Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

SCHEDULING POLICIES FOR A COMPUTING SYSTEM

Mary A. Johnson
Udatta S. Palekar
Yi Zhang

Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801, U.S.A.

ABSTRACT

We describe simulation experiments conducted to
analyze scheduling procedures for batch jobs on a Cray
computer. Two prominent themes are use of information
and avoidance of interference of small jobs by large jobs.

1 INTRODUCTION

The scheduling policies used on time-sharing
computing systems have a critical effect on system
performance. We present simulation experiments aimed
at evaluating and improving the scheduling rules of a
heavily used Cray-YMP supercomputer at the University
of Illinois. We observe the performance of a simple
system and consider various modifications, some of
which are elements of the current system and others
potential changes. Two themes recur throughout our
study: use of information about resource requirements
and avoidance of interference of small jobs by large jobs.
Resources considered are processing-time and memory.

Studies of queueing disciplines for computing
systems include Coffman and Denning (1973), Conway,
Maxwell, and Miller (1967), and Kleinrock (1976).
Prominent ideas include pre-emption, use of
information, and time splicing. Lavenberg (1988)
provides an overview of queueing-network models of
computing systems.

2 CRAY-YMP SYSTEM

When a batch job is submitted to the computer, it is
queued in one of a matrix of queues where the job waits
to be admitted into the kernel. Each queue corresponds
to a specific range of processing-time and memory
requirements, which are estimated by the user.
Processing-time ranges are (0 min., 5 min.], (5 min., 15
min.], (15 min., 1 hr.], (1 hr,, 5 hr.], and (5 hr., 20 hr.].
Penalties for under-estimation of resources typically lead
to over-estimation of required resources. Each loading
queue is assigned a priority which determines the order
in which the queues are polled; within a queue jobs are
selected FCFS. For certain classifications of jobs, there

1368

are limits on the number of such jobs that can reside
together in the kernel.

Once a job is admitted into the kernel, it waits in a
second queue for processing. We consider three
disciplines which vary in the amount of information
used: processor sharing (PS), shortest-elapsed-time first
(SET), and shortest-processing-time first (SPT).

3 SIMULATION EXPERIMENTS

The input for our simulation runs consists of actual
data for a 23-day period. Table 1 below shows the
number of jobs in each processing-time classification,
based on the user estimates and on actual processing
time. Notice the changes in the first and last
classifications are consistent with our assertion that users
tend to overestimate resource requirements. For a given
set of jobs, the performance measure presented here is
the total response time of all jobs in the set, normalized
by the total processing times of those same jobs.

Table 1: Counts of Jobs by
Processing-Time Range

Upper bound | User- Actual
on range Estimates Time
5 min 1942 3904
15 min 2104 681
1 hour 1156 854
4 hour 503 321
20 hour 108 54

Table 2 shows performance for a system that
imposes a limit of 18 jobs in the kernel at one time. The
priorities assigned to the loading queues are such that
priority decreases with increasing (estimated) resource
requirements. Relative to their processing times, the
response times of small jobs is much larger than for large
jobs. Use of SET or SPT is a means of using
processing-time information to prevent large jobs from
interfering with small jobs. This mitigates the large
response times of small jobs somewhat and improves
overall performance, at a slight cost to the larger jobs.



Scheduling Policies for a Computing System

SPT is better than SET, because it uses more
information.

Table 2: Normalized Mean Response Times
for Simple Loading Policy

Class PS SET SPT
5 min 42.62 26.29 21.31
15 min 33.25 13.73 9.95
1 hour 11.51 7.10 5.57
4 hour 7.11 4.37 3.49
20 hour 3.36 429 4.55
Overall 9.94 6.15 5.12

Table 3 shows the effect of using actual processing
times (instead of user estimates) to classify jobs into the
loading queues. Though perfect information is not
feasible, improvements could be attained by lessening
the penalty for underestimation of resource
requirements. Also, sampling of large jobs to detect jobs
with bugs would avoid unecessarily long waits for such
jobs. The most noticeable effect of the use of perfect
processing-time information is that performance under
SPT improves for every class and is now much better
than performance under SET. Thus, availability of
accurate information makes SPT much more effective.

Table 3: Normalized Mean Response Times
using Actual Processing Times

Class PS SET SPT
5 min 51.05 28.86 13.20
15 min 39.98 9.71 4.49
1 hour 9.19 5.67 3.32
4 hour 5.48 3.61 2.53
20 hour 3.08 4.25 3.72
Overall 10.10 5.92 3.7

Table 4: Normalized Mean Response Times after
Imposing Job-Mix Constraints

Class PS SET SPT
S min 5.88 2.81 2.96
15 min 4.57 2.21 1.59
1 hour 9.54 5.51 5.11
4 hour 6.22 3.65 3.10
20 hour 2.85 4.62 4.34
Overall 5.99 4.26 3.85

Finally, Table 4 shows the effect of imposing limits
on the job mix allowed in the kernel. The key idea here
is that large jobs are prevented from dominating the

1369

kernel. As in Table 3, exact processing times are
assumed to be known. Performance under the PS policy
is improved dramatically for small jobs and overall.
Performance of small jobs also improves under SET and
SPT. In fact, the SET and SPT are now biased in favor
of small jobs.

Another issue not apparent from the performance
measures shown here is that lack of information and an
appropriate priority/limitation structure, leads to large
tails in the distributions of response-time-to-processing-
time ratios. Use of exact processing times dramatically
improves the tail behavior for jobs classified as large,
since it eliminates the problem of misclassified small
jobs receiving low priority because of their
misclassification. Addition of limitations on the job mix
provides a similarly dramatic improvement in the tails
for the small jobs.

REFERENCES

Coffman, Jr., E.G., and P.J. Denning, Operating Systems
Theory, Prentice-Hall, Englewood Cliffs, New
Jersey, 1973.

Conway, R.W., W.L. Maxwell, and L.W. Miller, Theory
of Scheduling, Addison-Wesley, Reading,
Massachusetts, 1967.

Kleinrock, L., Queueing Systems Volume 2: Computer
Applications, Wiley, New York, 1976.

Lavenberg, S.S., A Perspective on Queueing Models of
Computer Performance, Queueing Theory and its
Applications--Liber Amicorum for J.W. Cohen,
North-Holland, Amsterdam, 1988.

AUTHOR BIOGRAPHIES

MARY A. JOHNSON is an assistant professor in the
Department of Mechanical and Industrial Engineering at
the University of Illinois at Urbana-Champaign. Her
research interests include algorithmic probability and
queueing approximations.

UDATTA S. PALEKAR is an associate professor in the
Department of Mechanical and Industrial Engineering at
the University of Illinois at Urbana-Champaign. His
research interests include scheduling, discrete
optimization, and production planning.

Yi Zhang is a PhD student in the Department of
Mechanical and Industrial Engineering at the University
of Illinois at Urbana-Champaign. His research interest
include scheduling and queueing applications.



