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ABSTRACT

Bayesian estimation procedures often require Monte
Carlo integration with respect to the posterior dis-
tribution. We propose a Monte Carlo estimator of
an arbitrary posterior-distribution property, as well
as its gradient with respect to prior-distribution hy-
perparameters and to the observed data. Unlike most
Monte Carlo samplers for Bayesian problems, we sam-
ple from the prior distribution, which is usually more
tractable than the posterior distribution. We dis-
cuss sufficient conditions for interchanging expected
value and differentiation, so that the gradient can be
estimated by averaging observations of the stochas-
tic gradient. In addition to the gradient estimator,
we suggest asymptotically valid standard error and
confidence-interval estimators. We give two numeri-
cal examples.

1 INTRODUCTION

The Bayesian calculation problem is to evaluate the
posterior integral 67(z,\) = E™(®17.2)[g(8)], where
m(f]z, A) is the posterior distribution, r is the vec-
tor of observed data, A is the vector of hyperparame-
ters of the prior distribution, and g is any measurable
function.

We are interested in estimating the local sensitivity
of 6™(z, A) to the hyperparameters A and local resis-
tance to the data r. (See, for example, Polasek 1982.)
In particular, we estimate the gradients 7,6™(z, A)
and ;0" (r,A) by simulating only at a single value
of the hyperparameters A and observed data z. WWe
obtain i.i.d. realizations from the prior distribution,
compute various stochastic gradients, and combine
them to estimate the gradients.

Given a particular application, the two key 1ssues
are (1) whether the gradient estimator converges and
(2) the derivation of the various stochastic gradients.
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2 LOCAL SENSITIVITY

Here we consider local sensitivity of the general
Bayesian posterior integral §(z,\) = E™(12:))[g(8))]
to A. Define n(z,A) and d(z, A):

fo 900)£(18)7(611)d0 _ n(z,)
L IEOmENdG — dzN’
where f(r|0) is the likelihood of data z. The local

sensitivity, the derivative of §"(z, A) with respect to
the parameter A, is

8" (x,A) =
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g ” a
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Let 6,()) be i.1.d realizations from the prior density
m(6]A). Define the component estimators
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The combined estimator of the local sensitivity is
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Each component is the infinitesimal perturbation
analysis estimator (Glasserman 1991). The param-
eter A could be a vector.
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3 LARGE-SAMPLE BEHAVIOR

Using results from Billingsley (1986) and Reiman &
Weiss (1989), and assuming some regularity condi-
tions, we have shown that

(a) the component estimators are unbiased,

(b) the combined estimator is strongly consistent
and asymptotically normal if all expectations
exist and

(c) asymptotically valid standard error and
confidence intervals are available.

4 NUMERICAL EXAMPLES

The first example is a reliability problem to which we
apply the combined estimator method directly. The
second is a simple textbook example for which im-
portance sampling is needed to obtain numerical sta-
bility. The method works well in both examples.

4.1 Non-Homogeneous Poisson Process.

Crow (1974) considers the problem of estimating
a Non-Homogenous Poisson process rate function
A(t) = B(1 — a)t!~* using observed failure-time data
and independent prior distributions on « and 3. We
estimate the gradient of the posterior means of a
and B with respect to parameters of the prior dis-
tributions. Let N; represent the number of fail-
ures experienced by time t. Let P(N, = k) =
[A*(t)exp{—A(t)})/k! for k = 0,1,... and EN; =
A(t), where A(t) = [, M(u)du and A(u) is the rate of
occurrence of failures.

If failures are observed at time to = 0
< 1 < ty < -+ < tp,, the likelihood is
L = {B(1- )™ {[I7% )" exp{—Bil;°). As
sume that a and ( have independent prior distri-
butions with densities ¢(a) and ¥(f8), respectively.
Suppose ¢(a) and ¥(8) are U(a,b) and Gamma(m,u)
densities, respectively, with a, b and m known. Then
4 is the hyperparameter of our Bayesian model and
there is no closed form for the posterior density.

We are interested in the Bayesian point estimators
for a and A: the posterior means of o and . We
consider sensitivity of the Bayesian estimators with
respect to the hyperparameter u. We need to calcu-
late all stochastic derivatives in order to obtain the
combined estimators. We use the data of Sander and
Badoux (1991) to run our Monte Carlo experiment.

The Monte Carlo simulation results shows that
a™(t,m, ) is less dependent than §7(t,m, ) on the
hyperparameter p. The reason is that the prior of &
is U(0,1), which is independent of x, and the prior of
B is Gamma(m,u), which is not independent of 4.

4.2 Multivariate Eatimation

Following Berger (1985, page 247), we discuss the

Bayesian estimation of a vector § = (6;,...,0m)"
with a hyperparameter vector A = (Ay,...,Am)". We
assume that X = (X;,...,Xn)" ~ ANn(6,]) and

6 ~ Nn(0,X), where © =diagonal(Ay,...,Am).

We consider sensitivity of the posterior means and
posterior covariances with respect to A\. Since we have
selected a specific model, we can find the analytical
expressions so that we can compare the Monte Carlo
results to the true values. Numerical problems arose
when we coded the combined estimator. Importance
sampling solved this problem.

The Monte Carlo experimental results are very
good in the sense of comparing the combined esti-
mators with the true values.
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