Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

CAPACITY AND PERFORMANCE ANALYSIS OF COMPUTER SYSTEMS

James N. Robinson

Capacity and Performance Management
Mead Data Central, a division of The Mead Corporation
P. O. Box 933
Dayton, Ohio, U.S.A., 45401

ABSTRACT

This paper presents a general tutorial for the use of dis-
crete event simulation in support of software perfor-
mance engineering (SPE) for computer systems focusing
on client-server systems. Topics include definitions and
tools of SPE, output measures of interest, a transaction
approach to client-server computing simulation, the ratio-
nale for conducting SPE simulations versus alternatives,
how and when simulation fits into a software develop-
ment process, modeling techniques, input and output
analysis issues, and verification and validation.

1 INTRODUCTION

The world’s information systems are being transformed
from central mainframe to distributed systems process-
ing. The word “distributed” is defined here as processing
accomplished by constellations of spatially separate and
unique computers operating in parallel on a complex tele-
communications web. Distributed processing is often
related to client-server architectures supported by a vari-
ety of remote procedure call (RPC) mechanisms; how-
ever, systems can also be transaction based. Distributed
processing can be analyzed in terms of work load and
communications metrics produced by long or short lived
programs in execution called “processes”. Processes act-
ing as clients or servers exist according to decisions
reflecting spatial-temporal system management. Such
distributed computing systems may reflect complex pro-
cessing systems where the flow of data and work in terms
of loads is a management challenge. Often, even small to
moderately sized systems have interdependencies which
cannot be captured effectively without very thorough
dynamic analysis. Simulation of these systems is an
effective tool for analysis.

Using simulation to analyze computer performance and
capacity falls under software performance engineering
(SPE). While a variety of tools are available, and

34

valuable, for conducting SPE, simulation continues to
stand out as a powerful tool which lends itself to a more
complete understanding of loads and response times.

2 WHAT TO SIMULATE - SOFTWARE PERFOR-
MANCE ENGINEERING (SPE)

Software performance engineering has been defined as a
“method for constructing software systems to meet per-
formance objectives” (Smith 1990). Smith’s book, Per-
formance Engineering of Software Systems, is an
excellent place to start to understand the methodologies
of SPE. She states: “The process begins early in the soft-
ware life cycle and uses quantitative methods to identify
satisfactory designs and to eliminate those that are likely
to have unacceptable performance, before developers
invest significant time in implementation. SPE continues
through the detailed design, coding and testing stages to
predict and manage performance of the evolving soft-
ware, and to monitor and report actual performance
against specifications and predictions. SPE methods
cover performance data collection, quantitative analysis
techniques, prediction strategies, management of uncer-
tainties, data presentation and tracking, model verifica-
tion and validation, critical success factors, and
performance design principles.”

SPE relates to the capacity and through-put a given
computer system can sustain. Through-put may be
described in terms of transactions per time unit, or in
transaction response time. Capacity is described in ele-
mentary metrics such as percent CPU utilization, input/
output (/O) per time unit, memory utilization, storage
utilization, and telecommunication capacity required in
terms of bytes or bits passed per time unit over key chan-
nels. It is important to note here that the distinction
between telecommunications modeling and computer
SPE modeling is often blurred by the needs of analysis.
For many models, it may be appropriate to treat the tele-
communications as a “‘black box” which allows traffic at



Capacity and Performance Analysis of Computer Systems 35

specific rates. For other analyses, where comm links are
critical components, a more focused telecommunications
analysis may be required.

Required capacity is defined in simulation models by
utilization of resources which are allocated to processes
at discrete event times. The utilization of these resources
can also be modeled analytically in queuing network
models (QNM’s). Capacity consumed in a model under a
proposed operating scenario of forecast user transaction
load can be used to scale the hardware system which
must be provided to meet the needs of a proposed project.
Either the proposed hardware platform(s) can be explic-
itly included as part of the model, or a generic platform
set can be modeled. In the later case, it is necessary to
compare the capacity required in terms of possible
machines of choice through a standard frame of refer-
ence, for example, standard benchmarks, e.g. TPC-A's,
TPC-C’s, or SPECINTS. Benchmark scores are gener-
ally made available by various venders for their offered
hardware. Publications such as the SPEC Newsletter pro-
duced by the Standard Performance Evaluation Corpora-
tion and SIGMETRICS Performance Evaluation Review
are excellent sources of information on these benchmarks
and the vender testing. If the capacity required can be
scaled to a standard benchmark on the generic simulated
machine, perhaps one designed to emulate an available
test environment, that benchmark score can be used to
acquire operational hardware in appropriate quantities.

Performance objectives are essential to conduct SPE
analysis (Smith 1990). In practice, software develop-
ment projects may not have specific design goals which
reflect capacity and performance, particularly during
early phases. For many commercial systems, any fore-
cast of load and response time is linked to market and
usage forecasts. Errors in these forecasts directly impact
the validity of the output. Where the system being
designed is evolutionary, for example an enhancement to
an existing system where transaction rates and loads are
well understood, usage forecasts which are captured in a
model are better understood. In other cases where a
totally new system is being brought in to serve a new
operation, requirements may be much harder to pro-
duce. In either case, it is often necessary for the perfor-
mance engineer to help form the performance and
capacity requirements. Definition of the requirements is
typically an evolutionary process which may require per-
formance modeling, applied iteratively, to resolve.

The essence of a minimal client server system is shown
in Figure 1 where major design elements (MDEs) under
consideration in the design are the client on box A and
the server on box B. This example might describe a sim-
ple text retrieval where the client represents a telecom-
munications and scheduling interface, and the server
represents a data retrieval process. At a point in time

(which may not be part of a model) the client and server
process are started on the two machines. A user “transac-
tion”, a sequence of possible events defined by the trans-
action type, begins with a comm request received by A:

- Client processes task off wire using

CPU-A, Comm /O, I/O, and memory.

Client application task using CPU-A, I/O and

memory.

Client constructs and sends RPC using CPU-A

and ethernet comm I/O.

RPC delay and bit count.

Server comm I/O and process RPC using CPU-B.

- Server does required service “get text” using
CPU-B, IO and memory as required.

- Server marshals return RPC using CPU-B, and
comm I/O.

- RPC delay, and bit count.

- Client process RPC using CPU-A, Comm I/O.

- Client does application processing using
CPU-A, I/O and memory as required.

- Client puts message on the wire back to user
CPU-A, comm I/O, and memory.

Bytes/second.
pC to
USER Cliert server S
ien | Server
comn_1’ Process Process
rpc(s) MDE MDE
rpc from
cru-A O cpusB
CPU-total CPU-total
mem - A mem - B
I/O-A-disk I/O-B-disk
I/O-A-comm I/O-B-comm
etc... etc...

Figure 1: Elemental SPE Simulation Structure

This sequence can be readily captured in a discrete
event simulation which models resource use and delays.
The service performed by the server could involve a host
of other servers, which have the server as client. A vari-
ety of events may be invoked which require dynamic
memory allocation. Either of the processes may fork and
execute child (or other) processes to perform specific
duties. In turn, these child processes would require mem-
ory, CPU, disk, etc. to perform their tasks. The given



36 Robinson

“transaction,” as an entity, must queue for these
resources, seize them, and free them in accord with the
task timing imposed. Definition of multiple transaction
scenarios represent the essence of computer system simu-
lation modeling. In large transactional systems, these
transactions can be represented by stochastic user states
(Keezer, Fenic, and Nelson 1992). More complex sys-
temn transaction based examples will be discussed during
the tutorial.

3 WHEN TO SIMULATE

It is generally agreed that software and computer system
development should follow a development process to be
successful. A simulation analysis should also follow a
process. These processes are linked through the conduct
of SPE. A software development process model based on
a so called “water fall” model has been defined for soft-
ware development and is presented in Table 1 (Smith

1990). Simulation modeling processes have also been
described (Pritsker 1985, Law and Kelton 1991, Banks
and Carson 1984). The sequence of steps in a SPE simu-
lation analysis closely follow the software development
process and are also displayed in Table 1. Both of the
processes are iterative and mutually supportive; however,
this does not imply they are absolutely linked. Either of
the processes can cycle faster and more often through
iteration stages; however, it should be a goal for the sim-
ulation process to stay ahead of the development process
providing guidance on efficiency whenever required.

In the early stages of modeling, simple, deterministic,
mean value, transactional models may be sufficient.
Such models have been called Execution Graph Models
(EGMs) (Smith 1990). They may also involve queuing
network analysis. These models allow the computation
of CPU, memory, /O and Comm on a per transaction
basis. If the number of transactions in a time phase are
known, the average resource utilization can be computed
by summing resources used and dividing by time. Spe-
cial languages for EGM’s have been developed. Alterna-
tively, these computations can be calculated on a
spreadsheet, or captured using a simulation package
without generation of random input or output. For some
projects, this level of modeling may be sufficient, or the
output of models at this level, a first modeling iteration,
may help to define requirements and a preliminary
design.

The next iteration phase is an assessment of the detailed
design. The model here might be a full discrete event
model of the system based on the now evolving design
and initial coding done for prototypes. In this phase,
developers are more likely to have some test data avail-
able from prototype design elements. Validity during this
phase may still be low. The goal is a technical assessment

of the capabilities and restrictions the design implies,
and, most important, identification of major bottlenecks
under stochastic load. Output of the models is used to
suggest design changes and answer engineering ques-
tions on optimality of alternative design strategies. These
questions often focus on architectural concepts such as
load balancing among processes and machines, place-
ment of function, and caching strategies etc. A formal-
ized report on capacity and performance can be produced
at this stage, and approximate optimization of resources
to achieve performance goals can be presented based on
various design configurations.

During the design, implementation, and integration
phases, we again begin another cycle of the iteration of
the simulation process. This phase is critical because
actual observation of the operational behavior of the sys-
tem is possible. Minor changes in the design may be
required, but the emphasis should be on validating and
improving model input and output. If all has been done
well, the simulation process enters the final phases along
with the project, i.e. maintenance and operation of the
project and implementation of the simulation. It is our
experience that phases are never completely clear cut.
For major projects, there are often revisions of the system
and revisions of simulations. Some simulation projects
may never reach this final stage because it is not cost
effective to maintain some models. On the other hand,
where the system is large and maturing, for example a
market penetration scenario where load increases dynam-
ically, the simulation may be the only source of quick
load forecasts to define needed incremental capacity as
requirements change.

Table 1: Development Processes

S/W Devel. Process Modeling Process
Requirements Analysis | Problem Definition
Functional Architecture | Data Collection
Preliminary Design Input Data Analysis
Detailed Design Model Definition
Coding Model Coding
Unit Testing Verification /Validation
Integration Testing Output Analysis
Maint. & Operation Implementation




Capacity and Performance Analysis of Computer Systems 37

4 WHY SIMULATE?

In many cases, queuing and queuing network models, as
well as EGMs may be sufficient to address basic SPE
issues.  Simulation of computer software systems is
expensive and time consuming. For large projects, mod-
eling may take weeks or months to complete. Jain and
others have emphasized this aspect (Jain 1991). There
are many instances where this expense is justified and
necessary. Gold reports, “Simulation is particularly
important in a distributed environment, where a variety
of factors - CPU, memory disk, networking resources,
server capacity and network topology, for example - can
affect overall performance and cause bottlenecks” (Gold
1993). This statement highlights a main reason to simu-
late, the ability to do analysis on the simultaneous
dynamic utilization of resources. Generally, it is the
complexity of large distributed systems which suggests a
simulation approach. While a queuing network analysis,
may be sufficient for baseline mean value analysis, the
dynamic burstiness and state dependent shifts in load
may require a more dynamic approach. Smith suggests
that queuing network models may be insufficient to han-
dle such entities as dynamically forked and branched pro-
cesses, non-homogeneous demands, significant shifts in
loads as jobs run through phases, and complex competi-
tion for resources requiring load balancing (Smith 1990).
Often the non-homogeneous “waves’ of load (caused by
transaction bursts) of significant duration may impact
distributed processes and cause slowed response. These
waves may be difficult to capture. Mean value analysis
may be insufficient to engineer the systems adequately to
handle risk of extreme value loads. In any stochastic sys-
tem of nodes, such as a distributed computing system
which might be called a “virtual machine” (Heindel and
Kasten, 1992), the ability of each node to handle the sto-
chastic confluence of load in large surges must often be
established. The dynamic visualization capabilities of
simulation are uniquely capable in handling this task.
The complexity of building and running large SPE mod-
els has been a drawback in the past. In recent years, a
variety of software has evolved capable of addressing
large distributed computer system simulations. Such
packages as GPSS/H, SLAMSYSTEM, ARENA, SIM-
SCRIPT I1.5, SIMON, and WITNESS are adequate to the
task ( see Swain 1993 for others). The advent of graphi-
cal user interfaces (GUIs) on these packages has made
them more capable in building large systems quickly.

5 HOW TO SIMULATE
Given the complexity of many SPE models, the goals for

modeling must be crystal clear to prevent wasted effort.
Usually, the goals of SPE simulation are a mixture of

separate objectives. To achieve each goal may require
different levels of detail in models. Ultimately, the goals
support the needs of different customers such as develop-
ers, operators, and acquisition staff. The goals will also
determine the amount of expertise required by a model-
ing team. A team is often required because one individ-
ual often will not possess all the skills necessary to
understand the SPE aspects of large projects in allotted
time. Actual modeling may be handled by one or two
individuals; however, a supporting SPE group may pro-
vide additional expertise in current hardware and soft-
ware advances, component modeling support, data
acquisition, and final peer review.

Once the goals are determined, the detail level of analy-
sis must be set. Many examples of highly detailed analy-
sis abound in the literature. This high detail resides in the
level of description of the low level hardware or software
interfaces. Some example topics include: performance
of cache in multi-processor systems (Zimmerman and
Robinson 1993), single-bus versus two-bus multiproces-
sor comparison (Obaidata and Radaideh 1991), and per-
formance analysis of a hypercube parallel processor
architecture (Lamanna and Shaw 1991). Many of these
analyses are hardware and operating system focused.

Drawbacks exist in performing highly detailed model-
ing for SPE. High detail models are costly and time con-
suming to develop and may require additional training
for the modeler. They slow clock (wall) times to run if
they are embedded in an SPE model of a large system.
They may also require complex interfaces to higher level
concurrent operations (McBeath and Keezer, 1993).
Examples of high detail would be explicit modeling of
the operating system with kernel(s), data base manage-
ment systems, I/O processes etc. In some cases where
benchmarks are not available, it may be necessary to
model at this “basic principles” level, but it may often be
found that too much detail slows both the modeling and
the analysis without the benefit of greater pay-off. Great
detail is often confused with validity or fidelity. In some
cases of SPE, high detail is justified to support developers
attempting to make optimal decisions on low level
design. In other cases it may be “over modeling”. It all
depends on the goals. Good practice suggests high detail
modeling should be done separately from overall models
of large systems if possible, and the results of the low
level models should be aggregated as parameter driven
components in higher level models.

With goals and level of detail clearly in mind, the mod-
eler incorporates a design into a simulation model. In the
best of worlds, this design would be incorporated as, for
example, the three models growing out of a detailed
object-oriented modeling (OOM) and design process:
object model, dynamic model, and functional model
(Rumbaugh et al. 1991). The techniques of design are not



38 Robinson

always widely known or followed as one might hope in
development groups. Often, the modeler designs a model
based on documentation which lays out a broad frame-
work which may not clearly define dynamic activity and
interfaces. In such cases, the modeler becomes more a
contributor to the design by documenting a dynamic
model for the project.

Documentation is rarely sufficient or timely to support
simulation. There is no substitute for routine, recurring,
one-on-one discussion with developers of the design.
These discussions should ultimately result in a semi-for-
mal conceptual model review of the system where the
modeler demonstrates familiarity with the dynamic con-
ceptual model. In this review the modeler presents
assumptions, the dynamic concepts as interpreted, and
the key elements of input known or required. This
review states and clarifies the dynamic roles of major
design elements (MDEs) which will be the primary sys-
tem components modeled. The review presents key
transactions, logically coupled sequences of dynamic
MDE activity which absorb resources. The conceptual
review is also critical as a restatement of the require-
ments in SPE relevant terms by establishing a scenario or
set of scenarios which define the model. It clarifies the
engineering requirements of the design, and may be a
reinterpretation of external factors which must be explic-
itly accounted for, or it may open up the need for new
ones (McBeath and Keezer 1993).

The actual modeling of the proposed design proceeds in
parallel to the design process itself. Modeling must
account for the resources which the software will con-
sume (CPU, I/O, memory, and telecommunications band-
width). The model must account for the environment in
terms of supporting hardware and software architecture.
This environment must be flexibly defined in the model
to provide for anticipated “what if” analyses to be accom-
modated rapidly in the future. The environment may also
be interpreted in terms of “‘logical domains” which may
take many forms. A logical domain is represented by a
pool of resources managed as a set, each having a set of
constraints acting on them. For example, editorial staff
may operate from UNIX workstations with common
functionalities. This domain may draw on the resources
of a fileserver which may be one of a set of fileservers
with similar functionality. These fileservers may be
served by a acquisition sequence involving data inflo
through telecommunications gateways, dependent on
automated and manual processing facilities. Here three
domains may be designated in the model to capture data
from the simulation which is relevant to managerial or
engineering decisions.  Behaviors (speeds, caching,
availability of resources etc.) may vary with domain.
The model must be built and instrumented to highlight
each domain and its share of the whole. This may be

implemented by using dummy domain resources which
shadow other resources in the model.

The essence of software execution on a computer is the
use of the CPU as a resource captured and freed by the
transaction entities under the control of the operating sys-
tem. In multiprocessor systems with a variety of con-
stantly evolving operating systems, the choice of how
much workload delay using CPU and memory on behalf
of application processes is a difficult one. The first, and
most difficult decision necessary, is how to correctly cap-
ture the operating system’s impact on CPU consumption
without modeling it explicitly. For example, in UNIX
systems it is difficult to model both application user CPU
time and system CPU time using the kernel (McBeath
and Keezer 1993). Without explicitly modeling the oper-
ating system and kernel operations, modeling compro-
mises must be made. An approach we have found
successful, is to model CPU time as applications execute,
and to model known CPU time normally spent on behalf
of the system at the time of an input or output event or an
RPC event. This allows visibility of key bottlenecks for
CPU and I/O in the model. Since overhead, which is
dependent on system CPU, is not accounted for explicitly
in the model, a correction factor based on the assumed
system overhead is applied to the output CPU utilization
per domain to establish the number of multiprocessor
machines required. For example, a 4 processor computer
might be assumed to provide 1.7 effective processors
under high I/O related load. Thus, the number of com-
puters assumed required is the simulation utilization
divided by 1.7.

CPU delay times on behalf of specific applications can
be derived from benchmark tests or basic principles. One
can assume, based on vender ratings, that the processor
can handle “n” MIPS (million instructions per second),
coupled with an assumption that a higher level language
uses on average 20 machine instructions per high level
instruction (Smith, 1993). Information on higher level
instructions can be obtained from developers. Where
possible, benchmark tests on comparable computers and
processors are extremely helpful. Unfortunately, good
benchmark runs are often difficult to get. Test machines
and operating systems may not match performance of
proposed machines for operations. It may be difficult to
coordinate tests free of extraneous load.

At best, a model represents best engineering assump-
tions on application CPU timing. It is interesting that the
state of the art is changing so rapidly in processing
speeds, that whole data bases of past performance experi-
ences are rendered questionable when migration is made
to new systems; however, basic assumptions well stated
on adapting this past knowledge to new systems are often
adequate. This argues for a constant and energetic main-
tenance of a performance database for basic operations.



Capacity and Performance Analysis of Computer Systems 39

Smith (1993) describes memory as a “passive resource”,
that is one that is needed to do work, but does not actually
do the work itself like CPU. While difficult to model
effectively, an attempt to capture key elements of mem-
ory utilization is essential. For example, the short lived
nature of processes, and the ability to execute and fork
child processes dynamically indicates a need to track
required memory at a gross level. Additionally, queuing
for devices and processing may require large blocks of
data to be maintained in memory at specific points in pro-
cessing, such as at delivery across comm channels. A
multitude of this type of queuing on a machine may cause
thrashing for memory. In some systems greatly depen-
dent on the availability of memory to support rapid
response, particularly those involving large data bases,
dynamic modeling of memory allocation may be neces-
sary, much like CPU modeling. It is clear that memory
modeling falls into the category of higher detailed model-
ing which is warranted in some circumstances, but may
be tedious to implement effectively.

Like memory, storage, be it disk, tape or electronic stor-
age, is another aspect of the model which may or may not
be included depending on the needs of the analysis.
Issues which constantly arise in a large system can
involve the rate of accretion of data on storage devices,
and the amounts which must be periodically backed up,
stored permanently, or disposed of. Instrumentation data
is such an item. A simulation model may track such
needs routinely by maintaining state variables reflecting
storage as the simulation progresses.

Input/output (/O) load is a critical element in many sys-
tems. Delays are encountered during /O which may
relate to physical positioning of heads, determination of
sector position, etc., and the CPU required to do the /O
itself. /O costs may be intrinsically tied to the operating
system involved, and the rate of the I/O is very dependent
on the purpose of the software system. The selection of
the hardware component suite to support the system
greatly depends on the rates of I/Os. The simulation can
be designed to capture both the CPU and the rates of VO
by using the CPU resource during I/O appropriately, and
capturing rates of I/O using state variables. Often of
interest, are the rates of /O not only to storage devices,
but to communication devices and networks. It often is of
interest to capture the total extent of /O in bytes. Like-
wise the rate of transfer of bytes may be captured using
global state variables. Since the rate of change and
amount of comm bandwidth in use are key elements in
distributed systems design, the inclusion of the network
at a low level, even as a black box is valuable.

6 INPUT DATA ANALYSIS

Input data analysis encompasses the techniques of choos-
ing the parametric inputs to the model which are used to
define delays and resource consumptions as the model
runs. The definition of input for SPE simulations often
requires considerable technical expertise. The delays in a
discrete event model may be probabilistic or determinis-
tic. If they are probabilistic, it is necessary to identify
and fit underlying distributions to existing data, or to
determine a heuristic approach to defining the distribu-
tions. Techniques for this input definition are amply cov-
ered in numerous texts, and are increasingly available in
a variety of statistical software. See for example Law
and Kelton (1991). In many instances, techniques pre-
sented are helpful; however, very large sample sizes can
be collected from computer operations. This may be
problematic as very large data sizes often predispose
basic statistical tests of a distributional assumption to
failure (rejection of the assumed distribution). Ulti-
mately, the final judgement on a distribution to use may
depend on careful reasoning.

One important aspect of SPE input analysis is the great
breadth and depth of the data required and available, as
well as the technology needed to obtain it. Often the data
required requires as much knowledge of a complex sys-
tem environment as the knowledge needed to model one.
The services of a data specialist have been found helpful.
Such an individual is able to employ techniques to gather
and process the data using a variety of technologies.
Often the capture of data requires observing, and possibly
conducting benchmark studies; therefore, it is essential
for a data specialist to be knowledgeable in a number of
techniques and computer systems beyond statistics.

Recent advances in performance tools such as UNIX
tools like Hewlett Packard’s Perf View™, code structural
analysis tools such as Quantify™, as well as standard util-
ities such as vmstat, iostat, and perfmeter, when coupled
with dynamic instrumentation allow a detailed view of
the observable capacity needs and performance of atomic
(small time scale) component measurements of CPU, I/O
and memory. In fact, the increasing amount of data, and
widely varied format in which it can occur, has its own
demands on analytical processing skills. Increasingly,
facility with data base languages and SQL queries, text
processing utilities like perl, and of course statistical or
visualization packages which can handle large data
structures such as SAS™, SPSS™ etc. are becoming
invaluable for modeling support. It is increasingly
important to have access to production and test platforms
for these tools. These tools also become extremely
important in validating simulation models.



40 Robinson

7 OUTPUT ANALYSIS

Output analysis for SPE is like output analysis for other
simulated systems. Differences occur in the length of
time SPE simulations run, and in the categorization of the
data produced. Excellent discussions are available, many
with SPE related examples. See for example Welch
(1983), Law and Kelton (1991), Jain (1991), and Banks
and Carson (1984).

Aspects of SPE output analysis bear emphasis. One of
these might be the emphasis on other than mean system
behavior. One way to characterize the behavior of dis-
tributed processes is by their bursty behavior. Many of
the processes analyzed exhibit very high variability.
Some of this variability is due to the juxtaposition of sto-
chastic processes with widely varying time scale period-
icities. For example, during the operation of a system,
we might observe constant activity with a mean fre-
quency of 1 to 20 milliseconds between events, a middle
ground of frequencies on the order of every 5 minutes or
300,000 ms, and even events on the order of every 15
minutes or 900,000 ms. Coupling these time scales with
random fluctuations in flow which manifest themselves
as low frequency shifts in load, makes the analysis of out-
put problematic if only the “mean” is sought. Alterna-
tives to a mean forecast are often required.

Focus on the goals of the analysis helps greatly. In some
cases, operations personnel will be interested in the rate
of occurrences of alarms where capacity utilization (per-
formance) exceeds (goes below) nominal values, (e.g.
90% utilization, for a 5 minute period). In other cases
the probability of exceeding a performance goal based on
human factors considerations may be required. One is
struck by the variety of statistical output considerations.
In many cases, smoothing techniques such as exponential
smoothing or moving average computations used to
define patterns have been found helpful, particularly
when compared across replicated runs and used in histo-
grams or the analysis of empirical cumulative distribu-
tion functions. This approach focuses on the assessment
of risk related to transients rather than mean response.
One often finds the need to investigate these transient
behaviors in apparently steady-state systems due to the
difficulties induced by making long run times at small
clock resolutions, typically the millisecond level. In
many cases, it is impossible to achieve, or confirm, a so
called steady state process due to the time resolution at
which delays are measured. In some cases, we have
found that runs must even be stopped due to the resolu-
tion limits of the simulation clock on personal computers.

Where steady state analysis is required, extraordinary
measures may be needed to accelerate the advent of
steady state using some form of intelligent initialization.
We have often found injection of entities into a plausible

starting population a valuable means to accelerate results.
A variety of individualized approaches to dealing with
high variability output may be necessary to capture rele-
vant patterns in the underlying processes.

8 VERIFICATION AND VALIDATION

Verification of simulation models, answering the question
of whether the model is built as intended, is extremely
important, and that importance is well understood in the
computer software development community. This means
that conceptual reviews, developer interviews, code
walk-throughs etc., typically are well understood and
accepted. That is not to say they are never overlooked in
the heat of pressing a product to completion. A deter-
mined program which lays out the ground rules of solid
simulation development is critical to good SPE analysis.

Validation, the process of ensuring whether the simula-
tion matches real world results, can be measured explic-
itly once software is implemented. The process of
validation is also critical in a rapidly changing technolog-
ical environment. It allows not only establishment of the
validity of results, but also a basis for the next set of tech-
nologies or projects which in all probability will use
some set of pieces from prior models. Data bases of
capacity and performance connected with design ele-
ments in major evolving systems are a key to successful
modeling programs. The evolutionary progress of major
computer systems mandates a firm idea of where one has
been as well as an eye to the next technology. A strong
validation program supports this.

9 CONCLUSIONS

It is reasonable to use simulation as one of the primary
tools with which to conduct SPE analysis of new and
evolving computer systems. Simulation, particularly
using modern GUI based model development environ-
ments, can provide an excellent basis to determine bottle-
necks, do comparisons of competing designs, and even
perform rough optimized capacity forecasts for new
projects.

ACKNOWLEDGEMENTS

The author would like to thank the members of the CPM
and development groups at MDC for all their kind help
and insight into SPE simulation analysis. Special thanks
go to Dave Withers for suggesting and reviewing this
tutorial, and to Darby McBeath for her help in developing
the ideas and reviewing the final paper.



Capacity and Performance Analysis of Computer Systems 41

REFERENCES

Banks, J., and Carson, J.S. 1984. Discrete Event System
Simulation. Englewood Cliffs, NJ: Prentice Hall
Gold, J. 1993. Simulation aims to predict software
performance. Software Magazine. July: 15 - 19.

Heindel, L.E., Kasten, V.A. Workload Characterization
and Analysis: Transition from Centralized Systems to
Open Systems. CMG 93 Proceedings, ed. Bereznay,
F. et al. 385 -394. Westmont, IL: Computer
Measurement Group.

Jain, R. 1991. The Art of Computer Systems
Performance Analysis. New York, NY: John Wiley
and Sons.

Keezer, W.S., Fenic, A.P., and Nelson, B.L. 1992.
Representation of User Transaction Processing
Behavior with a State Transition Matrix. Proceedings
of the 1992 Winter Simulation Conference, Vol. 25,
ed. Swain, J.J., Goldsman, D., Crain, R.D., Wilson,
J.R. 1223-1231. Baltimore, MD: Association for
Computing Machinery.

Law, A.M. and Kelton, W.D. 1991. Simulation
Modeling and Analysis. New York, New York:
McGraw Hill.

Lee, T. and Ghosh, S. 1994. A Distributed Approach to
Real-Time Payments-Processing in a Partially-
Connected Network of Banks: Modeling and
Simulation. Simulation. Vol. 62:3 180 - 200.

McBeath, D.F. and Keezer, W.S. 1993. Simulation in
Support of Software Development. Proceedings of
the 1993 Winter Simulation Conference, Vol. 26, ed.
Evans, G.W., Mollaghasemi, M., Russell, E.C., Biles,
W.E. 1143-1151. Baltimore, MD: Association for
Computing Machinery.

Obaidat, M.S. and Radaideh, M.A. 1991. A compara-
tive simulation study of the performance of single-bus
and two-bus multiprocessors. Simulation. Vol. 56:
19-17.

Rumbaugh, J., Blaha M., Premerlani, W., Eddy, F., and
Lorensen, W. 1991. Object Oriented Modeling and
Design. Englewood Cliffs, NJ: Prentice Hall.

Lamanna, C.A. and Shaw, WH. 1991. A performance
study of the hypercube parallel processor architecture.
Simulation. Vol. 56:3 185-196.

Smith, C. U. 1990. Performance Engineering of Soft-
ware Systems. Reading, MA: Addison-Wesley.

Swain, J. 1993. Flexible Tools for Modeling. OR/MS
Today. Vol. 20:6 62-78.

Szymanski, B.K. and Azzaro, S.H. Proceedings of the
1990 Winter Simulation Conference, Vol. 23, ed.
Balsi, O., Sadowski, R.P., Nance, R.E. 831-838. Bal-
timore, MD: Association for Computing Machinery.

Vemuri, V. 1991. Simulation of a distributed processing
system: A case study. Simulation. Vol. 56:5 302 -
315.

Welch, P. D. 1983. The Statistical Analysis of Simula-
tion Results in The Computer Performance Modeling
Handbook. New York, NY: Academic Press.

Zimmerman, S.L. and Robinson, J.P. Two Level Cache
Performance for Multiprocessors. Simulation. Vol.
60:4 222 - 231.

AUTHOR BIOGRAPHY

JAMES N. ROBINSON is a software engineer in the
Capacity and Performance Management group at Mead
Data Central, home of LEXIS™ and NEXIS™, and an
adjunct professor in the Engineering Management and
Systems Department of the University of Dayton. Prior
to retiring from the United States Air Force, he taught at
the Air Force Institute of Technology, and served as the
Director of the Graduate Space Operations program. His
continuing research interests include visualization and
statistical analysis of simulation input and output, time
series, and other large scale data. Dr. Robinson has a Ph.
D. in Operations Research from the University of Texas
at Austin.



