching Between Two
Conveyors

This problem feature is very common in AMS’s.
The idea is that entities from conveyors are batched
together in a specified quantity and transferred to a
second conveyor. This event occurs in three separate
places with the current example. The first instance
occurs when individual components are batched in a
group and loaded into the filling machine. A second



144 Evans, Biles and Golway

occurrence is when the filled units are batched again for
carton packaging. Finally, the conveyor batching occurs
at the end of the production line when the palletizer
batches boxes of product onto a pallet.

Arena provides a very useful BATCH module that
conveniently batches entities according to a user defined
quantity. In addition, there is a fair amount of flexibility
in defining how attributes are handled and whether the
batched entity is permanent or temporary. There are two
problems with using a BATCH module in conjunction
with the two conveyors while maintaining a "pull”
system.

The first approach used was to ACCESS a cell on
conveyor 2 before EXITing conveyor 1. The BATCH
module was originally placed before the EXIT module.
This caused the program to freeze the process of moving
entities on the conveyors. The problem with this
approach is that a new batched entity is not released until
the user defined batch quantity is reached. Therefore,
when the first entity successfully ACCESSes the second
conveyor and moves into the BATCH node it will remain
there until the batched quantity level 1s met.
Consequently, the EXIT conveyor 1 module is never
reached. This in turn causes the first conveyor to fill up
to capacity a stall. Conveyor 1 cannot free up a cell until
an entity reaches the EXIT module.

The second approach that can be used is to place the
BATCH module after the EXIT module. In this case, the
entities ACCESSing conveyor I are not inhibited by the
BATCH module reaching its required batch size. This
creates an additional problem, however, because the
"pull” system control is lost. When entities reach the
EXIT module they immediately go into an internal queue.
This creates a condition where conveyors 1 and 2 operate
separately from each other. Conveyor 2 may be filled to
capacity or stopped (e.g., a fill station failure) while
conveyor 1 continues to EXIT entities.

The solution to the problem was actually a
modification of the second attempt. Arena provides a
very simple if-then variable control with the CHOOSE
module. A variable called Batch 1 was created to keep
track of the number of entities EXITing conveyor 1.
After an entity passes through the EXIT module it
immediately goes into the CHOOSE module. The
following conditions are then applied:

IF Batch 1 = 5 THEN Stop 1
ELSE Assign 1

Stop 1 was a label name assigned for a STOP module. If
Batch 1 reaches the required level then conveyor 1 is
stopped. This entity is then routed to the Assign 1 label.
Assign 1 is the label name given to the ASSIGN module.
If Batch 1 is less than 5 then the entity is routed to a node

where the variable Batch 1 is incremented by 1. The
BATCH module follows the ASSIGN node and when
the required number of entities have been batched a new
entity is released and sent to a second ASSIGN model.
Here Batch 1 is reset to zero. The new entity
ACCESSes conveyor 2 and when this is successfully
accomplished the entity passes through a START
module. The start module restarts conveyor 1 and the
whole process is repeated.

4.1.2 Combined Continuous/Discrete Modeling

The combined continuous and discrete modeling
capabilities of Arena proved to be very useful with this
project. The high level interface provided a convenient
and quick method to model the flow of product from a
holding tank to an in-line surge tank and finally into
multiple containers. To model continuous flow in Arena
required the used of LEVEL, RATE, DETECT,
ASSIGN, and CONTINUOUS modules.

There were a total of three LEVELS used. The
first LEVEL 1is the holding tank (Tank 1), the second
LEVEL is the in-line surge tank (Tank 2), and the third
level is a representation of the container being filled.
VARIABLES in the for of TanklLevel, Tank2Level,
and ContainerLevel, respectively, were assigned for
each of these LEVELS. Animation of the tank levels
were also easily accomplished by inserting a Level
Status into the workspace region. The LEVEL variables
were used as expressions for the Level Status. RATE
variables were assigned to represent overall flow in or
out of the tanks. The VARIABLES are Tank1Flow,
Tank2Flow, and ContainerFlow, respectively.

DETECT modules were used to for maximum and
minimum critical values in each of the tanks. When a
level reaches either of these critical points an entity is
created from the DETECT module and routed to Assign
module.  As the entity passes through the ASSIGN
module, VARIABLES and OTHER assignment types
are set.  For example, if the minimum level is reached
in the holding tank the VARIABLE TankllIn is set to
100.  This symbolizes a valve opening to allow 100
units per minute of the product to enter the tank. This
value is higher than Tank 10ut which causes the holding
tank to refill. The OTHER assignment type is used to
redefine the RATE variables. For example, each time
a critical value is reached in the hold tank, Tank1Flow
is reassigned to TanklIn - Tank1Out. After the entity
exits the ASSIGN module it is immediately DISPOSED.
A second DETECT module is used for the holding tank
to determine when the maximum level is reached. At
this occurrence, the DETECT module will release a
separate entity and again route it to an ASSIGN module.
This time the ASSIGN module sets the VARIABLE



Simulation of Advanced Manufacturing Systems 145

TanklIn to O, which represents the valve to the tank
closing. OTHER is used to reassign the RATE variable
Tank1Flow to Tank1In-Tank1Out.

The CONTINUOUS ‘module provides the user with
a great deal of flexibility. Three differential equations
were assigned to represent each of the respective tank
material flows. Runge-Kutta-Fehlberg (RKF) was
selected for the method of integration. This method was
chosen because the rate equations do not remain constant
between event times. Corresponding minimum and
maximum step sizes, absolute and relative errors,
severity, and severity warnings were also set.

To accurately model the product filling operation
required a combination of continuous and discrete logic.
The holding tank serves as a large storage queue from
which product is continuously pumped. The product is
piped from the holding tank to an in-line surge tank. This
tank serves as a buffer for the time delay incurred when
containers are indexed in and out of the filling machine.
Its primary purpose is to minimize the starting and
stopping of the holding tank pump motors. Material is
then continuously pumped from the surge tank into the
containers, at the instance the containers are positioned
under the fill station. Consequently, the surge tank level
1s cyclical during steady-state operation.

The link between the continuous and discrete logic
was accomplished through the START and STOP modules
for conveyor movement. The filling machine, in this
example, connects two separate conveyors. The first
conveys containers into the filling machine (Infeedl).
The second conveys filled containers to another
workstation (Conveyor3). A DETECT node was used to
monitor the product level in each container. Once the
desired filling level is reached, the DETECT node creates
an entity that is routed to a START module. Settings are
then made to restart in Infeed1 conveyor. After the entity
exits the START module it is routed to an ASSIGN
module. In the ASSIGN module a variable is set to tumn
off the flow rate from the surge tank. OTHER
assignments are made to reassign container flow rate and
surge tank flow rate. In addition, the container LEVEL
is reset to 0. The entity is routed to a DISPOSE module
immediately following the ASSIGN module. In a separate
section of the workspace, modules are used to model the
conveyor STATIONs. When a container entity reaches
the end of the Infeedl conveyor it passes through an
ASSIGN module. The ASSIGN module causes the valve
on the surge tank to open. This is a corresponding fill
rate for the machine. The container entity then proceeds
to a STOP module for the Infeedl conveyor. This
prevents additional container entities from accessing and
jamming the conveyor. The entity will remain in the
STOP module until the START module is reached by the
DETECT entity described above. When the container

entity is released it moves to another STATION and
attempts to ACCESS Conveyor3. [If this s
accomplished, the entity the proceeds to EXIT Infeedl
and convey to the next station. An important result of
this logic is that the primary system bottleneck is
accurately modeled. Containers are "pulled” into the
filling machine and regulated by both the fill rate and
conveyor index time.

Animation provided a quick method to verify that
this part of the model was properly working. The
PLOT module was used to view the surge tank level
while the simulation was running. Fill rate variables
were then quickly adjusted to balance the surge tank
tlow based on the results of the graph. Furthermore,
visual confirmation of the tank levels and containers
properly filling and indexing out of the station provided
confidence in the model’s representation of the "real
world" system.

4.1.3 Infinite Loop Checking for Replenishment of
Raw Material Inventories

A standard modeling concept present with any AMS
involves the replenishment of raw materials at the point
where it 1s used in the process. A typical scenario
involves a resource (e.g., operator, fork truck, AGV,
etc...) retrieving a unit load of raw materials from a
warchouse.  The material is transported from the
warehouse to the processing line where it is used in the
final product. The standard Arena Template provides
an easy method to accomplish this activity.

A "loop" is first established to monitor the in-
process raw material inventory level. An ARRIVE
module is used to crate a single entity at the start of the
simulation run. The entity immediately enters a
CHOOSE module where an if-then decision is made. If
the inventory level, which is defined by a single
VARIABLE, is above the desired reorder point then the
entity is routed to a DELAY module. Here, the entity
1s delayed for a predefined time interval and released
back to the CHOOSE module. The same inventory
check is again tested. If the inventory level is below the
reorder point then the entity is routed to a SIGNAL
module, and immediately routed back to the CHOOSE
module. The SIGNAL module is used in concert with
the WAIT module. It instructs the WAIT module to
release a defined quantity of entities that have entered its
module. These entities were created from a separate
ARRIVE module that represents inventory arriving in
the warchouse. After the entity is released from the
WAIT module, it is sent to a REQUEST module. This
module attempts to secure a defined quantity of a
particular TRANSPORTER. When this is successfully
accomplished the entity is routed to an UNSTORE



146 Evans, Biles and Golway

module where raw materials are removed from the
warehouse inventory and transported to the processing
area. Before the TRANSPORTER is released, delay
times for unloading the inventory occur and the in-process
inventory level is adjusted accordingly.

Two separate networks of modules exist with this
modeling scenario. The first network uses a single entity
control an event in a the second network. The second
network models the actual raw material entities used in
the process. The two networks are easily connected
through the SIGNAL and WAIT modules. Consequently,
a great deal of control is provided to the user with
minimal use of Arena modules.

4.2 Modeling of a Semi-automated Assembly Line

Evans and Biles (1992) described the modeling and
analysis of a semi-automated assembly line involving 29
work stations, followed by a 5-station test/repair facility.

The purpose of the project was to develop a
simulation model that would allow for experimentation
with various design scenarios, involving changes to the
current system, with respect to the:

1) number of back-up machines at each station,
2) locations and sizes of external buffers,

3) cycle times at the stations,

4) elimination of machine downtime,

5) velocity of pallets on the conveyor, and

6) number of pallets.

The product came in two different types of frames;
the first frame type had four different types of models,
while the second frame type came in five different types
of models. Hence, nine ditferent types of assemblies
were produced by the system. The cycle times at the
stations did not change from one type of assembly to
another; however, there were set-up times involved at
some stations when production was switched from one
type of assembly to another.

The assemblies moved sequentially from one station
to the next through the use of an accumulating (queueing)
conveyor. Each assembly was contained on two different
types of pallets, labeled A and B, as it moved through the
system.

Most of the stations contained an "internal buffer” of
size 1--i.e., one assembly at a time was processed at the
station. However, a few of the stations contained an
internal buffer with a capacity greater than one. For
example, the sixth station was a washer that could
accommodate 39 assemblies simultaneously.

The SLAMSYSTEM package was used to model the
system. Each run of the model required the processing of
three SLAMSYSTEM files: a control file, a network file,

and a user insert file (consisting of FORTRAN code).
Some 31 different types of resources were modeled --
one type for each of the 29 stations, and one type each
for type A pallets and type B pallets.

The completed assembly produced in the AMS
described above then entered a test and repair line
where it was tested at each of four stations and, if
defects were found, repaired at yet a fifth station. The
physical system and process flow presented a far less
complex situation than did the assembly line, so that the
test and repair line was entirely modeled using the
network features of SLAM-II. The advantage of the
network modeling approach was that the network flow
almost exactly mimicked the digital control logic of the
system.

In numerous instances in the test repair model, the
simulation model behaved exactly like the programmable
logical controller (PLC) which monitored and controlled
that segment of the system. For example, an entity
arriving at a GOON node represented a pallet arriving
at a processing station and tripping a switch. The PLC
logic was as follows:

1) If the processing station (an AWAIT node
representing that resource) was open (FREE), the
test pallet (entity) containing the assembly was
placed in the processing station and the operation
(service activity) commenced;

2) If the processing station was busy, an activity was
initiated which rerouted control back to the GOON
node with a delay of 1 second, just as the PLC
would do.

This "logic loop" was repeated every 1 second until the
processing  station (AWAIT node) was available
(FREE).

The ultimate advantage of the test/repair line
simulation model was that the manufacturing engineer in
charge of the line could evaluate changes in equipment
layout as well as PLC control logic in a matter of
minutes. For example, a change in logic sequence was
as simple as inverting two statements in the SLAM-II
network model, while relocating the repair station away
from the other test equipment involved nothing more
than changing the destination (LABEL) of an entity in
an ACTIVITY statement. Adding a new machine to the
line was somewhat more involved, and required as
much as 10 minutes to effect the required alteration to
the SLAM-II simulation model.

5 SUMMARY AND CONCLUSIONS

Having a valid simulation model available gave the
manutacturing engineers in the above examples much



Simulation of Advanced Manufacturing Systems 147

greater confidence in making alterations in the existing
production system. For example, for just a few thousand
dollars, the manufacturing engineer associated with the
second example above, was able to purchase a PC version
of SLAMSYSTEM, engage consultants to show him how
to model the production system for which he was
responsible, and evaluate investments in new production
equipment costing in excess of $1 million. He was then
able to show his plant manager just how to achieve the
corporate production goals for a new product line.

The key to this manufacturing engineer’s success was
that, through simulation, he was able to develop very
detailed and accurate models of the AMS. He saw the
need to have a tool that allowed him to evaluate changes
in material flow, equipment placement, operating policies,
and PLC logic before experimenting with those changes
in the actual system. The fact that the model predicted
the effect of proposed line changes within 2 percent gave
him the confidence to employ simulation for more
involved and expensive alterations in production system
design.

The main advantages of modern simulation software
packages is their abilities to help the simulationist model
complex systems such as AMS’s more easily.
Sophisticated animations allow simulation methodology to
be more easily "sold" to management; animations also can
result in quicker verification of simulation models.

Another advantage of modern simulation software
packages is their abilities to aid in the management of the
entire simulation project through their file management
system.

A drawback still associated with simulation software
packages concerns their deficiencies in optimization
analysis of the simulation output. The methodologies
required in these areas (e.g., design of experiments,
variance reduction techniques, response surface
methodologies, nonlinear optimization, and multicriteria
optimization) are, in general, unfamiliar to most
simulationists in industry. Yet, many of the modern
software packages still offer little help in this area.

ACKNOWLEDGEMENT

This paper represents an updated version of a paper
presented at the 1992 Winter Simulation Conference
(Evans and Biles, 1992).

" REFERENCES

Banks, J. 1991. Selecting simulation software.
Proceedings of the 1991 Winter  Simulation
Conference, eds., B.L. Nelson, W.D. Kelton, and
G.M. Clark, 15-20, The Society for Computer

Simulation, San Diego, CA.

Banks, J., E. Aviles, J.R. McLaughlin, and R.C. Yuan.
1991. The simulator: new member of the
simulation family. Inrerfaces. 21, 76-86.

Collins, N., and Watson, C.M. 1993. Introduction to
Arena. Proceedings of the 1993 Winter Simulation
Conference, eds., G.W. Evans, M. Mollaghasemi,
E.C. Russell, W.E. Biles, 205-212, The Society for
Computer Simulation, San Diego, CA.

Davis, D.A. 1986. Modeling AGV systems.
Proceedings of the 1986 Winter Simulation
Conference, eds., J. Wilson, J. Henriksen, and S.
Roberts, 568-574, The Society for Computer
Simulation, San Diego, CA.

Directory of Simulation Software.  1991.  Elliot
Estrine (Ed.), Society for Computer Simulation, 2.

Evans, G.W. and W.E. Biles. 1992. Simulation of
advanced manufacturing systems. Proceedings of
the 1992 Winter Simulation Conference, eds., J.
Swain and D. Goldsman, 163-169, The Society for
‘Computer Simulation, San Diego, CA.

Goble, J. 1991. Introduction to SIMFACTORY II.5.
Proceedings of the 1991 Winter Simulation
Conference, eds., B.L. Nelson, W.D. Kelton, and
G.M. Clark, 77-80, The Society for Computer
Simulation, San Diego, CA.

Gupta, M. 1990. An evaluation of operations
planning and scheduling problem in advanced
manufacturing = systems. Ph.D. Dissertation,
Department of Industrial Engineering, University of
Louisville, Louisville, KY.

Harrel, C.R., and K. Tumay. 1991. ProModel
tutorial. Proceedings of the 1991 Winter Simulation
Conference, eds., B.L. Nelson, W.D. Kelton, and
G.M. Clark, 101-105, The Society for Computer
Simulation, San Diego, CA.

Herald, M.J. and S.Y. Nof. 1978. The optimal
planning of computerized manufacturing system.
Report No. 11, School of Industrial Engineering,
Purdue University.

Holzner, S. 1992. Borland C+ + Programming.
Brady Books, New York, NY.

Jeyabalan, V.J., and N.C. Otto. 1991. Simulation
models of material delivery system. Proceedings of
the 1991 Winrer Simulation Conference, eds., B.L.
Nelson, W.D. Kelton, and G.M. Clark, 356-364,
The Society for Computer Simulation, San Diego,
CA.

Joines, J.A., Powell, K.A., Roberts, S.D. 1993.
Building object-oriented simulations with C+ +.
Proceedings  of the 1993 Winter Simulation
Conference, eds., G.W. Evans, M. Mollaghasemi,
E.C. Russell, W.E. Biles, 79-88, The Society for



148 Evans, Biles and Golway

Computer Simulation, San Diego, CA.

Krahl, D. 1991. Tutorial: scheduling manufacturing
systems with FACTOR. Proceedings of the 1991
Winter Simulation Conference, eds., B.L. Nelson,
W.D. Kelton, and G.M. Clark, 128-131, The Society
for Computer Simulation, San Diego, CA.

Law, A.M., and S.W. Haider. 1989.  Selecting
simulation software for manufacturing applications.
Proceedings of the 1989 Winter Simulation
Conference, eds., E.A. MacNair, K.J. Musselman,
P. Heidelberger, 29-31, The Society for Computer
Simulation, San Diego, CA.

Law, A.M. and W.D. Kelton. 1991. Simulation
Modeling and Analysis, Second Edition. New York:
McGraw-Hill.

Law, A.M. and M.G. McComas. 1991. Secrets of
successful simulation studies. Proceedings of the
1991 Winter Simulation Conference, eds., B.L.
Nelson, W.D. Kelton, and G.M. Clark, 21-27, The
Society for Computer Simulation San Diego, CA.

Pegden, C.D., R.E. Shannon, and R.P. Sadowski.
1990.  Introduction to simulation using SIMAN.
Highstown, New Jersey: McGraw-Hill, Inc.

Pritsker, A.A.B. 1986. Introduction to Simulation and
SLAM 11, Third Edition. New York: John Wiley
and Sons.

Suri, R. 1985. An overview of evaluative models for
flexible manufacturing systems. Annals of Operations
Research. 3, 13-21.

AUTHOR BIOGRAPHIES

GERALD W. EVANS is a Professor in the Department
of Industrial Engineering at the University of Louisville.
He received a B.S. in Mathematics, an M.S. in Industrial
Engineering and a Ph.D. in Industrial Engineering, all
from Purdue University. Prior to his current position, he
was an assistant professor in the School of Business at the
University of Louisville (1981-1983), a senior research
engineer at General Motors Research Laboratories, and an
industrial engineer for Rock Island Arsenal. His research
interests includes multicriteria optimization and simulation
modeling, especially as applied to problems in
manufacturing system design and operation, engineering
management, and the service industries. He was an
Editor of the 1993 Winter Simulation Conference
Proceedings. He is an active member of 1IE, TIMS,
ORSA, and DSI.

WILLIAM E. BILES is the Edward R. Clark Professor
of Computer-Aided Engineering in the Department of
Industrial Engineering of the University of Louisville in
Louisville, KY. He is currently involved in research in

two principle areas: (1) simulation modeling of
automated manufacturing systems, and (2) computer-
integrated manufacturing of plastics.  He is Associate
Editor of the journal Computers and Industrial
Engineering. Dr. Biles received the BS in Chemical
Engineering from Auburn, the MSIE from the
University of Alabama-Huntsville, and the Ph.D. in
IEOR from Virginia Polytechnic Institute and State
University. He has held industrial positions with Union
Carbide and Morton Thiokol, and faculty positions at
Notre Dame, Penn State, and LSU. He is a Fellow of
IIE and chairman of the GRE engineering exam
committee for Educational Testing Service.

MICHAEL W. GOLWAY is an Industrial Engineer
with SSOE, Inc., a consulting firm located in Toledo,
Ohio. He received the BES in Industrial Engineering
from the University of Louisville. He was formerly a
Senior Engineer with Biles & Associates, Inc., in
Louisville, KY where he was primarily involved in the
application of simulation to facility layout and design.
Mr. Golway is a member of IIE.



