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ABSTRACT

We give an overview of the main techniques for im-
proving the statistical efficiency of simulation esti-
mators. Efficiency improvement is typically (but not
always) achieved through variance reduction. We dis-
cuss methods such as common random numbers, an-
tithetic variates, control variates, importance sam-
pling, conditional Monte Carlo, stratified sampling,
and some others, as well as the combination of cer-
tain of those methods. We also survey the recent
literature on this topic.

1. INTRODUCTION

1.1. A Notion of Efficiency

Stochastic simulation is typically used to compute the
value of a realization of a random variable X, taken
as an estimator of some unknown quantity p. Sup-
pose that X is defined over some probability space
(2, B, P) and use E to denote a mathematical expec-
tation. The bias, variance, and mean square error

(MSE) of X are defined as

B = EX]-u
o’ = Var(X) = E[(X - E[X])%);
MSE[X] = E[(X -w)? = B2 +0%,

respectively. We assume that the cost for computing
X (e.g., cpu time) is also a random variable and we

denote its mathematical expectation by C(X). We
define the efficiency of X by
1
Eff(X) = (1)

MSE[X] - C(X)"

In this context, for two estimators X and Y, we say
that X 1s more efficient than Y if Eff(X) < Eff(Y).
Efficiency improvement means finding another esti-
mator Y which is more efficient than the currently
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used estimator X in the above sense. Often, both esti-
mators are unbiased and are assumed to have roughly
the same computational costs; then, improving the
efficiency is equivalent to reducing the variance. For
that reason, most textbooks are research papers talk
about wvariance reduction techniques (VRTs). How-
ever, efficiency can sometimes be improved by in-
creasing the variance; see Fishman and Kulkarni
(1992) and Glynn and Whitt (1992) for examples.

This paper gives an overview of the main ideas and
recent research developments on efficiency improve-
ment, mainly through variance reduction. We give a
long list of references, with pointers to the most recent
or important (according to the judgement and knowl-
edge of this author). The list is clearly not exhaustive
and we make no attempt to trace back the historical
developments and give the original references.

For the readers who want to go further, we would
like to particularly recommend the nice survey papers
of Glynn (1994a), Heidelberger (1993) and Wilson
(1984). Good introductions on variance reduction can
also be found in Bratley, Fox, and Schrage (1987),
Hammersley and Handscomb (1964), and Law and
Kelton (1991) (among others).

Remark 1 The efficiency criterion (1) is not the only
possibility, but is often agreed upon, typically with
the assumption of no bias. Without bias, one can
generally sample twice as many independent copies
of the estimator, thus cutting the variance in half but
doubling the computational effort, so the efficiency is
invariant with respect to the number of replications in
this case. In the presence of bias, the latter no longer
holds, but (1) implies that variance can be traded off
for squared bias, and vice-versa, without essentially
altering the statistical precision of the estimator.

1.2, Asymptotic Efficiency

Arguing that (1) is difficult to compute in practice,
Glynn and Whitt (1992) propose to consider the ef-
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ficiency of simulation estimators in the asymptotic
sense, as the size of the computer budget increases to
infinity. What we now describe is a much simplified
version of their framework. Let .X'(¢) be the estimator
obtained with a budget ¢ (here, we have C(X (t)) = t).
Typically (under a few technical conditions), there ex-
ists a constant y and a random variable Z such that
tY(X(t) — u) = Z (where = denotes the convergence
in distribution), and also t*MSE[X (t)] = v+0(1) for
some constant v, where o(1) — 0 as t — oco. Then,
the asymptotically most efficient estimator is the one
with the largest value of v and, in case of a tie, the
one with the smallest value of v. Often, y = 1/2 and
Z 1s a centered normal for all estimators of interest in
a given class. In that case, those estimators are com-
pared through their variance constants. Note that
one often has v = 1/2 even in the presence of bias.
Examples where v # 1/2 are discussed in Glynn and
Whitt (1992) and Glynn (1994a). See also L’Ecuyer
(1992), L’Ecuyer and Perron (1994) and L’Ecuyer and
Yin (1994). Note that in the latter case, changing the
number of replications may change the efficiency of an
estimator.

As an illustration, suppose we want to estimate the
total expected discounted cost over an infinite hori-
zon, in a stochastic model with discounting, using a
truncated-horizon estimator over horizon 7. For a
computing budget ¢, we may perform n = |t/7] runs
of length 7. Then, the simulation cost per run typi-
cally increases linearly in 7, whereas the marginal de-
crease of the MSE (as a function of 7) damps out ex-
ponentially fast as 7 — co. To maximize the asymp-
totic efficiency in that case, there is an optimal way
of increasing 7 as a function of t; that is, a tradeoff
between the horizon length and the number of replica-
tions. See also Fox and Glynn (1989). Other impor-
tant examples involve derivative estimators based on
finite differences or on the likelihood ratio method,
and stochastic approximation based on these meth-
ods.

1.3. Modifying an Estimator for Variance
Reduction

To see how an estimator can be modified (in general),
recall that X is a measurable function of the sample
point w, say X = h(w), and that

MSE(X) = /Q(h(w) — p)¥dP(w).

Modifying the estimator means modifying the func-
tion h without altering the probability law P, or
perhaps modifying P itself, or both. Nelson (1985,
1986, 1987a, 1987b) proposed a decomposition of

the transformation h into several levels, say, h(w) =
T3(T2(T1(w))). In his framework, the random vari-
ables (or vectors) Ty, T, and T3 are called the in-
puts, the outputs, and the performance statistics, and
are defined (directly) over probability spaces called
the probability spaces of inputs, outputs, and per-
formance statistics, respectively. Variance reduction
techniques can then be classified according to the
level(s) at which the transformation is modified. Nel-
son identified six mutually exclusive classes of elemen-
tary transformations (two classes at each level) and
showed that any VRT is a composition of such ele-
mentary transformations. That framework was devel-
oped with the hope that (a) fundamentally new VRTs
could be found by playing with those building blocks
and that (b) this decomposition would facilitate the
“automation” of variance reduction by enabling the
construction of general software for that purpose. It
appears that reaching these long term objectives is
still far ahead.

The remainder of this paper is devoted to a discus-
sion of several VRTs. The common random numbers
(next section) are used for comparing two or more
“related” systems, whereas the other methods can
be used for estimating the performance measure of
a single system. The methods discussed in the next
four sections are correlation-based: correlation is in-
duced and exploited between different random vari-
ables. Some of the others (like importance sampling
or stratification) may be called importance methods:
they improve the efficiency by concentrating the sam-
pling effort in the most critical regions of the sample
space.

2. COMMON RANDOM NUMBERS

The common random numbers (CRN) method is nor-
mally used when estimating the difference between
the expected performance measures of two (or more)
systems. It is perhaps the most widely used VRT
method in practice. Suppose we want to estimate
p1 — p2, where py and po are two unknown quan-
tities, estimated by X; and X,, respectively. Let
Z = X1 — X7 and suppose that E[Z] = p; — po.
The variance of Z is then

Var[Z] = Var[X1] + Var[.X5] — 2Cov[.Yy, 5.

If X; and X3 are generated independently, the co-
variance term disappears. But if we manage to in-
duce a positive covariance between X; and X, with-
out changing their individual distributions, then the
variance (and MSE) of Z will be reduced. The stan-
dard way of inducing such a covariance is to use the
same underlying uniform random numbers to drive
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the simulation for both X; and X5, and to make sure
that these random numbers are used at exactly the
same place for both systems (the latter is called syn-
chronization). If both systems react in a similar way
to these uniforms, then that should work. The ra-
tionale is that with the same uniforms, the random
noise (or “experimental conditions”) will be the same
for both systems; so the observed differences will be
due only to the differences between the systems, and
not to the fact that one has been more lucky than
the other in picking its random numbers. As an anal-
ogy, using CRNs is like comparing two fertilizers by
using each of them on the same piece of land, at the
same time (this is impossible in real life, but simula-
tion makes it possible). With the CRNs, independent
replicates of Z can be obtained by simulation and a
confidence interval for p1 — py computed as usual.

Example 1 Suppose we want to compare the FIFO
service policy with another policy, in a single-server
GI/GI/1 queue, with regards to the average wait-
ing time. Here, X; and X3 may represent the ob-
served average waiting times under each of the two
policies. If the interarrival and service time distri-
butions are the same for both systems, then using
CRNs with proper synchronization implies that both
systems will see the same customers arriving at the
same times and with the same service requirements
(the service requirements may be permuted between
the customers if they are generated when the service
begins, but not if they are generated when the cus-
tomer arrive). To facilitate the synchronization, one
may use here two different random number genera-
tors: one for the interarrivals and one for the service
times. In general, having several generators available,
as well as software tools for resetting a generator to a
previous state and for jumping ahead, is very handy
for the application of CRN and other VRTs. A soft-
ware package offering that is provided by L’Ecuyer
and Coté (1991). Several other examples of CRN ap-
plications (with numerical illustrations) are given in
Bratley, Fox, and Schrage (1987), Law and Kelton
(1991), and the references therein.

CRNs do not always work: using the same uni-
forms does not guarantee that Cov(X;, X3) > 0. In
practice, the uniforms are transformed in very com-
plicated ways and at several levels to produce the
estimators, making that covariance extremely hard
to evaluate a priori. A sufficient (but by no means
necessary) condition for the covariance to be positive
1s that X; and X, are both monotone (both increas-
ing or decreasing) with respect to any given underly-
ing uniform (see Heidelberger and Iglehart (1979) and
Theorem 5.1 of Bratley, Fox. and Schrage 1987). If

the monotonicity condition is satisfied only for some
of the uniforms, then one can use CRNs only for
those, and independent random numbers for the other
uniforms. However, the monotonicity conditions are
not always easy to check. If the covariance turns out
to be negative, then the variance of Z will actually
be increased. In the best case, if the correlation is
perfect, the variance is reduced to zero. In the worst
case, the variance could be doubled compared with
independent simulations.

A well-known heuristic for trying to keep the mono-
tonicity is to generate all the nonuniform random
variables in the model by inversion. If these nonuni-
form variables have different distributions for the two
systems, inversion will ensure that they remain mono-
tone. However, the further transformations applied
to these variables for producing the estimates X; and
X» may be non-monotone. For complex real-life mod-
els, to assess whether CRNs would work, one may
make a pilot study: perform a number of replications
with CRNs and check whether or not the (estimated)
variance of Z is smaller than the sum of the variances
of .'Yl and X'_;.

A situation where CRNs would work extremely
well, even in the absence of monotonicity, is when
a system 1s parameterized by some continuous pa-
rameter 6, reacts similarly to similar values of 8, and
we want to compare the performance under two val-
ues of # that are close to each other. More specifi-
cally, if the response is a “smooth” function of § when
the values of the underlying uniforms are fixed, and
if X; is the value of the response evaluated at 6;,
j = 1,2, then the correlation between .X; and .Y, will
approach 1 as |#; — 0| approaches 0, so the CRNs
will reduce the variance if #; and 6, are close enough
to each other. This (and related issues) is studied by
Glasserman and Yao (1992). One important applica-
tion of this property is the estimation of derivatives
(or gradients) by finite differences. In that context,
with independent random numbers, the variance of
the derivative estimator increases to infinity as the
size of the finite-difference interval shrinks to zero.
But with CRNs and under appropriate smoothness
conditions, the variance remains bounded; L’Ecuyer
and Perron (1994) give formal proofs and numerical
examples. This is important because making the size
of the finite difference interval converge to zero is gen-
erally required to make the bias converge to zero.

CRNs are also effective for comparing multiple
(more than 2) systems; however, the induced de-
pendence makes the statistical analysis more difficult
(e.g.. for selecting the best system with high prob-
ability or for computing a simultaneous confidence
region for all differences). There exist simple analy-
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sis methods, such as using the Bonferroni inequality
to compute confidence intervals, but these are very
conservative. Consider the specific problem of multi-
ple comparisons with the best (MCB): perform simul-
taneous statistical inference on all the p; — p;, for
J # J«, where p; is the (unknown) performance mea-
sure of system j and j. is the best system. For MCB,
Yang and Nelson (1991) and Nelson and Hsu (1993)
proposed linear regression models trying to “explain”
the effect of CRNs on the output via control variates
which are functions of the simulation inputs. Their
analysis assumes that all of the dependence induced
by the CRNs is explained by the control variates and
that the residuals are iid normals. Such control vari-
ates that account well for the dependence are not al-
ways easy to select in practice. Nelson (1993) pro-
posed another (more robust) approach, that can be
used with or without the control variate model, and
for which the control variates are not assumed to cap-
ture all of the dependence.

CRNs are not useful only for estimating a differ-
ence such as py; — pg, they could be effective more
generally for estimating a function of several means:
g(p1, .-, pa), where each p; is a mathematical ex-
pectation estimated by X;. Inducing correlations
between the X;’s by using CRNs may reduce the
variance of the estimator g(Xi,...,X4). A spe-
cial case is when estimating a ratio of expectations:
9(pu1, p2) = p1/pa.

Besides the variance reduction, there are situations
where the CRNs also make the computations less
costly. The idea is that the random numbers need
to be generated only once. When comparing similar
related systems, the lower-level transformations (e.g.,
the generation of interarrival and service times in a
queue) are sometimes exactly (or almost) the same for
all systems of interest, and the systems differ only at
a higher level. Then, a significant amount of compu-
tation may be common to all systems and could be
performed only once. L’Ecuyer and Vézquez-Abad
(1994) show how this idea could be exploited to ef-
ficiently estimate an entire function of a univariate
continuous parameter.

3. ANTITHETIC VARIATES

The idea of antithetic variates (AV) resembles that of
CRNs. Now, we want to estimate a single mathemat-
ical expectation u, using a pair of unbiased estimators
(X!, X?). The (unbiased) estimator of y will be the
average: X = (X! + X?)/2, whose variance is:

Var[X1!] 4 Var[X?] N Cov[X!, X7

Var[X] = , 2

Assume that Var[X!] = Var[X?. If X! and X?
are independent, then Var[X] = Var[X!]/2. But if
Cov[X!, X?] < 0, then X has a smaller variance. A
standard way (but not the only way) of inducing the
negative correlation is to use a sequence of under-
lying iid uniforms wy = {Ux, k > 1} to drive the
simulation for computing X!, and use the antithetic
sequence 1 —w; = {1 — Uk, k > 1} to drive the simu-
lation when computing X2. The two estimators can
then be written as X; = h(w;) and X2 = hA(l —w)).
The rationale is that disastrous events in the first sim-
ulation should be compensated by “antithetic” lucky
events in the second one, thus reducing the variance
of the average.

As with CRNs, that does not guarantee a negative
covariance neither a variance reduction in general. A
sufficient condition for a negative covariance is that h
be monotone with respect to each underlying uniform
(Bratley, Fox, and Schrage 1987; Avramidis and Wil-
son 1994). In fact, if A is monotone only with respect
to a subset ¥ of its (uniform) arguments, then vari-
ance reduction is still guaranteed if we take AVs only
for uniforms that are in ¥ and independent random
numbers for the others. Proper synchronization is
again important. The best possible situation occurs
when the response is a linear function of all under-
lying uniforms: the variance is then reduced to zero.
The worst case is when X! and X? are perfectly cor-
related: the AV method then doubles the variance.

More general versions of the AV method are
anaylzed in Cheng (1982), Cheng (1984), Fishman
and Wang (1983), Wilson (1983) and Wilson (1984).

4. LATIN HYPERCUBE SAMPLING

Avramidis and Wilson (1994) describe a negative
correlation-induction framework that generalizes the
AV method. In their framework, n dependent repli-
cations are performed, the ith replication using a
sequence of iid uniforms denoted, say, by w; =
{Ui k, k > 1}. Negative correlation is induced across
the components of the different w;’s as follows: for
each index k in some finite subset ¥, the vector of
random numbers U*) = (U} x, ..., Uy, &), which con-
tains the kth random number of each replication, fol-
lows a multivariate distribution with the following
properties: (a) each univariate marginal is U(0, 1)
and (b) each bivariate marginal is negatively quad-
rant dependent (nqd). (A bivariate random vector
(Y1,Y3) is called nqd lfP[Y1 <y, Yo < yg] < P[Yl <
Y1) - P[Y2 < yo] for all y; and y5.) Variance reduction
is again guaranteed if h is monotone with respect to
each of the arguments that have been included in V.
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Special cases of that correlation-induction frame-
work include AV and the latin hypercube sampling
(LHS) method (Avramidis and Wilson 1994), which
we now describe. Select a finite subset ¥ as above
and for each k € ¥, generate a random permutation
of the integers {1,...,n} (independently for the dif-
ferent indices k), and let m; x denote the ith element
of that permutation. Then, for each (¢, k), generate
U; x uniformly over the interval ((mix—1)/k, mix/k).
The other U;k’s, for k ¢ ¥, are generated indepen-
dently from the U (0, 1) distribution. It is easily seen
that each w; = {U;x, k > 1} is then a sequence of
iid uniforms. On the other hand, for each k € ¥, the
interval (0, 1) is partitioned into n equal pieces and
across the n replications, the U; ’s form a stratified
sample over (0,1).

5. CONTROL VARIABLES

The control variates (CV) method exploits auxiliary
information to figure out whether the random events
have been more favorable or less favorable than usual
in influencing the sample performance, and makes
appropriate corrections. Let X be the default per-
formance estimator and Y = (Y(!) ... [ V(@) (the
prime means “transpose”) be a vector of ¢ other ran-
dom variables, presumably correlated with X, with
known expectation E[Y] = v = (v),...,v@)) and
called the CVs. Define the controlled estimator

q
Xe=X=f(Y-v)=X=Y B(Y® —vk),
k=1

where 8 = (f1,...,0,) is a vector of con-
stants. Let ¥y = Cov[Y], a matrix whose element
(3,7) is the value of Cov[Y®),YU)], and oxy =
(Cov(X, Y1), ..., Cov(X,Y(@)). Then, E[X.] =
E[X]) = p and

Var[X.] = Var[X] + f'Zy B — 28 oxy.
That variance is minimized with
B=pB =%yloxy,
in which case
Var[X.] = (1 - R%y)Var[X],
where .
R2. = TxyZy oxy
Xy Var[X]

1s the coefficient of determination (the square of the
multiple correlation coefficient) between X and Y.
So, the variance could be reduced by either positive or
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negative correlation, and Ry indicates the fraction
of the variance that is reduced. In the best possible
case, if the multiple correlation is +1, the variance
is reduced to zero. In the worst case, there is no
correlation and the variance is unchanged.

A major difficulty with the CV method is that 3
is typically unknown (sometimes ¥y may be known,
but practically never Exy). Suppose that n inde-
pendent replications of the simulation are performed.
Then, Ly and Exy may be estimated by their sam-
ple counterparts Yy and Txy, and B replaced by
8 = i;l&xy. Let Xcei, @ = 1,...,n denote the
n replicates of the controlled estimator: Xce; =
X; — B(Y,- — v), where (X;,Yi) is the ith replicate
of (X,Y). Let X.e and s, be the sample average
and sample variance of those X¢. ;. The CV estima-
tor of u is then X.e. Estimating g and 3* that way
turns out to be equivalent to fitting a least-squares
regression model of the form X = p+ #'(Y —v) + ¢
to the simulation data.

If we assume that (X,Y) is multinormal, then
V(Xee — 1)/sce follows the Student ¢ distribution
with n —q — 1 degrees of freedom (which implies that

Xece 1s unbiased), and

Var[Xce]  n—2

Var[X]  n-— q—2(1 ~ Rxv)-

The latter ratio indicates that the number ¢ of control
variables must remain small relative to n.

Unfortunately, the multinormality assumption is
not always realistic in practice. Without that as-
sumption, the CV estimator is generally biased and
may have a larger variance than the standard one for
small n. However, it is generally true that \/H(Xw —
p)/sce = N(0,1) and s2, 23 (1 — R%y )Var[X] as
n — oo (Nelson 1990). Therefore, asymptotically,
X, always has a smaller MSE than X and there is
no loss in having to estimate $*. Techniques for re-
ducing the bias for small n include jackknifing and
splitting; see Avramidis and Wilson (1993), Bratley,
Fox, and Schrage (1987) and Nelson (1990).

For more details and further developments on
CVs, recommendations, and applications, see also
Avramidis, Bauer Jr., and Wilson (1991), Bauer Jr.
and Wilson (1992), Fishman (1989), Lavenberg and
Welch (1981), Lavenberg, Moeller, and Welch (1982),
Porta Nova and Wilson (1993) and Tan and Gleser
(1993). The above setup is easy to generalize to the
case where g and the response X are vectors; the vari-
ance is then replaced by the generalized variance, i.e.,
the determinant of the covariance matrix (Rubinstein
and Marcus 1985). Nonlinear control variate mod-
els could 'also be considered; however, Glynn (1994a)
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shows that from the standpoint of asymptotic effi-
clency (as n — 00), there is no loss in restricting
ourselves to linear schemes as above.

6. IMPORTANCE SAMPLING

Importance sampling (IS) amounts to changing the
probability law(s) in order to concentrate the sam-
pling effort in the most important parts of the sam-
ple space. It is particularly effective for dealing with
rare events, by concentrating the sampling in the ar-
eas where the rare events are most likely to occur.
IS received much renewed attention recently for esti-
mating the probability of certain rare (but expensive)
events in two classes of applications: (a) failures in
highly dependable systems and (b) buffer overflows
and long waiting times in queueing systems. In these
application settings, standard estimators are highly
inefficient because of the huge amount of simulation
time that is typically required to observe a sufficient
number of those events.

The idea of IS is to replace the probability measure
P by another law @ such that @ dominates P over
the region where h(w) # 0; that is, for all B € B,
[ Mw)dP(w) > 0 implies Q(B) > 0. Then, the like-
lthood ratio L(P,Q,w) = (dP/dQ)(w) exists and one

can write:
E[h(w)] = /nh(w)dP(w)

- /n (h(w)(dP/dQ) (w)] dQ(w)
= Eg[h(w)L(P,Q,w)].

where Eg is the expectation corresponding to Q.
This means that an alternative unbiased estimator
for p = E[X] is Xis = h(w)L(P,Q,w), where w is
generated from Q.

The optimal @ is given by Q*(dw) = |h(w)|
P(dw)/p*, where p* = [, |h(w)|dP(w) is a normal-
ization constant. This Q* yields the estimator X
= (I[h{(w) > 0] = I[h(w) < 0])u*, where [ is the in-
dicator function. Note that if P[X > 0] = 1 or if
P[X < 0] = 1, then X}, is equal to yu with probabil-
ity one, so the variance is reduced to zero! Unfortu-
nately, finding Q* is typically much too complicated
in practice; it is generally as hard as computing g it-
self. This result nevertheless indicates that we should
try to construct a @ which is roughly proportional
to |h|P, and that can often be exploited in practical
applications. Is the variance always reduced 7 No.
Perhaps the worst thing about IS is that the method
is often extremely sensitive to the choice of Q. A bad
choice may easily increase the variance to infinity!

Example 2 Suppose that we want to estimate p =
P[A] where A € B is a rare event. The stan-
dard estimator is X = I[A], whose variance (and
MSE) is u(1 — p), and whose absolute error (the
square root of the variance) is \/p(l — p). Since
p is very small, both of these quantities are small.
However, obtaining a small MSE is trivial here; for
example, one might as well just take 0 as an esti-
mator and the MSE would be u2. So, it appears
more meaningful in this case to consider the relative
MSE, defined as MSE[X]/u?, or the relative error,
RE[X] = /MSE[X]/u. For this example, one has
RE[X] = /(1 — p)/u, which goes to infinity as u ap-
proaches zero. Of course, the relative error would be
divided by y/n by making n independent replications
of the simulation, but keeping it under control when
i is very small is often much too costly. For instance,
if £ ~ 1071% then we would need n = 10'2 for a 10%
relative error.

Here, the optimal @ (which gives zero variance) is
Q*() = I[A]P[]/P[A] = P[- | A], the conditional
distribution given that A has occured. This Q* re-
allocates all of the sampling effort to the area where
the rare event A occurs. In practice, one would seek
a @ that resembles @* and which is easy to sample
from. For a general Q, one has Var[X;,] = Eg[(I[A]-
L(P, va))z] - “2 = EP[(I[A] ’ L(Panw))] - /"2’ SO
the variance will be reduced if the likelihood ratio
tends to be small when A occurs.

Let us parameterize our model by a rarity param-
eter ¢, so that h, P, u, X, and X;; now depend on
€. Suppose that the events or interest get rarer and
that RE[X(¢)] = oo as ¢ — 0. The IS estimator
Xis (or another alternative estimator) is said to have
bounded relative error if RE[X;;(¢)] remains bounded
as € = 0. If a probability measure @(¢) can be found
such that Varge)[Xis(€)] < Kp?(¢) for some constant
K, then RE[X;,] < VK as ¢ = 0. In the previ-
ous example, that will happen if L(P(e), Q(¢),w) <
Kp(e) whenever A occurs.  The latter implies
Eq(e)[I[A]] = Ep[I[A]/L(P(¢), Q(¢),w)] > 1/K; that
is, A is no longer a rare event under @Q(¢). Observe
that since the variance is non-negative, Eq¢)[.YZ ()]
cannot approach zero faster than p?(¢). When
log Eq(e)[ X2 (€)] ~ log p?(¢), the IS scheme is some-
times called asymptotically optimal or asymptotically
efficient. This means that the relative error grows
slower than exponentially fast as ¢ — 0; it is weaker
than having a bounded relative error. Knowing that
a given IS estimator has bounded relative error does
not mean that it minimizes the variance for any given
value of ¢ (and even asymptotically as € — 0), but it
is certainly a large step in the right direction.


















