Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

AN INTRODUCTION TO COMPUTER SIMULATION

Michacl Pidd
The Management School
Lancaster University
Bailrigg
Lancaster LAL 4YX

ABSTRACT

This paper provides a gentle introduction to the
fundamentals of computer simulation. It discusses the
difference between the various approaches in common
use and highlights the importance of a carefully
considered approach to modelling. Its main stress is on
discrctc cvent mcthods within which it describes
conceptual modelling. statistical aspects and the types of
computcr softwarc which arc availablc.

1 THE WHYS AND WHEREFORES OF
COMPUTER-BASED MODELLING

Computer simulation methods have been in use since
the 1950s and arc based on thc idea that an
cxperimental or gaming approach can be a uscful
support to decision making. The idca is to try out a
policy before it is implemented. clearly, there arc scveral
ways in which this could bc donc.

. The policy could be tried in the real world. but
in a controlled way so that its effects can be understood
and analysed. There arc obvious problems with this
approach, especially in systems which are dangerous or
expensive (o operale for which experimenting with the
real system could lurn out (o be experimenting with
disaster. Nevertheless, this type of dircct
expcrimentation does have its place, especially when
training pcople.

. a sccond option would bc to devclop a
mathcmatical modcl of the system being studicd. and
this is thc spcciality of opcrations rescarch. This
approach works well for some tvpes of application (for
cxample in simplc queuing systems) but not so well in
others. The basic problem is that the maths needed to
represent a complex dynamic system may be impossible
to solve or virtually impossiblc to formulatc without
CXCCSSIve approximation.

U Hence. the third option is to simulatc the
system of intcrest in a computer-bascd model and then
carry out cxperiments on that model 1o scc what might
be the best policy to adopt in practice.

UK

In addition. a simulation approach is somctimes used
in order to understand how an existing system opcratcs
or how a proposed system might opcrate. What arc
belicved to be the rules governing the behaviour of the
svstcm are captured in a computer-based model and the
behaviour of this model is used to infer how the system
being modclled might itself operate.

1.1 The essence of computer-based modelling

A computer-based model is at the heart of any computer
simulation and the question which has to be faced is.
how can thc important details of the system to be
simulated be captured within such a model? A later
scction of this papcr will discuss the main fcaturcs of
simulation models. but before considering these features
1t is a good idea to give some bricf consideration to the
process of modelling.

e abtract . CONCrets

Figurc I: Computer-based modclling

Figure 1 shows that at the core of this proccss are onc
or morc human beings who are concerned to ensure that
their model is appropriate for the purposc for which it is
intended. To do this it is useful to consider the main
features of Figure 1.

The tangible system which they are attempting to
model is separate from them and. to use the ideas of
Zeigler (1976, 1984) provides a source of data from
which a model will be constructed. Different people may
well hold different notions about the operation of this
tangiblc system and thesc can be described in

conceptual models which arc themsclves the result of
reflection about the tangible system. The simulation
model, which cventually becomces a compultcr program,
stems from the conceptual model and is cxpected to be
much simpler than the tangible system. Werc it not
simpler, then it would be as difficult to use for
experimentation as the tangible system itself.

Hence. compuler-based modelling is a process of
simplification and abstraction in which the modeller
attempts to isolatc those factors belicved to be crucial in
the operation of the system being modclled. This process
of abstraction dcpends on data and information about
the tangible system and also on the intended purpose of
the simulation.

1.2 Modelling complicated dynamic systems

Given enough time, money, expertise and computer
power almost any system can be simulated on a
computer, but this may not be sensible. Hence the next
question to face is, to what type of systems are modern
computer simulation methods best suited? The following
features tend to characterise the systems best suited io
computer simulation.

N They are dynamic, that is they display
distinctive behaviour which is known to vary through
time. This variation might be due to factors which arc
not well understood and may therefore be amcnable to
statistical analysis - for cxamplc, the apparently random
failures of equipment. Or they might be duc to well
understood relationships which can be captured in
equations - for example, the flight of a missile through a
non-turbulent atmosphere.

i They are interactive. that is, thc system is made
up of a number of components which interact with one
another and this interaction produces the distinctive
behaviour of the system. For example, the observed
behaviour of aircraft under air traffic control will be duc
to the performance characteristics of the individual
aircraft, the intervention of the air traffic controllers. the
weather and any routing problems duc to political action
on the ground. This mix of factors will bc varying all
the time and their interaction will producc the observed
behaviour of the air traffic.

* They are complicated, that is. there are many
objects which interact in the system of interest. and their
individual dynamics nced careful consideration and
analysis.

1.3 Continuous, discrete and mixed approaches

It is normal to classify approachcs to computer
simulation into threc groups and this will be done here,
but it should be noted that these distinctions are oncs
made by the modeller and are not oncs which occur in
the real world being simulated.

Pidd

1.3.1 Discrete event simulation

The Winter Simulation Conference is traditionally
concerned with Discrete Event Simulation. This
approach is based on a number of building blgcl_<s as
follows. each of which is discussed in more detail in #2
of this paper.

e Individual entities: the behaviour of the model
is composed of the behaviour of individual objects of
interest which are usually called entitics. The simulation
program tracks the behaviour of each of these entities
through simulated time and will bc minutcly concerned
with their individual logics. The entities could be truly
individual objects (e.g. machines, people, vehicles) or
could be a group of such objects (e.g. a crowd, a
machine shop, a convoy of vehicles).

® Discrete events: each enlity's behaviour is
modelled as a sequence of cvents, wherc an event is a
point of time at which the cntity changes statc. For
example, a customer in a shop may arrive (an event),
may wait for a while. their service may begin (an event),
their service will end (an event) and so on. The task of
the modeller is thus to capture the distinctive logic of
each of these events (e.g. what conditions must hold if a
begin service event is to occur?). The flow of simulation
time in a discrete event simulation is not smooth. as it
moves from the event time to event time and these
intervals may be irregular.

® Stochastic behaviour: the intervals between
events is not always predictable, for example the time
taken to serve a number of customers in a shop will be
observed to vary. There may sometimes be obvious and
entirely predictable reasons for this (the server may
speed up as the queue of waiting customers increases) or
there may be no obvious reason to explain things. In the
latter case, the varying intervals between events has 1o
be modelled stochastically by using sampling methods
based on probability theory.

1.3.2 Continuous simulation

A quite different approach to simulation is taken in
Continuous Simulation, which is an approach that is
popular amongst cngineers and economists. The main
building blocks of this approach are as follows.

i Aggregated variables: instead of a concern
with individual entities, the main concern is with the
aggregated behaviour of populations. For example, the
changing sales of a product through time.

¢ Smooth changes in continuous time: rather
than focusing on individual cvents. the stress is on the
gradual changes which happen as time progresses.
Thus, just as thc graph of a variable might be smooth,
the aim is 10 model the smooth changes of the variable
by developing the suitable continuous equations .

An Introduction to Computer Simulation 9

. Differential or difference equations. thc model
consists mainly of a sct of cquations which definc how
behaviour varics through time, thus these tend to be
diffcrential cquations or. in simpler cascs such as system
dynamics (Forrcster, 1961 and Wolstcnholme, 1990).
differcnce cquations.

Nature does not present itsclf labclled ncatly as
discrete or continuous, both clements occur in reality.
Modelling. howcver, as mentioned in #1.1 above,
involves approximation. and thc modcller must decide
which of these approaches is most useful in achicving
the desired aim of the simulation?

1.3.3 Mixed discrete/continuous simulation

In some cases. both approaches are needed and the
result is a mixed discrete-continuous simulation. An
example of this might be a factory in which there is a
cooking process controlled by known physics which is
modelled by continuous equations. Also in the factory is
a packing line from which discrete pallets of products
emerge. To model the factory might well require a
mixed approach.

1.4 The role of software

Computer software plays an essential role in the
development and use of computer simulations and is
available to support the following aspects.

° Statistical analysis of input data: in a discrete
simulation it will probably be necessary to model certain
aspects by taking samples from probability distributions
within the model. Thus the modeller needs to consider
which distributions are appropriate for the system being
considered. This requires the modeller 1o collect data
(c.g. the timcs between failurc) and to try to fit an
appropriate distribution. There arc a numbcr of products
availablc to support this task. cxamples include UniFitll
(Vincent & Law, 1993) and SIMSTAT 2.0 (Blaisdale &
Haddock, 1993).

i Rapid modelling: the last 10 ycars havc scen
the decvclopment of lisual Interactive Mlodelling
Systems (VIMS) such as Witness (AT & T Istel. latest
version), XCELL+ (Conway ct al. 1990) and ProModcl
(Harrell & Lcavy. 1993) and Stella/I Think (Richmond
& Peterson, 1988). Thesc allow the modcller to develop
the logic of a model on-scrcen using a graphical user
interface and also cowtrol the running of the modcl.

i Simulation model programming: as #34 makcs
clear, it is somctimes nccessary to writc a 'proper’
computer program and this can bc donc using a purposc
designed simulation language such as SIMSCRIPT 11.5
(CACI, 1987). a general purpose language such as C or
cven on a spreadsheet or database.

* Statistical output analysis: It is not always casy
to interpret the results of a simulation. cspecially one

which includes a large number of stochastic clements
and the resulting output many nced carcful statistical
analysis. Therc arc tools to support this task. somc arc
specifically for simulation modclling (c.g. SIMSTAT,
Blaisdalc & Haddock. 1993) and othcrs arc more
generally available packages such as SPSS and SAS.

2 MODELLING IN DISCRETE SIMULATION

As this is the winter simulation conference, the rest of
this paper will concentrate on discrete event simulation.

2.1Events and their logic

A computer program which represents a discrete
simulation model will have a number of components as
follows.

. The event logic: a precise definition of the
conditions which govern the state changes of the entities
to be included in the model.

. An executive or control program: which
ensures that the entities' events occur at the right time
and in the correct sequence and thus ensures that their
aggregate behaviour is a model of the system being
simulated.

o Other components: such as sampling routines,
integration algorithms, graphics and other features
nceded for a particular model.

If the modeller is using a VIMS or a simulation
programming language. then he or she need only be
concerned with the event logic, everything clse will be
provided by the system vendor. If a bespoke program is
being written in a general purpose language then all of
the features will have to be provided.

2.2 Capturing system logic
2.2.1 The principle of parsimony

Perhaps thc best way of modelling complicated cvent
logic is to becar in mind the principle of parsimony,
which is to keep things as simple as possible for as long
as possible. This requires an evolutionary approach to
modclling, starting with a dclibcrately over-simplified
modcl which is gradually claboratcd until it is agreed to
be valid for the intended purpose. The initially over-
simplificd modcl should represent the skeletal logic of
thc system and should not be claboratcd until the
modecller is happy with the validity of the skelcton.

2.2.2 Using diagrams

One way of ensuring a parsimonious approach (o
modelling i$ to try to capture the essential system logic
within spme type of network diagram. In some cases,
such diagrams can be drawn on-screen or described
textually to a computer program which will itself
generate the computer-based model from the diagram

10

(see #4.1). In this paper. only a simple type of diagram -
the Activity Cycle Diagram (ACD) will be presented,
though other forms (for cxample, Petri nets and GPSS
flowcharts) have been used in discrete simulation.

An ACD is an attempt to show how the processes of
different entity classes interact, at least in a skeletal
form. An ACD has just two symbols as shown in Figure
2.

ACTIVE STATE

DEAD STATE

Figure 2: Activity cycle diagram symbols

. An active state is one whose time duration can

be directly determined at the event which marks its
start. This might be because the time duration is
deterministic (the bus will definitely leave in 5 minutes)
or because its duration can be sampled from some
probability distribution (see #3).

. A dead state is one whose duration cannot be
so determined but can only be inferred by knowing how
long the active states may last. In most cases, a dead
state is one in which an entity is waiting for something
to happen and thus some writers refer the dead states as
queues.

These two symbols are used to represent the logic of a
system as in the following simple example.

Consider a theatre booking office staffed by one or
more clerks who have two tasks - answering the phone
and attending to personal callers at the theatre. As this
is a skeletal model, suppose that the theatre has a call
queuing system with infinite capacity. that there is no
limit on the number of waiting personal customers and
that all waiting callers have customers arc infinitely
patient. Hence the diagram of figure 3 can be drawn.

The skelctal logic of the system can be clearly
understood from the activity cycle diagram. For
example, a personal service can only begin if two
conditions hold - there must be an idle clerk and a
waiting personal enquirer. Similarly it shows that any
clerk may engage in two tasks - attending to personal
enquirers or answering the phone. It also shows some
of the ambiguities. For example, what should a clerk do
if faced, at the same time, with waiting enquirers and a
ringing phone?

Pidd

phone callere.
N

RGN

pereonal callers

.

Naehus

arrive

Figure 3: Harassed booking clerks ACD

This type of conceptual represcntation must eventually
become part of a computer program which might
involve some programming or could involve a
description of the logic being fed as data to a simulator
which may be a VIMS (see #4).

3 HANDLING RANDOM AND
UNPREDICTABLE BEHAVIOUR

As was made clear earlier, one aspect of systems which
are well suited to discrete event simulation is that they
may have behaviour which can only be modelled
statistically - for example, the time interval between
arrivals may be observed to vary and the variation may
be modelled by fitting a probability distribution to that
variation. To cope with this vanation, discrete
simulation models employ sampling procedures.

3.1Basics of random sampling

The idea of random sampling is to ensure that a set of
samples is produced that is representative of the
distribution from which they were taken and within
which set no pattern is evident. This is usually achieved
by a two stage sampling process which uses pseudo-
random numbers.

A truly random number stream is a sequence of
numbers produced by a device which is believed to be
random - for example a roulette wheel, which some
people find curiously interesting. Truly random numbers
strcams are not used in discrete simulations because
most such devices are slow (millions of random
numbers may be needed) and also they cannot be
repeated - an important consideration, as will become
clear shortly.

A pseudo-random number stream is a sequence of
numbers which behave exactly as a stream of random
numbers would be expected to behave but which is
produced by a well-understood mathematical process..
Thus, when the sequence is examined, there is no
pattern in the sequence and all values covered by the
range of the random numbers occur equally often. In
statistical terms, the sequence must be independent and
uniformly distributed with a dense coverage of the range
of values.

An Introduction to Computer Simulation 11

The two stage process is follows.
* Generate 1 or more pseudo-random numbers.

Q Convert these into the samples needed by some
suitable algorithm.

3.1.1 Top-hat sampling

To illustrate the basic idea, consider Top-hat sampling,
which is an common approach to taking samples from
histograms. Figure 4 shows the probability of a clerk
selling a certain number of tickets during the service of
a customer. Figure 5 is the cumulative histogram.

Probability
0.5

04f B

03} 03

02

01 01

01r

/ 005 005
0 G L b L ot i L
1 2 3 4 5 6

Number of tickets

Figure 4: Histogram of ticket sales

Cumulative probability e shpnl i
0e

08 |

0.6 L

04 [

02 [
01

0 4 1 L ’;v L L

1 2 3 4 5 6

Number of tickets
Figure 5: Cumulative histogram of ticket sales

In figure 5, the vertical axis represents the
cumulative probability of ticket sales. It runs over the (0,
1) interval and can be replaced by a range of pseudo-
random numbers which also runs over (0, 1). Thus, if
the pseudo-random sequence includes a set of numbers
(0.38, 0.75, 0.53) then reading from the graph of figure
5, these correspond to a set of ticket sales (2, 4, 3). The
simple two stage process for Top-hat sampling involves.

¢ Generate a pseudo-random number.

O Look up the corresponding value from the
graph or a look-up table..

As well as top-hat sampling, there are many
algorithms in use for different types of probability
distribution, Law & Kelton (1991) have more details.

3.2 The effects of statistical variation

Due to its sampling procedures, a discrete simulation
may display complicated behaviour which needs careful

analysis. For example, there may be separate samples
taken for the personal enquirer arrival time, the phone
call arrival time, the personal service duration and the
phone conversation duration even in a simple model
such as the harassed booking clerk.

Typical two stage sampling procedures use the
pseudo-random numbers for two purposes. The first is to
ensure that the sequence of samples is pattern-free, the
second is to select the set of values which are contained
in the sequence. These two sources of sampling
variation, which will be combined as different samples
are combined, means that any discrete simulation which
stochastic elements needs to be regarded as a sampling
experiment. In any such experiment, it must be
recognised that there is a risk of coming to the wrong
conclusions. For example, consider figures 6 and 7
which show the (imagined) results from two sets of
simulations in which policy A is being compared with
policy B - the idea being to decide which one generates
the highest profit.

Probability
A B

/

Profit —
Figure 6: First set of experiments

Probability

!

Profit ——»
Figure 7: Second set of experiments

The variation due to the pattern-free sequence is
wholly desirable (this is random behaviour), that due to
a badly selected set is wholly undesirable and is due to
the fact that the set is of finite (and possibly rather
small) size. This set effect means that the distribution of
the samples may not properly represent the distributions
from which they came.

12

In both cascs the mcan valuc of the experiments with
policy B exceeds those with policy A. but it would be
possible to be much more confident that this is a true
inference if the cxperiments turned out like the first set
shown in figure 6. The difference betwcen the two scts
of experiments is that the output variances are much
lower in figure 6 than in figure 7 and thus the risk of a
wrong inference is lower. The output variance is a
function of the sampling variation which must be
controlled.

3.3 Some cautionary advice

In any experimental comparison. whether using real
systems or a simulation, it is important to ensure that
the comparison is a fair one. That is, the comparisons
should be made with the system (real or simulated)
operating under similar and typical conditions for all
policy options.

3.3.1 Run-in periods

Suppose that someone wished to simulatc the effect of
adding an extra runway to a civil airport and in
particular they wished to discover what extra traffic, if
any. this would permit. Part of the experimental control
would be to cnsure that simulations of the existing
runway configuration and the extra runways were
conducted in such a way that both options were
compared under the same starting conditions. There is
probably never a time when a large civil airport has no
activity and thus starting the simulations with no
activity would not be representative of real conditions.
Indecd, there is a risk that this may bias thc comparison
one way or the other.

Two ways of coping with this arc to use 'typical
starting conditions' or to use a run-in period. Of the two,
the latter is preferable, but why?

The risks with using 'typical starting conditions' are
twofold. First, we may know what these are for the
existing system configuration but we do not know what
they are for the novel alternative. Indeed. if we knew
this then there would be no need for the simulation. The
second reason is that use of 'typical starting conditions'
may bias the results. For cxample, in the airport
cxample we might reasonably believe that an extra
runway will allow cxtra flights and we may thus cnsurc
that the starting conditions for this policy have more
activity than thosc for the current system configuration.
If we arc intercsted in asscssing whether the cxtra
runway will permit extra traffic then therc is a great
danger of a self-fulfilling prophccy.

Hence it is better to cmploy a run-in period. The idea
of this is that, if a simulation starts with no activity,
then it should be allowed to run to some time until it is
belicved to have scttled down into some form of stcady

Pidd

state. During this run-in period the output from the
simulation is ignored and only output gencrated after
that point will be used in the analysis.

Of course. there are simulations in which no form of
stcady state is possible (c.g. a missile chasing a jinking
target) in which case the transient effects arc the main
focus of interest. In such cases, ruin-in periods should
not be used.

3.3.2 Variance reduction

As was pointed out in #3.2, the accuracy of simulation
results is related to the observed variation in the
sampling processes of the model. Thus it is important to
control these if at all possible. There are many
techniques available to help in this (for a thorough
discussion see Law & Kelton (1992) and Kleijnen & van
Groenendal (1992). The simplest approach when
comparing different policies is to use comnion random
numbers, a technique which works by synchronising
sampling processes across policy comparisons.

To use common random numbers, the analyst must
cnsure that each sampling process has its own
controllable pseudo-random number stream. Hence, in
the harassed booking clerk example introduced carlier,
this means that 4 streams will be needed for each
simulation run (one each for personal arrivals, phone
calls, personal service and phone conversations) if there
is just one clerk and 2+2n if there are n clerks.

The technique works by controlling the set of random
numbers which are used to generate the required
samples. If each policy option is compared using the
same random numbers then the same samples will, as
far as is possible, be uscd for each policy comparison. If
each policy option is being replicated m times, then the
modeller will need to ensure that cach of these m
replication uses common random numbers and thus will
need access to 71(2+2n) streams in the above example.

This need for control of the random numbers streams
is the main reason why pseudo-random numbers are
preferred over truly random streams.

4 SOFTWARE SUPPORT FOR DISCRETE
SIMULATION

4.1 Types of software

A thorough review of this is given in Pidd (1992) but a
summary here will help to place things in context.

4.1.1 Coding in a general purpose language

Early simulations wcre written in whatever primitive
programming languages werc available on the simple
computcrs of the day. This approach. likc the rest,
persists to this day and it sccms likcly that a rcasonable
proportion of simulations arc writtcn in languages such

An Introduction to Computer Simulation 13

as C (Crookcs. 1989). C+t+ (Joines et al. 1992. Pidd
1993). Pascal (Pidd. 1989)and cven in FORTRAN and
BASIC (Pidd 1988). Using such an approach means that
very flexible and bespoke software can be created. but
the cost is that such program development is very slow
and requires considerable skills and highly specific
knowledge in detailed computer programming.

4.1.2 Using a library

Rather than starting each program from scratch it has
also long been possible to construct some parts
(occasionally, most parts) of a discrete simulation
application out of program building blocks taken from a
library. This allows quicker program development but
still requires detailed programming skills - and faith in
the library which being used.

4.1.3 Simulation programming languages

Many simulations are written in special purpose
simulation languages such as SIMSCRIPT IL.5 (CACIL
1987) because these ease the task of program
devclopment by providing language constructs which
are designed for discrete simulation. Thus these
languages wusually provide the event scheduling
mechanisms which underpin discrete simulations and
also have a syntax which eases the expression of the
logical interaction of the simulation entities. However,
as with the other two approaches, such software still
requires detailed programming skills if it is to be used
effectively.

4.1.4 Flow diagram systems

A different approach to easing model implementation is
taken in flow diagram systems such as HOCUS
(Szymankiewicz et al, 1988)). In these systems. the user
develops a flow diagram such as an activity cycle
diagram, and then uses a defined command set to
describe the features of the flow diagram to the flow
diagram system. This description is. in essence, data to
a gencric simulation model which is suited to a
particular domain (e.g. queuing systems). As originally
developed, these flow diagram systems did not permit
the user to develop or generate a simulation program in
any meaningful sense.

The main advantage of this approach is that it supports
rapid program devclopment. The main snag is that,
without considerable effort. it is very difficult to model
complex systems. It is interesting to note that so-called
block-structured languages such as GPSS are, at root,
flow diagram systems.

4.1.5 Interactive program generators

These. for example CAPS/ECSL (Clementson, 1991)
and SIGMA (Schruben, 1991). attempt to combine the
benefits rapid development from flow diagram systems
and the flexibility of direct programming. They
represent the start of aitempts to provide laycred
software development tools for discrete simulation.
Their initial use rescmbles that of a flow diagram but.
instead of trcating thc diagram description just as
program data, it is used to generate a working program
in some target language by linked together edited pre-
written fragments of program code. This code may then
be edited so as to allow the modelling of complex
systems. Because the user can develop the simulation
model at different levels, these interactive program
generators represent the start of layered program
development systems.

4.1.6 Visual interactive modelling systems

These are flow diagram systems brought up to date, in
the sense that they make good use of recent
developments in general computing. There are many
examples available on the current market such as
Witness (AT&T Istel, latest version). Pro-Model
(Harrell & Leavy, 1993), SIMFACTORY (CACI. latest
version). To use them, the modeller must conceptualise
the system of interest as a network around which
elements flow. changing their state at the nodes of the
network. Icons are placed on-screen and linked together
so as to represent the network logic. In some systems,
there is considerable scope for expressing the event
logic at nodes by the use of special designed macro-type
languages. However, it is not normal for these VIMSs to
generate proper program code which the user may
modify, though some (for example Witness) have a
simplified coding language. and they are thus best
suited to relatively straightforward network-type
applications.

4.2 Choosing software
4.2.1 Type of application

Somc tools are better suited to certain applications than
to others. To use an analogy of house-painting. If the
walls and windows of a house nced to be painted. then.
the best way to paint the walls is probably to usc a large
roller or paint-spray. But if these are used on the
windows the results tend (o obscure the view!

The discrete simulation equivalents of the paint-
sprayers arc the VIMSs which provide a rapid way of
developing models with attractive graphics. For
relatively straightforward applications. many of which
arc found in factorics and back-officc proccssing, these
tools arc hard to beat.

14

1lowever. there arc timcs when very detailed systems
neced to modcelled and this will require the usc of tools
which make it casicr to cxpress complex system logic
and this usually involvcs programming. Thus for a
smallcr proportion of discrete simulations (probably lcss
than 20%) there is no cscape from the skilled proccss of
developing a computcr program.

4.2.2 Required features

The next issuc to face is the detailed demands which
will be placed on the softwarc. Examples of thesc issucs
arc the following.

. Is graphical display important?

. Docs the softwarc nced to interfacc with
corporatc systcms (c.g. databascs)”

. Do you nced strong statistical support for input
and output analysis”

. Is sccurity important”

. Arc dcbugging tools required?

. What hardwarc/softwarc platform will it bc run
on (c.g. UNIX or DOS/Windows?)?

The softwarc vendors nced to be asked to specify a
systcm to mect your requircments.

4,3.3 Vendor support and prices

Finally, no uscr can ignorc two very practical issucs.
How much will the softwarc cost? - and rcmembcer that
softwarc priccs arc soft. so ncgotiation is oftcn possiblc.
Also ask what support you can rcasonably cxpcct from
thc vendor given the vendor's sizc and given your
physical location.

REFERENCES

Blaisdale, W.E. and Haddock. J (1993) Simulation
analysis using SINSTAT 2.0. Proc 1993 Winter Sim
Conf, Los Angclecs Cal.

AT & T Istel (latest version) [fitiness systein manual.
AT & T Istcl. Redditch Worces, UK

CACI (latest version) SIMITACTORY introduction aiid
user's manual. La Jolla, Cal.

CACI (1987) PPC SINISCRIPT 11.5. [ntroduction aid
user's manual. La Jolla, Cal.

Clementson, A.T. (1991) The [CSL plus svstein
manual. Available from A.T. Clementson. The
Chestnuts. Princes Road. Windermere. Cumbria UK

Conway. R.. Maxwcll. W.L.. McClain. W.L. and
Worona., S.L. (1990) User's guide to XCell + factory
modelling system, release 4.0. (3rd edition). The
Scientific Press, San Francisco., Cal.

Crookces, J.G. (1989) Simulation in €. In Pidd, M. (cd)
Computer maodelling for discrete simulation. John
Wiley & Sons Lid. Chichester.

Forrester, J.S. (1961) Industrial dvnamics. MIT Press.
Cambridgc, Mass.

Pidd

larrcll. C.R. and Leavy. J.J. (1993) ProModel turorial.
Proc 1993 Winter Sim Conf. Los Angeles Cal.

Joincs, J.A.. Powcll. K.A. and Roberts. S.D. (1992)
Objeci-oricnted modelling and similaiion i QR
Proc 1992 Winter Simulation Confcrence. Arlington
VA.

Klcijncn. J.P.C. & van Grocncndal. W. (1992)
Simuilation: a statistical perspective. John Wiley &
Sons Ltd. Chichester

Law. AM. & Kclton, W.D. (1991 Simiilation inodeling
and analysis, (2nd edition). McGraw-Hill. New York

Pidd. M (1992) Object-orieitation and thiee phase
simulation. Proc 1992 Winter ~ Simulation
Confcrence, Arlington VA,

Pidd. M (1989) Siinulation in Pascal. In Pidd. M. (cd)
Compiiterr modelling for discirete siniilation, John
Wilcy & Sons Ltd, Chichester.

Pidd. M (1988) Comiputer simiilation iin management
science. (2nd edition), John Wiley & Sons Litd,
Chichester.

Pidd. M (1992) Conipiiter simiilation in management
science. (3rd edition), John Wiley & Sons Ltd,
Chichester.

Richmond. B.M. and Pcterson. S (1988) .1 wser's guide
to STILLA. High performance systems Inc. Lyme.
NH.

Schruben, L (1991) SIGAA: a graphical sinuilatios
systein. The Scientific Press, San Francisco, Cal

Szymankicwicz, J., McDonald, J. and Turner, K. (1988)
Solving bisiness problems by simulation. McGraw-
Hill, Maidenhcead.

Vincent, S.G. and Law, AM. (1993) Unititll: total
support for similation input modeling. Proc 1993
Winter Sim Conf. Los Angcles Cal.

Wolstcnholmce, E.S. (1990) Svstem enquiry: a system
dynainics approach. John Wilcy & Sons Ltd,
Chichester

Zeigler. BP. (1976) Theorv of modelling and
simulation. Wilcy Interscience, New York.

Zeigler, B.P. (1984) Multifacetted modelling and
disciete event simulation. Academic Press. New
York.

AUTHOR BIOGRAPHY

MIKE PIDD is a Professor of Management Studics in
the Management School of Lancaster University in the
UK. He is author of Compuier simulation in
management science and of Computer modelling for
discrete simulation (both published by John Wiley). He
teaches. rescarches and consults in discrete simulation
and management science. His current interests include
rescarch on object oricntation and an upcoming book on
Modclling,

