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ABSTRACT

During system design and evaluation, development
of optimal decision making rules required to simulate a
teleological system can be very difficult. The Opera-
tional Evaluation Modeling (OpEM) inductive / adap-
tive expert system controller, integrated into the OpEM
Simulation Tool Kit, can greatly facilitate this task.
The decision rule development procedure optimizes
system effectiveness by initial induction of the rule tree,
using sample decision cases, followed by adaptive rule
strength modification to optimize decision making.
The rule specification language consists of all primitives
needed to implement local and global decision making,
These primitives include fuzzy facts to transform
analog variables into discrete concepts and variable
instantiation of facts to make context sensitive, global
decisions. A single-track railroad system is evaluated
as an example context sensitive system, and other
methods of decision making are compared with OpEM.

1 INTRODUCTION

At certain events during a computer simulation of
system operation decisions must be made. Typical
decisions determine allocation of resources or choice of
alternate actions. In many cases a simple algorithm
may make a local, context free decision during a simula-
tion run. As decisions become more context sensitive,
the algorithm to evaluate the logic necessarily becomes
complex. Such algorithms are difficult to write and
modify.

As complexity increases, it becomes attractive to
employ a formal system for decision making during
system operation. One such system is an ’expert
system’ that generalizes *IF’ statement logic in a way
that can be easily specified and adapted. Input of text
data specifies the initial decision making rules, and rule
adaptation is performed while the simulation is run-
ning.
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Use of expert systems in simulations is not new
(Buchanan et al 1988, Reddy et al 1986) . However,
most applications have been in the area of manufactur-
ing systems, viewing the system as a network of queues
and servers. This queuing theory view tends to be
context free. The railroad system discussed in this
paper is highly context sensitive, making it more dif-
ficult to make decisions.

State-event sequences called parallel proces-
ses, based on combined discrete and continuous state
variables, are used to represent context sensitive system
operation (Clymer 1990a, 1990b). For a context sen-
sitive state change, or transition, one event can schedule
one or more other events, implementing an event chain.
For example, let Di Dj ... Dk be dimensions of the
system state space and let discrete events Ea Eb ... Ec
indicate value changes in these dimensions. These
dimensions represent the functions being performed by
system entities or entity state variables such as process
counters or motion vectors. A context sensitive transi-
tion is described by the rule:

(DiDj...Dk) —» Ea Eb... Ec (DI Dm ... Dn)

This rule indicates that a transition from system
state dimensions (Di Dj ... Dk) to values (D1Dm... Dn)
will occur after event chain Ea Eb ... Ec has been
executed. The problem is that there may be thousands
of such transitions to choose from when making a
decision in a system. It is difficult to know which
transition is most effective for each decision case and to
devise a set of rules that decides all of these cases
correctly. One solution to this problem is to assist
analysts in visualizing system operation, so that they
can better understand a context sensitive system, and
to automate as much as possible the development of
optimal decision making rules.

Automating the knowledge engineering process to
facilitate decision rule development is highly desirable
when modeling context sensitive systems. System en-
gineers can specify the information (facts) needed to
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make a decision and they can usually make the correct
decision given the facts about a situation. They make
these decisions by visualizing desired system operation
and specifying the proper decision for each situation.
However, systems engineers are usually not good at
devising an optimal rule tree needed to make all the
correct decisions for a given domain.

The purpose of this paper is to discuss the benefits
of using the OpEM inductive / adaptive expert system
controller to make decisions that control a simulated,
context sensitive system. An evaluation of a single
track railroad system is presented as an example of
decision making in a context sensitive system. A brief
discussion of two of the OpEM expert system controller
capabilities is presented: (1) fuzzy facts and adaptive
rule strength modification and (2) rule induction from
simulation generated cases. Other methods used in
simulations for decision making are classifier systems,
neural networks, and case-based reasoning systems.
These approaches are compared with the OpEM induc-
tive / adaptive expert system controller, and recommen-
dations for future research are made.

2 RAILROAD SYSTEM EVALUATION

2.1 System Scenario

A railroad system consists of two stations (A,E),
three substations (B,C,D) between A and E, and one
track connecting them, as shown in Figure 1. Two
tracks are provided at each substation (B,C,D) and as
many as necessary are provided at each station (A,E).

81 82 83

100 Miles

Figure 1: Single Track Railroad Scenario

Thetrack extends beyond stations A and E, but this
operation of the system is modeled by the interarrival
time of trains arriving at these stations. The track
between A and E is 100 miles long. Track segments
separating stations, or substations, are not necessarily
the same length. The trains move on the track in two
directions, either from A to E or E to A. There are two
types of trains, fast passenger trains and slow freight
trains. A probability is used in the simulation to deter-
mine if a train is fast or slow. Trains are scheduled to

arrive at station A or E using a Gamma distributed
random variable for the interarrival time. The speed of
each type of train is also a Gamma distributed random
variable.

2.2 Directed Graph Model

The railroad directed graph model is shown in
Figure 2. There are five processes: (1) arrival of trains
at station A, (2) arrival of trains at station E, (3) train
moving from station A to E, (4) train moving from
station E to A, and (5) regulator. Processes 3 and 4 are
duplicated, providing a separate process for each train.
At each wait state WT* (WTL,..,WT4) in a train
process, a train waits for its next track T* (T 1,...,T4)
and for its next substation S* (S1,..,S3). The next track
and the next substation must be allocated at the same
time to avoid a deadlock. Only one train is allowed on
a track at a time to avoid collisions.

O

Figure 2: Directed Graph Model of
Railroad System Operation

When a train wants to move, it asks the regulator
process to make a decision. The regulator process
checks the state of each train in the system, the state of
each track and parking station, and then decides which
trains will be allowed to move, scheduling the next
events in system operation. The use of a regulator
process is similar to real world operation. Allocation
of system resources to a train by a dispatcher who
knows the state of all trains and resources in the system
is much better than by the computer driving the train
that knows only its own state.
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2.3 State Space and Knowledge Base

The state variables used in the model to describe
the states of system resources are:

SS1, SS2, SS3: total number of tracks available at
substations S1, S2, and S3;

S1, S2, S3: number of tracks currently available
(not busy) at substation S1, S2, S3; and

T1, T2, T3, T4: number of tracks currently avail-
able (not busy) along each segment.

The state of each train, stored in a dynamically
allocated moving object record (Corey and Clymer
1991), includes the discrete state, type of train (fast or
slow), position, and velocity. In addition to state vari-
ables, facts describing the state of system resources and
trains are stored in the knowledge-base.

2.4 Situations to be Avoided

Deadlock problem: Figure 3 shows a deadlock
that is defined as a situation where no further operation
is possible and the mission has not ended. Train 1 and
train 3 both require a parking place at substation D and
only one parking placeis available since train 2 occupies
the other place.

train 2 =
train 1 -
o@-‘ @«- train 3
track 2 track 3 track 4
substation 2 substation 8

Figure 3: Deadlock Situation

Interferenceproblem: Figure 4 shows an inter-
ference that is defined as a situation where more than
two trains moving in opposite directions contend for
one resource. When train 1 arrives at substation S2,
which train should move next. Trains 3 and 4 cannot
move until trains 1 and 2 move first to free substation
C parking space S2.

Traln 4 = Traln 2 - « Traln 8

N ¢« Traln 1
@ T2 \8-2/ﬁ T3 @

Figure 4: Interference Situation

BlockingProblem: Another kind of problem oc-
curs when different types of trains move in the same
direction on the same track. Figure 5 shows a blocking
problem that is defined as a situation where a slow train
is in front of fast train so that the fast train has to follow
the slow train. Fast train 3 follows slow train 1, slow-
ing down the fast train.

Fast @ "F - « Slow 1F . « Fast 3 « Fast 4
“ -p m ‘.' -y A O
82 83 E
T 3 T2 -/ T8 T4

Figure 5: Blocking Situation

2.5 Decision Making Policy

To avoid these problems, a decision making policy
was derived to control the trains by making decisions
during simulated system operation.

Rule 1: Any train can move if a track to and
parking place at the next substation is available; how-
ever, if a train is parked at the next substation and is
going in the same direction, then the passing rule ap-
plies instead (rule four).

Rule2: Whenever a fast train contends with a slow
train for a resource, the fast train has higher priority
than the slow train.

Rule 3: Whenever two trains of the same type (fast
or slow) contend for a resource, the train arriving first
has higher priority than a train arriving later.

Rule4: A fast train can pass a slow train going the
same direction at the next substation if a track toand a
parking place at the next substation isavailable and two
trains going in the opposite direction are not passing at
any substation beyond the next substation.

Rule 5: If the number of the trains going in the
same direction is larger than a given number, no more
new train arrivals are allowed into the system from that
direction (i.e., they wait at station A or E).

2.6 Effectiveness of Induced Rules

The regulator process monitors changes of
knowledge-base facts to allocate system resources using
rules. When the regulator is consulted, it executes the
OpEM Expert System Controller Program to decide if
each train waiting at a station can move.

After all train movement possibilities are decided,
global rules are then used to select the train having
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highest priority for each track. Figure 6 shows one of
the global decision making rules.

CONSTRAINT_RULEO069:IF
BST” Decision_E_A=Move_ E D AND
E_A_Train_State=WT4 AND
E_A_Train_Speed=Fast AND
E_A_Train_Wait=Long

THEN
Allocate_Track 4=Yes, CF=95.

Figure 6: A Global Decision Making Rule.

The BST” command in rule069 causes the inference
engine to search the knowledge-base for all instances of
fact "Decision_E_A=Move_E_D." For each instance
found, the remaining premise facts are tested. Of the
instances, for all rules for this decision, with rule
premise satisfied, the rule with highest confidence is
selected.  This rule implements decision policy rules
two and three discussed above.

For the system under study, given assumptions are:
(1) number of tracks per substation equals 2, (2) prob-
ability of a fast train equals 0.5, (3) average speed of
fast train equals 100 miles per hour, and (4) average
speed of slow train equals 50 miles per hour. For an
optimal system, no waiting time occurs for a train at
any substations. Under optimal conditions a slow train
transits in two hours and a fast train in one hour.

Figure 7 shows train transit time as a function of
train interarrival time. The smaller the interarrival
time the more trains that are in the system contending

FOUR LEVEL DEFAULT HIERARCHY OF RULES
LIMITED TO FEASIBLE DECISIONS
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Figure 7. Effectiveness of training set and
induced rules.

for resources. The figure shows that the policy of fast
trains having higher priority has been implemented.
The top line is for decisions made for slow trains, and
the much lower line is for decisions made for fast trains.
These results are superior to those reported in (Clymer
1992c) because more fast trains are in the system and
learning is constrained to feasible decisions.

3 COMPARISON OF DECISION TOOLS

3.1 OpEM Expert System Controller

There are two kinds of objects in OpEM simula-
tions: (a) entity or process objects that represent the
state of the system and its environment and (b) sym-
bolic objects that represent what is perceived, and thus
known, about the system and its environment needed
to make decisions.

Symbolic objects are usually described by an ob-
ject-attribute-value triplet. The object part is the name
of an entity or process. An example is a surface ship
target, called Tgt. The attribute part is one of several
object features. An example is ship to target range,
called Rng. The OpEM expert system controller com-
bines the object part and attribute part into the object
name. For example, an object name could be TgtRng.
The value part provides a value for an object name,
forming an object-value couplet, or fact. Forexample,
ship to target range is close, represented as "Tgt-
Rng=Close", forms a fact.

Figure 8 shows a simple rule tree to assign a
resource.  The goal object to be pursued is Allo-
cate_Res that can be given a value of either yes or no.
Two rules are shown that connect symbolic objects
Tgt_Needs Res and Tgt_Priority to the goal. If the
premise is true (i.e., value of Tgt_Needs_Resis Yesand
value of Tgt_Priority is High), the conclusion is true
for the rule on the left side of the figure and the goal
object is given the value yes. If the premise is true (e,
value of Tgt_Needs_Res is No or the value of

ALLOCATE_RES = YES, NO ?

F /'*\
TGT_NEEDS_RES = YES AND ’ AN TGT_NEEDS_RES = NOOR
TGT_PRIORITY = HIGH ,/ ~ NOT TGT_PRIORITY » HIGH
AN
THEN e N THEN
ALLOCATE_RES = YES, CF1, . (\LLOCATE_RES - NO, CF2
’
7’ N
N
V2 R
7\
/ \ / \
V4 A} / \
’ \ ) / .
¢ » ¢
TGT_NEEOS_RES  TGT_PRIOATY TGT_NEEDS_RES  TGT_PRIOAMTY
= YES, CF3 = HIGH, CFe = NO, CF§ = LOW, CF¢

Figure 8: A Simple Rule Tree
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Tgt_Priority is Low), the conclusion is true for the rule
on the right side of the figure and the goal object is given
the value No.

If the premise facts are fuzzy (Clymer 1992a,
1992b, Negoita 1985), both rules can produce con-
clusions. Confidence in a fuzzy fact such as "Tgt-
Rng=Close" is a function of a variable X, the slant
range between target and ship.  Fuzzy fact functions
used by controller all have the form 100/{1+[(1/A)(X-
C)]**B}, shown in figure 9, where A, B, and C are all
integer values with both A and C positive. The shape
of the fuzzy membership function can be defined by
specifying A, B, and C. "A" is the spread of the mem-
bership function, "C +A" is the mean value of the
function (i.e., where the evaluated certainty factor
equals 50), and "B" controls the slope. C is kept zero
unless a symmetrical function is desired.

)
100 |

L
o CeA

Figure 9: Fuzzy Fact Set Functions

If B is a positive integer, a typical S-function
results. An inverted S-function results when B is nega-
tive. If B is even, the function becomes a rounded peak
about the mean value of (C +A). In this case, C should
not be zero and should be large enough to allow the
membership function to be symmetric everywhere.

A more complex rule tree is shown in Figure 10.
This tree has intermediate rules that give values to
decision objects. The top of a rule tree is the goal
object. All rules having the goal object name in their
conclusion form the top branches of the tree. At each
level rules connect premises to conclusions. Premises
of rules contain either knowledge-base facts or decision
facts that are inferred facts. In addition, if each case is
covered by a set of rules of increasing specificity, a
default rule hierarchy is formed (Clymer 1990, Holland
et al 1985) that is useful in adaptive learning.

The OpEM Pascal Simulation Tool Kit (Clymer
1990a, 1990b) routines are executed by a simulation

GOAL;?BJECT

DECISION
RULE OBJECT

RULE

KNOWLEDGE BASE OBJECTS

Figure 10: A More Complex Rule Tree

program to generate event-state sequences (timelines)
for various situations that can occur in a scenario. The
OpEM Expert System Controller (Clymer 1989, 1990c,
1992a, 1992b, 1992c¢) has interfaces with these simula-
tion routines to resolve decision conflicts and choose
the best (most effective) decision. Given the decision
fact returned by controller, an event or chain of events,
each event represented by an event subroutine, is ex-
ecuted to change appropriate state dimensions to ex-
ecute the transition. The rules used by controller to
make these decisions can be discovered using the
OpEM Pascal Induction Program.

The OpEM Pascal Induction Program (Clymer
1992b, 1992¢) receives as input a case file generated by
an OpEM discrete event simulation program. Each
case consists of a decision fact (i.e., the decision made)
plus all knowledge-base facts available for this decision
(i.e., the decision context). The OpEM induction pro-
gram analyzes this set of cases and produces a set of
rules that decides all of these cases correctly. The
OpEM induction program uses a top-down, com-
binatorial search for concepts based on an ordered list
of decision facts for each decision, and it is similar to
the "Greedy Algorithm" discussed in (Haussler 1988).

Hypotheses are candidate rules of the form "IF
Fact THEN Decision". Hypotheses may be more com-
plicated and several facts may be present in the premise,
thus more complicated hypotheses may be tested of the
conjunctive form "IF (Fact_A AND Fact_B AND......
) THEN Decision_A". The set of all possible rules that
can be formed from the available facts (called a decision
list) is called the hypothesis space (Haussler 1988).

Cases are searched for associations between
premise facts and decision facts. The first step is to
count the number of times each premise fact is as-
sociated with each decision fact. For each decision fact,
a hypothesis is then formed relating it to the single most
frequently occurring premise fact. If a hypothesis is
consistent (Haussler 1988, Michalski 1983), covers
positive cases and no negative cases, for the maximum
number of cases not yet covered it is accepted as a rule.
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If not, another hypothesis is formed combining the
most frequently occurring premise fact with the next
most frequently occurring premise fact and this new
hypothesis is tested to determine if it is an acceptable
rule. If it is not an acceptable rule, the process con-
tinues, each time the next most frequently occurring
premise fact is added to the premise until an acceptable
rule is found. The search proceeds from the most
general hypotheses (one fact premise) to more specific
hypotheses until a consistent rule is found. The algo-
rithm considers a set of competing hypotheses,
generated as just described, and selects rules that cover
the most cases. Cases are removed from consideration
after they have been covered by a specified number of
rules, forming a default hierarchy.

A rule bid is a function of premise fact confidences
and rule strength. The rule with the highest bid cal-
culation usually makes the decision. The OpEM expert
system controller has an adaptive mode (Clymer 1992a,
1992b), based on the "bucket brigade" algorithm (Hol-
land et al 1985), that automatically determines rule
strength, measuring how well a rule contributes to sys-
tem success. If a set of rules of increasing specificity is
generated to cover each case, a default hierarchy of
rules results as discussed above. If the adaptive mode
reduces rule strength greatly because the rule is too
general (too many new cases occur where the rule fails),
it is important to have more specific rules in version
space (Haussler 1988) as backup. Having a default
hierarchy of rules allows the best rules to be selected
through adaptive learning. This is important because
only a subset of cases is ever available in the training set
for induction.

The OpEM Adaptive Expert System Controller,
when in inductive and adaptive mode, writes cases to a
case file each time a rule fails to decide correctly or no
rules are able to decide. Induction based on the new
cases, combined with the previous set, produces a more
robust rule set. This mode of operation, similar to
incremental induction of concepts (Genneri, Langley,
and Fisher 1990) or classifier systems (Goldberg 1989,
Grefenstette 1988) but done off-line, continues until
high confidence rule failures no longer occur. This
mode is called off-line incremental induction here.

As an example of the improvement that can occur,
the initial case file for a sonar classification problem
(Clymer 1992b) was based on decisions for only ten
ships. Rules induced using this case file were applied
to classify 250 ships. Cases corresponding to rule
failures were added to the initial case file and rules
again induced in a second iteration. The second set of
rules classified 500 ships running in adaptive mode. The
adapted rules classified a thousand ships without error

in the no noise case. When noise was present, the
adapted rules achieved optimal decision making perfor-
mance.

3.2 Classifier Systems

In classifier systems (Goldberg 1989, Grefenstette
1988, Holland et al 1985), the premise or conclusion of
a rule can be expressed as a vector of numbers called a
message. Each number in the premise message indi-
cates if a particular fact is included, not included, or
included/not-included (don’t care) in the premise.
Each number in the conclusion message indicates if a
fact is included, not included, or passed through from
the premise message. A rule posts a conclusion mes-
sage in the knowledge base if its premise message is
found in the knowledge base (i.e., rule fires) and if it
wins the bidding contest with other fired rules.

An example is a small animal that seeks out and
consumes insects but runs and hides when a hawk
appears. A classifier system generates a sequence of
effecter messages that causes the animal to scan its
environment. Messages from the environment,
received while looking around, indicate positions of
insects. The classifier system next generates a sequence
of effecter messages that causes the animal to close on
an insect and grab it.

System operation is modeled using uniform time
steps between messages resulting in changes of system
state that can be a physical change in the system or a
change in knowledge about the environment. Mes-
sages are received from the environment, a sequence of
rules post messages in pursuit of system goals, and
messages are sent to system effecters to implement
system goals. In the small animal example, the goals
are to eat insects and avoid hawks.

Learning occurs by adapting rule strengths to
modify the bidding contest outcomes and by generating
new rules. New rules are generated using genetic
operators to decide premise and conclusion fact chan-
ges. Through rule strength modification, bad rules
generated are weakened and eventually eliminated by
being punished when system goals are not achieved.
Good rules are strengthened and eventually accepted
by being rewarded when system goals are achieved.
Rule credit assignment is difficult in context sensitive
situations, however (Grefenstette 1988). The search
through hypothesis space, resulting in convergence to
an optimal set of rules to make system decisions, ismore
rapidly accomplished by considering a large number of
alternate hypotheses in parallel, called a beam search.
Rule bids are used to compute the probability of select-
ing a rule, giving all alternative rules a chance of being
selected. A beam search reduces the likelihood that a
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search for rules halts at a local optima, called the "hill
climbing problem."

3.3 Neural Networks

Figure 11 shows a two-level backpropagation
neural network to predict position of a target Y given
a sequence of observations of target X. Each observa-
tion consists of a position of the sensor along its path
and the associated angle from sensor to target.

A set of inputs X is applied to the first layer of the

X=

Figure 11: A Neural Network

neural network. Each of these inputs is multiplied by
a weight, and the products summed. This summation

of products is termed Y and must be calculated for
each neuron i, where i equals 1 to 5, in the figure. After

Y. is calculated, an activation function F is applied to

modify i, thereby producing an output signal. The
output signal of the first layer is the input to the next
(output) layer as shown in figure 11.

The objective of training the network is to adjust
the weights so application of a set of inputs produces a
desired set of outputs. See Wasserman (1989) for details
on how training is accomplished. For the passive rang-
ing problem, a large number of target-sensor en-
counters were simulated to provide a training set of
input-output pairs to train the network. If sensor-tar-
get geometry is restricted to a 20-80 degree look angle,
the neural network learned to predict target position.

3.4 Case-based Reasoning

Figure 12 shows a case-based planning function
(Hammond 1989, Slade 1988) that accepts input on the
goals to be satisfied and features of the situation
covered and then generates a plan of action. A planis
a sequence of actions that satisfies a set of goals for a
system given a particular starting situation. The case-
based planner shown is a learning system that learns by
remembering plans that avoid problems, features that
predict problems, and repairs that have to be made if
those problems arise again in another situation. It
makes use of feedback about plan mission effectiveness
to learn to avoid planning problems and to repair faulty
plans that occur.

Input
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Figure 12: A Case-based Reasoning
System

Prodictive Exolal Causal
Features nalyels|

The assign indices function accepts input on the
goals of a plan and features of the situation. It applies
rules to such information to generate indices that char-
acterize the particular situation such as problems, nega-
tive interactions between plan steps, that could arise in
the new situations.

Plans stored in memory are indexed by goals they
satisfy, features of the situation, and by the problems
they avoid and other characteristics. Therefore, the
retriever function receives these three types of informa-
tion as input and then uses them to locate the best plan.
A similarity metric is used to judge the similarity of
goals when determining partial matches. A plan may
partially satisfy a goal (build a chair) by satisfying a
more general statement of the goal (build furniture). A
value hierarchy of goals, where the highest value goals
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are the most difficult to modify when not satisfied, is
used to judge the relative utility of plans with respect to
a set of goals.

The plan modifier function receives as input an old
plan suggested by the retriever to cover the new situa-
tion and modifies it to satisfy any goals not satisfied
completely. To alter old plans to meet new goals and
situations, the modifier needs a set of modification
rules, critics with knowledge of goal specific require-
ments, and general plan specifications. Modification
rules specify what steps to add to particular plans, given
a particular goal to satisfy. Information in the form of
special purpose critics, tailor the general modifications
of a plan to the specific needs of the items required to
achieve particular goals.

The new plan is executed, and it is evaluated to
determine how well it performed. The test function
can be done in the real world or using a simulation
program. If a proposed plan achieves all of its goals,
it is assigned indices and stored in memory. When a
plan fails to achieve all its goals, it must be repaired so
that the planning system can learn from its mistakes.

To place new plans in memory, the assign indices
and store functions index new plans under the same
goals, features, and problems that the retriever uses to
find plans. The goals that are used to index plans,
however, are generalized so that the plans can be found
in situations that are similar if not identical to those in
which they were originally constructed. Generalization
allows the planner to reason using analogy.

The inputs to the explain and repair functions are
the faulty plan and some description of the fault. A
fault is either a desired state that was not achieved or
an undesired state that arose during plan execution.
To repair failed plans and describe them to the assign
indices and store functions, the repairer function re-
quires a vocabulary of plan failures and repair
strategies that are indexed by the vocabulary. The
repaired plan is sent back to be tested

To anticipate failures in the future, the cause of a
plan failure must be determined.  To decide which
features in a situation are to blame for a failure, the
explain function needs to be able to build causal ex-
planations of planning failures and to mark the states
and steps that lead to the failures as predictive of them.
The more extensive its vocabulary for this description,
the more exact its credit assignment will be.

Domain knowledge required for the goal value
hierarchy, similarity metrics, modifier rules, critics and
plan specifications, failure vocabulary, and repair
strategies is extracted from an expert. The expert
evaluates a plan as good or bad and, when a plan is
evaluated bad, provides a causal explanation of why the

plan failed. A case-based planner is best applied in
weak theory domains when the number of training
cases is small and maximum information (classification
categories such as good and bad and domain
knowledge used to build plans) must be extracted from

an expert.

3.5 Comparison

Neural networks are conceptually similar to a rule
based tool, such as a classifier system or the OpEM
expert system controller. Their network connections
accomplish the same function as rules.

Neural networks have the distinct advantage of
highly parallel execution for real time applications;
however, on a single CPU, backpropagation neural
networks required 500 times as long to learn and 10
times as long to classify as symbolic methods when
applied to four learning problems (Mooney et al 1989).
Counterpropagation networks (Wasserman 1989) are
reported to be much faster, however. Once trained,
neural networks decide with about the same accuracy
as symbolic methods (Mooney et al 1989, Weiss and
Kapouleas 1989).  This is further confirmed by ex-
periments where air traffic control decisions made
using the OpEM expert system controller (Clymer
1992a, 1992b) were simulated and a backpropagation
neural network was trained. The neural network con-
troller had comparable performance to the expert sys-
tem controller.

The main difference between neural networks and
rule based tools, such as a classifier system or the
OpEM expert system controller, is that these rule based
tools can add new rules to a rule tree. A neural
network cannot add new connections or layers to itself.
It can only adapt connections in layers initially defined.
Further, according to (Mooney et al 1989, Weiss and
Kapouleas 1989), a significant amount of time may be
required to determine the optimal number of neurons
in a hidden layer. The OpEM expert system controller
and classifier systems both incrementally add rules to
their rule bases.

Learning speed and control system performance
seem to be a function of the amount of domain
knowledge used to guide the search through version
space to find the best rules to cover each control situa-
tion. Classifier systems use genetic algorithms to im-
plement a generate and test search through version
space using little domain knowledge (Holland et al
1985).  Case-based learners acquire very specific
domain knowledge about each situation, from an ex-
pert, to guide its search for rules. According to Ellman
(1989), applying acquired domain knowledge does
greatly increase learning speed relative to other induc-
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tive methods that do not; however, too much reliance
on domain knowledge seems to limit what the system
can learn. Classifier systems seem capable of going
beyond available domain knowledge to discover new
concepts useful in system control. Thus, there seems
to be a tradeoff between supervised learning, that uses
specific domain knowledge to improve learning speed,
and unsupervised learning that can discover more effec-
tive rules that transcend such available domain
knowledge.

3.6 Conclusion

Two basic problems are encountered when dis-
covering rules to improve system control decisions.
These are credit assignment and rule generation.

Credit assignment modifies the strengths of rules
that are used to make decisions in a sequence of events
leading to either system mission success or failure. If the
mission fails, all rules contributing to the failure are
punished. If the mission succeeds, all rules contributing
to the success are rewarded.

One purpose of credit assignment is to optimize
decision making given a set of rules by altering the
bidding competition among the rules. The sonar clas-
sification scenario discussed above is one example.
Another purpose of credit assignment is to identify
contexts where decision making could be improved by
generation of better rules.

The credit assignment problem occurs because of
context sensitive interactions among related decisions
in a timeline. This problem can be solved by evaluating
related decisions using domain knowledge. For ex-
ample, credit assignment is modified to consider
whether a resource allocation decision followed
priority policy, stated in the form of contraint rules.

Contraint rules are also used to define when a
decision can be made. Thus, domain knowledge is used
to restrict the search for new rules to discovering when
a decision should be made.

Credit assignment guides the search for new rules
asfollows: (1) rules that are punished in some situations
and rewared in others are too general and must be made
more specific and (2) rules that have high strengths but
do not fire often are too specific.

Thus, adaptive rule strength modification, found
in classifier systems, should be used to maintain alter-
native sets of rules that compete (a beam search), and
timelines should be analyzed to identify good and bad
cases of rule application using domain knowledge
about context sensitive systems to guide the search for
better rules. Such an approach would be a balance
between classifier, case-based, and explanation-based
learning systems.

4 SUMMARY

Decision making in context sensitive systems seems
best accomplished using a combination of the credit
assignment and parallel (beam) search from classifier
systems; the rule-based reactive decision making ap-
proach from the OpEM Controller; and the critic
process and associative plan memory from case-based
and explanation-based reasoning approaches. Each of
these approaches have weaknesses by themselves, but
combining the strengths of each individual approach,
where the other approaches are weak, a much more
robust learning system can be expected to result.
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