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ABSTRACT

This tutorial describes a framework for discrete event
simulation which synthesizes Taguchi’s robust design
philosophy and a response surface metamodeling ap-
proach. We show how the use of a loss function which
incorporates both system mean and system variabil-
ity can be used to efficiently and effectively carry out
system optimization and improvement efforts. The
results can yield new insights into system behavior,
and may recommend system configurations which dif-
fer substantially from those selected by analysis solely
of the mean response. Issues of model validation and
model complexity can also be addressed. The tuto-
rial is meant for both practitioners and researchers.
We assume a knowledge base at the level of Chapters
11 and 12 of Simulation Modeling and Analysis (Law
and Kelton, 1991), but will review essential elements
and distribute illustrative examples at the session.

1 INTRODUCTION

What is robust design? It is a system optimization
process which springs from a view a system should not
be evaluated on the basis of mean performance alone.
In addition to exhibiting an acceptable mean perfor-
mance, a “good” system must be relatively insen-
sitive to uncontrollable sources of variation present
in the system’s environment. The robust design ap-
proach was pioneered by Genichi Taguchi for qual-
ity planning and engineering product design activi-
ties (Taguchi and Wu 1980; Taguchi 1986, 1987). He
found that it was often more costly to control causes
of manufacturing variation than to make a process in-
sensitive to these variations, and through the use of
simple experimental designs and loss functions was
often able to greatly improve product performance
by “building in” the quality.

In the simulation context, robust design can be
viewed from two slightly different perspectives. One
view is that simulation is used primarily as a sur-
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rogate for a real system, because of the cost and
time required to make and observe changes in a real
system. From this perspective, application of the
Taguchi strategy proceeds in a straightforward man-
ner: the total time required to perform the experi-
ment is greatly reduced, but the designs and analy-
ses used are the same as those which would be ap-
plied to a physical system if cost and time permit-
ted. Applications have included the product design-
ers’ uses of computer models for experimentation in
place of physical prototypes, particularly in the semi-
conductor industry (Sacks et al. 1989, Welch et al.
1990). These experiments have typically involved
Monte Carlo simulation, although clearly robustness
can be used as a criteria for evaluating discrete-event
simulation systems as well. Those who use simula-
tion to study systems primarily because of the diffi-
culty of experimenting on the real system may realize
the benefits of improved performance and decreased
cost cited by many manufacturers if they decide to
evaluate performance in terms of robustness.

A larger view of the simulation process is also pos-
sible. A simulation model is constructed assuming
a variety of system inputs (e.g., distributional forms
and characteristics, simplifying assumptions, level of
detail) which are unlikely to be completely accurate.
Model verification and validation are important is-
sues in the field, as is simulation sensitivity analysis.
From this perspective, one can view robust design as a
process of simulation optimization, where the “best”
answer is not overly sensitive to small changes in the
system inputs. If robust systems are identified, then
the actual results are more likely to conform to the
anticipated results after implementation.

The robustness criteria can be applied to rank a
discrete number of alternatives, which result from
changing the settings of some or all of the inputs to
the simulation model (or system). Alternatively, if
some or all of the input factors are quantitative, one
can construct metamodels of the simulation which de-
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scribe how the system performance varies as a func-
tion of the input factors. There are many approaches
to metamodeling (Barton, 1992), but response surface
metamodels work well in the robust design context.
Metamodels provide much more information about
the underlying system than haphazard investigation
of a few alternatives. Thus, if the goal of the analyst is
to optimize or improve the model’s performance, and
flexibility exists in the settings of the parameter lev-
els (as in prospective studies), then building a meta-
model is appropriate. The actual number of configu-
rations studied, and the form (linear, quadratic, etc.)
of the resulting metamodel are dependent on the ex-
perimental design chosen. Note that first-order mod-
els may not suffice for complex discrete-event simu-
lations: performance is often highly nonlinear, even
over a relatively restricted range of factor settings.

The construction of metamodels is facilitated by
the use of experimental design techniques. Simula-
tion analysts have the luxury of controlling all inputs
to the simulation (including random number seeds,
etc.): this means they have more flexibility in de-
signing the experiment, and more opportunities for
exploiting the additional degree of control, than do
those experimenting directly on real systems.

In this tutorial our focus is on the robust design
process for discrete-event simulation experiments.
We begin with an overview of the robust design strat-
egy. We then discuss tactical issues, such as appro-
priate experimental designs, metamodel construction,
robust design identification, analysis, and conclude
with a summary of the insights into system behavior
that can be achieved under a robust design approach.

2 PHILOSOPHY AND OVERVIEW

Taguchi’s philosophy and strategy have been widely
praised in both the applied statistics and manufac-
turing communities, (Pignatiello and Ramberg 1991)
but many of the methods and tactics he advocates
are often controversial (Box 1988, Ramberg, Pig-
natiello and Sanchez 1991, Nair et al. 1992). The ap-
proach described in this paper (see also Sanchez et al
1993, Sanchez, Ramberg and Sanchez 1994) combines
Taguchi’s strategy and response-surface metamodel-
ing techniques, which we feel is particularly beneficial
when analyzing complex simulation experiments be-
cause of the additional insights available.

2.1 Factor Classification

In systems where stochastic variation is present, the
response exhibits random fluctuation or variation. In
order to achieve systems or products for which the

variation around the target value is low, several steps
are necessary. First, one must identify factors in the
system which are anticipated to affect the system re-
sponse. Factors are classified as parameters, noise
factors, or artificial factors.

The parameters are the decision factors—those
which are controllable in the real world setting mod-
eled by the simulation. Noise factors are not easily
controllable or controllable only at great expense in
the real-world setting. (Parameters should not be
confused with distributional characteristics, such as
the mean processing time y; characterizing a machine
in a manufacturing system simulation. The factor p;
would be a parameter if one could select one of sev-
eral machines or methods to employ, but it would be a
noise factor if the mean processing time varied across
similar machines in a group.) Noise factors include
sources of variation within the real-world system (i.e.,
within a manufacturing plant) as well as exogenous
factors (such as customer and supplier characteris-
tics). Finally, artificial factors are those simulation-
specific variables such as the initial state of the sys-
tem, the warm-up period (truncation point), termina-
tion conditions (run duration), and random number
stream(s) (seed, antithetic switch).

The distinction between parameters and noise fac-
tors is often recognized in simulation experiments,
but rarely used to develop the experimental design
or affect the analysis of the simulation results. How-
ever, as we discuss in Section 3.1, the classification
is important. It is necessary for determining system
robustness, and also presents an opportunities for re-
ducing the number of runs required by concentrating
sampling efforts on assessing parameter effects. This
additional layer of control possible by the artificial
factors can also be exploited in the experimental de-
sign (Schruben et al. 1992). This is not new—it is
the basis of many variance reallocation techniques.

2.2 Performance Evaluation

The analyst begins by specifying some performance
characteristic of special interest, and an associated
target value 7. Common measures are related to sys-
tem throughput or system states, such as the waiting
time or number of customers in queueing systems,
although cost could also be used as a performance
measure. In general, the pattern of the performance
characteristic’s fluctuation around the target value
will differ across these configurations. The cost of
this fluctuation must be measured in order to opti-
mize or improve the system. Taguchi’s philosophical
view is that the overall cost should include the costs
incurred by end-users of the system. In this context,
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the evaluation criterion is often referred to as the loss
to society, or the long term business loss.

An ideal configuration would result in the per-
formance characteristic’s mean equal to 7 and its
variance equal to zero. Thus, a numerical method
for trading off performance mean and variability is
needed. There are many possibilities, including so-
called signal-to-noise ratios which are based on ratios
of (mean performance—7)? to performance variability
across the noise space. Taguchi uses many variants of
a S/N ratio, most which remain proprietary. Unfortu-
nately, this construction is not amenable to analysis
using response surface metamodels.

Instead, we utilize a quadratic loss function, which
(in many cases) is a reasonable surrogate for the ‘true’
underlying loss function which may be difficult or im-
possible to specify exactly. Let x and Y (x) denote a
vector of parameter settings and the associated per-
formance characteristic respectively, and let §2 denote
the noise factor space. Then, assuming that no loss is
incurred when Y (x) achieves the ideal state (7), the
quadratic loss function can be written as:

LY (%)) = e[Y(x) = 7]’ (1)

where the scaling constant ¢ can be used to convert
losses into monetary units to facilitate comparisons of
systems with different capital costs. It follows from
equation (1) that the expected loss associated with
configuration x is

E(loss) = c [02 +u-)] (2)

While conceptually straightforward, the use of a
loss function to incorporate system variability into
the performance evaluation represented a major shift
in perspective within the manufacturing community.
No longer was it acceptable to think about optimiz-
ing mean performance without regard to performance
variability: a “good” product was also robust. The
quantification of robustness, instead of the 0/1 loss
function often implicitly used to represent products
which were within/outside specification limits, also
provided impetus to management and manufacturing
to continually improve product quality. We believe
that for many types of applications, a similar change
in perspective should occur within the discrete-event
simulation community. If simulation is being used to
identify “good” systems (e.g., plant layouts, schedul-
ing and control mechanisms), where variability is not
constant across alternative system designs, then a loss
function such as that in equation (2) is a better de-
scriptor of the system’s desirability than solely the of
the performance characteristic. For example, a single-
server queue will have the same mean waiting time
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for customers/jobs under the FIFO and LIFO queue
disciplines, but the variability is quite different. In
general, the configuration with the best mean need
not be associated with the lowest loss.

2.3 Stages of Analysis

Taguchi’s three-stage approach for quality improve-
ment activities consists of system design, parameter
design, and tolerance design. In the simulation con-
text, system design corresponds to building and val-
idating a functional model, such as one representing
an existing real-world system or a prospective new
facility, process, or product. During the parameter
design stage, the analyst attempts to “optimize” or
“improve” the performance of the simulation model
by judiciously selecting settings for some of the deci-
sion factors in the model. In the tolerance design
stage, the analyst can study the systems in more
depth for a particular parameter configuration (e.g.,
that selected in stage 2). The simulation’s sensitivity
to sources of noise in the system, as well as to the val-
ues of distributional characteristics used to generate
random inputs, can be investigated.

The three stages are less clearly distinct in the sim-
ulation setting than in the manufacturing environ-
ment for which they were initially developed, since
tolerance design can be used to provide insights into
system modeling and validation. In this tutorial we
shall concentrate on the issues of parameter design
and tolerance design stages. We point out how ques-
tions regarding system complexity and the benefit of
further data for estimating input distributions can be
addressed in stage 3, but otherwise leave the system
design and modeling issues aside.

3 EXPERIMENTAL DESIGNS

Choosing an experimental design means specifying
the levels of all parameters, noise factors, and arti-
ficial factors for each run of the simulation. An ap-
propriate total sample size must also be determined.
In order to evaluate the expected response variabil-
ity across the noise space, a crossed parameter Xnoise
factor plan can be used. This means that the same
experimental plan for the noise factors is used for each
run of the parameter plan.

3.1 Basic Plans

Complete and fractional factorials are often used.
Among these, two-level designs are popular choices
because of their simplicity and efficiency. They per-
mit the evaluation of the linear parameter effects, as
well as interaction or synergistic effects.
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For a two-level factorial or fractional factorial ex-
periment involving k parameters, the factor levels
should be chosen to cover the range of interest. For
noise factor plans, the levels should be chosen so that
the mean and variance of the two-point sampling dis-
tribution are equal to the mean and variance of the
underlying distribution. In the case of two-level sam-
pling of continuous factors (or discrete factors whose
distributions can be closely approximated by contin-
uous distributions), this corresponds to one standard
deviation below and one standard deviation above the
mean. In the case of equally likely Bernoulli out-
comes, this corresponds to the two factor levels. For
discrete distributions where p+ o does not yield valid
factor levels, the outcomes can be sampled (approx-
imately) proportional to their probability of occur-
rence. If the factor is a mean estimated from data,
then the upper and lower bounds of a 95% confidence
interval ean be used (Wild and Pignatiello 1991).

Other orthogonal designs have been advocated for
response surface metamodeling. For example, one
might want to minimize the bias or mean-squared er-
ror of the regression coefficients (Donahue, Houck and
Myers 1992). Central composite designs are good for
fitting second-order metamodels. These designs are
discussed for simulation experiments by Tew (1992)
or Hood and Welch (1993); experimental design texts
such as Box and Draper (1987), Box, Hunter, and
Hunter (1988) or Montgomery (1991) contain details
and alternative designs. Two-level plans are not suf-
ficient if quadratic effects are anticipated.

3.2 Artificial Factor Plans

A well established field in simulation is that of vari-
ance reallocation (or variance reduction), where re-
searchers have established methods of reducing the
variance of the estimators of mean responses in or-
der to increase power for hypothesis testing purposes.
Unequal response variance at different system config-
urations is recognized as pervasive. It often influ-
ences the experiment design and analysis (e.g., vary-
ing run lengths for different system alternatives), but
has rarely been incorporated into the system evalua-
tion. In the robust design context, variance realloca-
tion schemes hold promise for further increasing the
efficiency of experimentation. Rather than using all
independent random number streams, one can use a
common/antithetic sampling strategy (Schruben and
Margolin 1978, Tew and Wilson 1991, 1994). This
reallocates variance among the coefficient estimates.
The implications for parameter design are that The
artificial factor plan should be chosen in order to in-
duce correlations which reallocate variance from the
interesting terms (parameters) to the uninteresting

terms (noise factors) (Schruben et al. 1992). The ar-
tificial factor plan is typically embedded in the noise
factor plan, e.g., through the choice of random num-
ber streams used during a simulation run.

3.3 Frequency Domain Plans

If the number of noise factors is large, even a satu-
rated factorial plan for the noise factors may result
in an unwieldy experimental design after crossing it
with the parameter plan. One way to cut down the
size of the experiment is to first screen the noise fac-
tors and then employ a highly fractionated factorial
design. Another efficient way to collect the data is to
oscillate each noise factor sinusoidally within a sim-
ulation run at unique, carefully selected frequency.
This allows examination of the system across a range
of noise factor combinations without a prohibitively
large number of runs (Moeeni, Sanchez and Vakharia
1994a; Sanchez, Moeeni and Sanchez 1994). Such
oscillation forms the basis of frequency domain ex-
perimentation in the simulation field (Schruben and
Cogliano, 1987; Sanchez and Buss, 1987), although
the analysis differs. Indexing by time, rather than by
entity, is recommended (Mitra and Park, 1991).

In the tolerance design stage, the analyst is inter-
ested in determining what portions of the total sys-
tem variability can be attributed to the noise factors,
and a frequency domain approach could be used for
factor screening purposes. During the parameter de-
sign stage, we are interested in what the performance
variability is at a particular parameter configuration:
the fact that noise factors are varying across the noise
space is important, while estimates of their specific ef-
fects are not. In both cases, care should be taken to
select driving frequencies which will not result in con-
founding and to choose frequencies resulting in cycles
sufficiently long to affect the system response (Jacob-
son, Buss and Schruben 1991). Discrete factors can
be handled either by oscillating their probabilities of
realizing particular levels, or by discretizing the sinu-
soidal function (Sanchez and Sanchez, 1991).

3.4 Correlated Factor Plans

If the noise factors are correlated in the real world sys-
tem, it might be that a factorial or fractional factorial
design could not be conducted over the entire range
of interest. For example, a queueing system might be
unstable if all noise factors were held at their high
levels. If this situation was unlikely to occur in prac-
tice because of correlation among the variables, then
a sampling scheme which made use of the underlying
dependence structure would seem more appropriate.
If the noise factors are normally distributed, the an-
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alyst can sample at axial points on the elliptical con-
tours of the joint distributions (Sanchez 1994).

3.5 Combined Array Plans

Recent work suggests that in some circumstances, a
crossed parameter Xnoise factor plan may not be the
most efficient in terms of the total number of obser-
vations (runs) required. An alternative is a combined
plan, where a single design matrix (such as a facto-
rial) is used with columns divided among parameters
and noise factors. As Myers, Khuri and Vining (1992)
suggest, this can be used if one can specify a priori
which of the many possible interaction terms are po-
tentially important. It may mean that the experi-
ment can be conducted using a smaller total number
of simulation runs than a crossed plan would require.

4 RESPONSE SURFACE METAMODELS

The response Y is a random function of the parame-
ters {X;}, the noise factors {W;}, the artificial factors
{Ar}, and the inherent variability of the system. The
form of the metamodels fit to the simulation outputs,
and the metamodel uses, differ between the parame-
ter design and tolerance design stages.

4.1 Parameter Design Metamodels

In this stage, we seek to characterize the system be-
havior as a function of the parameters alone. For
every combination of parameter configuration ¢ and
noise configuration j, we first compute (after suitable
truncation to remove initialization bias) the sample
averageY ;; and sample variance s2 for the run. Then
we compute summary measures across the noise space
for each parameter configuration i:

n

— 1 —
Yi = —) Yi,
Ny 1
—_ 1 it —_— — \2 1 i 2
Vz'. = e — 1 g (Yz] - I + Z j=zlsij

where n,, is the number of points in the noise fac-
tor plan. Regression is used to fit two initial meta-
models: one for the performance mean, and one for
the performance variability (Sanchez et al. 1993; see
also Vining and Myers, 1990). The terms in the ini-
tial metamodels depend on the experimental design
used. For discrete-event simulation experiments we
recommend a design which allows for fitting at least
a quadratic effect. We obtain models such as

po= Bo+BXi+... + Xk + B2 X1 X2 (3)
+...+ Bk—l,ka—IXk + quadratic
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log(o?) = Ao +nXi+...+ %Xk (4)
+912X1 X2 + oo+ A1k X1 X
+ quadratic

The logarithmic transformation is used for stability
purposes. If the quadratic is an important term in
either metamodel, further experimentation is needed
to determine the parameter(s) from which it arises.

4.2 Tolerance Design Metamodels

In this stage, metamodel construction is slightly dif-
ferent. First, for tolerance design experiments all fac-
tors are treated as noise factors and we assume that
the factor ranges are sufficiently small that a linear
metamodels suffice. If we fit models of the response
mean and standard deviation, then we obtain

po= Bo+ Wi +... BWi,
w
s = ’70+Z’Y;‘W

where the {8;} and {v;} are the least-squares re-
gression coefficients. By treating these coefficients as
fixed, the overall variance can be approximated by

Z (B2 +43)Var(W;). (5)

5 ANALYZING THE RESULTS

The initial metamodels constructed for either the pa-
rameter design or tolerance design stages should be
assessed and may need to be refined. The experi-
mental plans are typically unreplicated because of the
cost of experimentation. This means that the analyst
may have only a single degree of freedom for error in
the initial regression metamodels, so heavy reliance
should not be placed on the raw p-values or t-values.
An option offered by many statistical packages (or
which can be done manually) is a normal probability
plot, which can be used to graphically assess whether
or not any effects larger than the noise thresh-hold of
the the experiment. Normal probability plots work
well when 15 or more parameter or interaction ef-
fects are estimated. If the regression metamodels can
be simplified by eliminating unimportant terms, then
pooling increases the degrees of freedom for the er-
ror estimate and allows formal tests of the statistical
significance of the remaining metamodel coefficients.

5.1 Parameter Design Analysis

The information resulting from the parameter design
metamodels of equations (3) and (4) can easily be
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combined using the quadratic loss function (equa-
tion (2)) to identify robust configurations. The meta-
models themselves provide detailed information re-
garding the system performance: they indicate which
parameters affect the mean, which affect the variance,
and which influence both aspects of performance.

For many simulation models, the presence of inter-
action terms and the relationship between the mean
and the variability of the performance characteris-
tic make it difficult to achieve the target value with
the most robust product design. In these cases,
contour plots may be useful for selecting candidate
product designs. For example, one can first use the
mean metamodel to identify several configurations for
which the average performance characteristic is on
target, and then use the the metamodel of log(c?) to
select a configuration which is fairly robust.

Often the results suggest configurations which were
not among those initially tested. In such cases, fur-
ther experimentation is beneficial in order to confirm
the performance characteristic’s behavior before com-
mitting to a particular configuration. However, the
secondary experiment may be much smaller than the
initial experiment if several of the parameters do not
appear in the revised metamodels: they can be set at
their most economical levels and screened from fur-
ther experimentation.

We emphasize that the decision in the robust design
framework can be very different than that made on
the basis of mean performance alone. Even for queue-
ing systems, where performance mean and variability
tend to have high positive correlation, complex inter-
actions among parameters may affect that relation-
ship. One example (Sanchez, Ramberg and Sanchez
1994) of a job-shop simulation a job-shop with three
products, five machine groups, and varying process-
ing time distributions, product mix percentages, etc.
showed that two configurations could have the same
mean response to two decimal places, yet variances
which differed by over a factor of two. The configura-
tions corresponding to the best means were dramat-
ically inferior to the low loss designs: one job shop
configuration which was among the best in terms of
mean performance had a 36% higher loss then the
Jow-loss configuration, yet it used more machines.

5.2 Tolerance Design Analysis

Several types of questions can be addressed in the tol-
erance design stage. First, one can assess the overall
mean and variability for a particular configuration,
e.g., that chosen at the end of the parameter design
stage. If the parameters can be perfectly controlled at
their chosen settings, then the overall mean and vari-

ance can just be estimated by the parameter design
metamodels. However, if variation in the parameter
settings around their nominal values is anticipated,
an additional experiment will provide a better pic-
ture of the system’s capabilities.

Other questions concern the relative effects of the
noise factors. The term (ﬁf + 42)Var(W;) in equa-
tion (5) is called the transmitted variance for noise
factor W;. This indicates the amount of variability
in the noise factor which is passed along to variance
in the response. Depending on the magnitudes of 3;
and #%;, variation in W; can be amplified or damp-
ened by the system. The term 4Z in equation (5) is
called the inherent variance: it is the smallest vari-
ance achievable if all noise factors investigated in the
experiment have variances driven to zero. (For Monte
Carlo simulations, all randomness has been removed
during experimentation and every 4; can be replaced
by zero.)

Once transmitted variances have been computed
for all noise factors, the relative importance of these
sources of variation on the output is apparent. This
information can be used to evaluate proposed changes
to the system. For example, is it cost-effective to
pay more for raw materials, machine maintenance, or
training in order to improve the consistency of these
factors? Alternatively, is it possible to relax controls
slightly and allow more variation in the inputs with-
out adversely affecting the system behavior? If the
standard deviation of a noise factor W; can be re-
duced by a factor of a; without affecting the mean
performance, then its transmitted variance is reduced
by a factor of a? and the overall system variability is
reduced by the amount (1 — a?)Var(Wj). The con-
version constant ¢ from equation (2) can be used to
express the overall performance change in dollars. A
comparison with the cost of implementing the pro-
posed change then shows whether or not such im-
plementation would further improve the system per-
formance. If changes in the noise factor variance also
affect the system mean, then both the mean and vari-
ance components should be included in the cost as-
sessment via equation (2).

Tolerance design can also aid in simulation model-
ing and validation. If the distributional characteris-
tics used to generate random components of the simu-
lation model are themselves estimates, and if the sys-
tem is highly sensitive to those characteristics, then
the simulation may not mimic the true system behav-
ior adequately. Once again, the analyst can use tol-
erance design to obtain feedback regarding the mod-
eling process. This allows model refinement efforts to
be expended in accordance to factor sensitivity.
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6 CONCLUDING REMARKS

The approach outlined in this paper integrates the
concepts of robust design with response surface meta-
modeling and system optimization efforts for discrete-
event simulation. Simulation is a useful and pow-
erful tool for addressing many complex problems,
such as the design and analysis of manufacturing sys-
tems, communications systems, transportations sys-
tems, and service organizations (Law and IKelton,
1991). While typical analyses of complex systems like
these emphasize average performance (e.g., average
throughput, average time in system, average number
in queue), we argue that the use of a loss function
which also incorporates the variability of the perfor-
mance measure will guide the analyst toward better
system designs. The loss function also facilitates the
comparison of alternatives with different capital ex-
penditure requirements. Another key aspect is the
analysis of expected performance over noise factor
variation. The distinction between parameters and
noise factors allows the analyst to more efficiently
construct an experiment designed to gain detailed in-
formation about parameter effects and interactions—
the potential metamodel terms.

The simulation arena is amenable to analysis using
robust design strategies since all factors are control-
lable by the analyst. The efficiency gained by de-
signed experimentation is particularly beneficial for
complex simulation models, since each realization of
system performance corresponds to the results of a
(potentially lengthy) run. Simulation-specific artifi-
cial factors can also be incorporated into the design to
improve the precision of the metamodel coefficients.

The robust design philosophy and joint metamod-
eling approach have a synergistic relationship: they
typically provide the analyst with more information
than would result from either a loss comparison of
only the configurations tested, or from a single meta-
model which directly measures system loss or cost.
In the latter case, if a metamodel shows that ex-
pected loss decreases as factor X increases, the root
cause remains unknown. Perhaps the response mean
is closer to the target. Perhaps the response variance
is smaller. It could be that both the mean and vari-
ance improve, or that an improvement in one aspect
is partially offset by a degradation in the other. How-
ever, separate construction of metamodels for the sys-
tem mean and variability facilitate the identification
of new designs which may be even better than those
considered in the experimental framework. Finally,
metamodels of the system sensitivity to noise factors
can be used to aid in simulation modeling and to
guide system optimization and improvement efforts.
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