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ABSTRACT

TES (Transform-Expand-Sample) is a versatile methodol-
ogy for modeling general stationary time series, and par-
ticularly those that are autocorrelated. The salient feature
of TES lies in its ability to simultaneously capture first-
order and second-order properties of empirical time series
; given a sample data sequence, TES is designed to simul-
taneously capture any arbitrary marginal distribution and
approximate the leading autocorrelations. Practical TES
modeling is computationally intensive and can be effec-
tively carried out only with software support. A computer-
ized modeling environment, TEStool, has been designed
to support the TES modeling methodology, through an
interactive heuristic search approach facilitated by state-
of-the-art data visualization techniques.

The purpose of this paper is to present four examples of
the effective use of the TES methodology to model various
types of time series that arise in a variety of disciplines,
ranging from manufacturing to financial modeling, with
particular emphasis on video compression. These exam-
ples serve to highlight the efficacy and versatility of the
TES modeling methodology.

1 INTRODUCTION

Temporal and spatial dependencies are commonplace in a
host of commonly encountered random phenomena. Tem-
poral dependence accounts, to a large extent, for bursti-
ness in telecommunications traffic, especially in emerging
high-speed communications networks. The combined ef-
fect of temporal and spatial dependencies gives rise to fault
cascades observed in network management. When formu-
lated mathematically as real-valued stochastic processes,
temporal dependencies are often manifested by multiple-
lag autocorrelations within a stochastic process, and/or by
multiple-lag cross-correlations between processes.
Although spatio-temporal dependencies abound in both
computer and communications applications, the natural
inclination in modeling these systems is to minimize or
eliminate dependencies from model descriptions in order
to simplify analysis. A case in point is a queueing sys-
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tem comprised of one or more GI/GI/m queues for which
interarrival times and service times are specified as inde-
pendent, identically distributed (iid) random sequences.
The standard argument in support of this approach is that
these assumptions endow the models with desirable an-
alytical or numerical tractability. This argument is often
vindicated by the insights that analytical models frequently
offer, especially when dealing with systems in the design
or early implementation stage. Since in such scenarios one
is often interested only in a qualitative understanding of
design tradeoffs, the modeling effort can succeed with per-
formance measure calculations that are approximate, and
the practice of disregarding dependencies in the design
stage is frequently justifiable.

Consider, however, performance analysis after the sys-
tem has been realized. Randomness in the system may
arise from one or more stochastic processes. Field mea-
surements may now be available for the modeler to an-
alyze (at this point it is not necessary to distinguish be-
tween analytical and Monte Carlo performance evaluation
approaches). An analyst in this situation is invariably
confronted with two generic and sequential questions:

1. Should one ignore dependence in empirical time se-
ries and use a simpler model from the library of re-
newal processes?

2. If dependence is to be acknowledged, how can it be
done in an systematic and effective manner?

Experience has shown that the prevailing practice is to cir-
cumvent the second question by electing to use a renewal
process model. We emphasize that modelers should be
made aware of the fact that over-simplified renewal mod-
els may also introduce significant modeling errors.

For example, a little introspection on the nature of
burstiness in arrival processes should convince the reader
of its deleterious effect on waiting times: many customers
arriving in a burst will obviously suffer from increased
waiting times, while the lulls separating bursts waste server
utilization. Indeed, various studies (see Fendick et al.
1989, Livny et al. 1993, Patuwo et al. 1993) have shown
that when autocorrelated traffic is introduced into a queue-
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ing system, the resulting performance metrics exhibit sig-
nificant degradation relative to those estimated by renewal
models, often differing by orders of magnitude.

A growing realization of the impact of bursty traffic
on queueing system performance has provided the initial
motivation for devising input analysis methods that are
able to capture dependence in time series (TES included),
but the concern extends to other modeling domains as well.
Briefly, TES (Transform-Expand-Sample) is a non-linear
autogressive scheme, encompassing both Markovian and
non-Markovian processes (Melamed 1991, Jagerman and
Melamed 1992abc). The modeling methodology which
has been derived from this scheme constitutes a robust and
practical input analysis technique specifically designed to
address the second question articulated above.

The TES approach stipulates three requirements that
should be satisfied by prospective models (see also Lewis
and McKenzie 1991, and Schmeiser 1990 for a related
view):

Requirement 1: The marginal distribution of the model
should match its empirical counterpart.

Requirement 2: The autocorrelation function of the
model should approximate its empirical counterpart.

Requirement 3: Sample paths generated by a Monte
Carlo simulation of the model should “resemble” the
empirical sample path.

We believe that TES is currently the only input analysis
method designed to simultaneously address in a systematic
manner these three criteria. Note that they are arranged in
decreasing order of importance. The first two constitute
quantitative goodness-of-fit criteria, whereas the third one
is a qualitative requirement which cannot be defined with
mathematical precision. Obviously, Requirement 3 is a
highly subjective statement, but its intuitive meaning and
purpose should be clear: qualitatively “similar” sample
paths can considerably enhance a practitioner’sconfidence
in a candidate model.

Fast and accurate formulas for the autocorrelation func-
tions and spectral densities of TES models have been de-
veloped in Jagerman and Melamed (1992ab). As a result
of this research, it became feasible for the TES modeling
process to be carried out interactively on a desktop work-
station equipped with a high-resolution graphical display.
In order to realize this potential, A TES-based modeling
package, called TEStool, has been implemented in soft-
ware. TEStool makes heavy use of visualization in order
to provide a pleasant interactive modeling environment
which reduces the potential for modeling errors and helps
to alleviate the tedium of repetitive search. Since the
search for an appropriate TES model is performed within
the TEStool visualization paradigm, somewhat akin to that

of a video arcade game, it can be conducted by both experts
and novices alike.

The remainder of this paper is organized as follows.
Section 2 contains a brief overview of TES processes, an
outline of the TES modeling methodology, and a concise
description of the TEStool software modeling environ-
ment. Section 3 demonstrates the efficacy of the TES
modeling methodology and the TEStool modeling envi-
ronment by a range of examples from various application
domains. Finally, Section 4 contains the conclusion of this

paper.

2 A BRIEF REVIEW OF TES PROCESSES

TES processes are treated in some detail in Melamed
(1991) and Jagerman and Melamed (1992abc). An ex-
tensive overview of TES processes and the corresponding
modeling methodology appears in Melamed et al. (1992),
and in Melamed (1993). A summary of the treatment
given in these references is offered here.

2.1 TES Processes

For any real «, let x| = max{integer n : n < z} be
the integral part of z, and define (z) = z — |z] to be
the fractional part of z. Let {V/,} denote a sequence of iid
random variables with acommon, though arbitrary, density
fv . Further, let Up be uniform on [0,1) and independent of
the sequence {V;, }. The random variables V,, are referred
to as innovations.

There are two major classes of TES processes: TEST
and TES™. TES* consists of random sequences {U;}} of
the form

U n=20
+ 0,
Ui = { (U +Va), n>0 (1)
while TES™ consists of random sequences {U,; } of the
form .
_ ur, n even
Un' = { I~ U#, nodd 2)

The superscripts in Eqs. (1) and (2) are suggestive of the
fact that TES processes achieve coverage of the full range
of feasible lag-1 autocorrelations (Jagerman and Melamed
1992a); TES* processes cover the positive range [0, 1],
while TES™ processes cover the negative range [—1,0].
It can be shown (Jagerman and Melamed 1992a) that the
TES processes of Egs. (1) and (2) constitute stationary
Markovian sequences with uniform marginals on [0, 1),
regardless of the innovation sequence selected; in fact,
the choice of innovations determines just the second-order
structure of a TES process.

In practice, of most interest are transformed TES pro-
cesses {X;F'} and {X; }, obtained from Eq. (1) or Eq. (2)
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by some transformation D from [0, 1] to the real line (called
a distortion), 1.e.,

Xy = D), Xg=DUy) (3)

Uniform TES sequences {U;}'} and {U; } of the form (1)
and (2) are called background sequences, whereas their
distorted counterparts { X} } and { X, } of the form (3) are
called foreground sequences. The TES modeling method-
ology (to be explained in Section 2.2) typically employs
compound distortions composed of two successive trans-
formations

Xn = F7/(S¢(Un)), (4)

where {U,} is any background TES sequence. The inner
transformation, S¢, is called a stitching transformation; it
is selected from a family, parameterized by 0 < ¢ < 1, of
the form

_ /€, 0<y<¢
Sev) = { Gog/i-6, e<y<i ©

It can be shown (Jagerman and Melamed 1992a, Melamed
1993) that each S¢, 0 < £ < 1, constitutes a "smooth-
ing" transformation, in the sense that the corresponding
stitched sequence {S¢(U,)} appears "smoother" than the
underlying {U,}. Moreover, all S¢, 0 < £ < 1, pre-
serve uniformity (Melamed 1991), i.e., S¢(Uy) is also
distributed uniformly on [0, 1). The outer transformation,
F~1, is the inverse function of some distribution function
F'. Notice that by the inversion method (see, e.g., Bratley
et al. 1987, Law and Kelton 1991), each X,, in (4) has
marginal distribution F'. Consequently, distortions of the
form D(z) = F~'(S¢(z)), = € [0, 1], allow us to gen-
erate foreground sequences with any prescribed marginal
distribution F'. In particular, we can match any empirical
density function H, obtained as an empirical histogram.
The corresponding histogram distortion Dy = H™! is
given, for0 < z < 1, by Jagerman and Melamed (1992b).

N
Di(z) = 3 licu_,c)(@) [la+(z=Cn) Z_"]’ (6)

n=1

where 1 4 is the indicator function of set A, N is the number
of histogram cells of the form [I,,7,), w, = r, — I, is
the width of cell n, p, is the probability of cell n, and
Cn = 3_j-) Pn is the cumulative distribution of {p,,}
(Co = 0and Cny = 1). Recall that a histogram H is,
mathematically, a step-function density, i.e., aprobabilistic
mixture of uniform densities.

Intuitively, the modulo-1 arithmetic (fractional part op-
eration), used in defining background TES* sequences in
Eq. (1), has a simple geometric interpretation as a random
walk on the unit circle (circumference 1), with random
step size V, (Jagerman and Melamed 1992a, Melamed

1993). To fix the ideas, consider the important class of
step-function innovation densities fy of the form

K P,
fr(e) = Dl ra(2) R L (7
k=1

corresponding to mixtures of uniform densities whose sup-
port is contained in [-0.5,0.5). These densities can be spec-
ified by triplets of the form {(Lx, Rk, P.)}K_|, where K
is the number of triplets, [Lk, R ) is the support of step
k, and 0 < P, < 1 is the mixing probability of step &
(Zszl P, = 1); for convenience, it is also required that
triplets do notoverlap (i.e., R < Lg41, 1 <k < K-1).
We point out that, in fact, any interval of length 1 can be
used to support innovation densities, due to the modulo-
1 arithmetic employed in the definition of background
TES sequences. However, the symmetry of the interval
[—0.5,0.5) about zero is intuitively compatible with the
interpretation of innovation variates as modulo-1 incre-
ments (decrements) of a TESt sequence on the unit cir-
cle. Observe that step-function densities can approximate
any density arbitrarily closely, while enjoying an ease of
specification via the triplets (Lx, Rk, Px), so no practical
loss of generality is incurred.

2.2 The TES Modeling Methodology

Assume that we have at our disposal some empirical sam-
ple path data representing a partial process history (e.g.,
interarrival times of packets on a communications link) to
which we wish to fit a TES model. An outline of a typical
TES modeling scenario follows (Jagerman and Melamed
1992a, Melamed 1993).

Selecting a TES Sign: The selection of a TES sign is
based on the modeler’s experience and knowledge of
TES processes. Experience shows that TEST models
are most prevalent. TES™ models are more appro-
priate for empirical sample paths and autocorrelation
functions which have a zigzag appearance.

Selecting an Inverse Distribution: When modeling em-
pirical data, the inverse distribution function of the
empirical data is the histogram inverse Dy, given in
Eq. (6). It is determined by modeler-provided his-
togram parameters (number of cells and cell width)
and the empirical data.

Selecting a Stitching Parameter and Innovation: The
core activity of TES modeling is a heuristic search for
a suitable stitching parameter and innovation density.
The modeler searches through stitching parameters in
the range [0, 1] and innovation densities in the space
of step-function densities, whose support is contained
in [-0.5,0.5).
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We stress that the modeling scenario outlined above is a
highly heuristic procedure. The modeler may loop back to
any step based on the quantitative fit of the current model’s
autocorrelation function and the qualitative fit of Monte
Carlo sample paths to their respective empirical counter-
parts. This activity is most efficiently carried out with the
visually-oriented software support described in the next
section. A great deal is known about the qualitative be-
havior of sample paths and autocorrelation functions gen-
erated by TES processes, as a function of the stitching
parameter and innovation density parameters. These are
discussed in some detail in Melamed (1991), Jagerman
and Melamed (1992a), and Melamed (1993).

2.3 The TEStool Modeling Software

TEStool is a visual interactive software environment de-
signed to support the construction and modification of TES
models, to generate simulated sample paths from the mod-
els, and to examine their statistics (Geist and Melamed
1992, Melamed et al. 1992).

TEStool distinguishes three types of statistics. Empir-
ical statistics are those associated with the empirical data
(sample paths, histogram, autocorrelation function and
spectral density). Simulated statistics are similarly cal-
culated (estimated) from Monte Carlo simulations of TES
models. Numerical statistics consist of numerical compu-
tations of autocorrelation functions and spectral densities
of TES models, based on analytical formulas developed in
Jagerman and Melamed (1992ab).

Figure 1 reproduces a typical TEStool screen composed
of four tiled canvases. These contain, respectively, sample
paths (upper-left canvas), histograms (upper-rightcanvas),
autocorrelation functions (lower-left canvas), and a graph-
ical specification of a TES model (lower-right canvas).
Each of the first three canvases displays a pair of statistical
graphs: the respective TES model statistics superimposed
for comparison on their empirical counterparts. The fourth
canvas supports a joint specification of a TES sign, a step-
function innovation density, a stitching parameter and an
inverse-distribution distortion; the latter is selected from
a menu, including distortions of the form (6) constructed
from empirical histograms. The buttons in the top border
of the display and at the bottom of each canvas provide for
various support functions. These include reading and writ-
ing datasets, subdividing the screen real estate, opening a
TES specification window or menu, performing various
types of computations and quitting the session. The most
important service, however, is the visual specification of
a TES model and the interactive computations associated
with it.

The advantage of a graphical specification derives from
the fact that a visual representation is easy to grasp, lend-
ing itself to intuitive and visual interactions with the TES

model. In the visual specification mode, the workstation
mouse is used to draw and manipulate non-overlapping
rectangles representing a step-function density. For exam-
ple, rectangle "stretching" is used to modify a step’s height
and width, while rectangle "dragging" is used to translate
a step horizontally. In the visual interactive mode, any
changes in model specification trigger an immediate re-
computation and display update of model statistics.

With TEStool, the modeler can compare any computed
statistics to their empirical counterparts for goodness of fit,
and thus render a judgement about whether it is satisfactory
or whether another modification to the model is required.
In the same way that the player of an arcade game is able to
concentrate on the animated display without concern for
the underlying software details, the highly visual nature
of the modeling search process makes TES accessible to
both experts and non-experts alike.

3 APPLICATIONS OF TES MODELS

This section presents a sampling of TES models drawn
from various disciplines. The examples range from
compressed-video traffic in high-speed telecommunica-
tions networks, to machine fault arrivals in a manufactur-
ing plant and financial time series. These examples have
been selected to underline both the accuracy and versatility
of the TES modeling approach.

3.1 H.261-Compressed Video

Data compression is extensively used to reduce the trans-
mission bandwidth requirements of telecommunications
traffic. The idea is to code the data at the source (thereby
compressing it to a fraction of its original size), transport
the compressed data over a network, and then decode the
data at its destination. Video service in emerging ISDN
(Integrated Services Digital Networks) is a typical appli-
cation, for which the exact reproduction of the original sig-
nal is not necessary. H.261 is a popular coding standard,
which makes use of DCT (Discrete Cosine Transform) and
other techniques to compress video spatial units (frames
or subframes) (Liou 1991, Reibman 1991). Since such
coded units have random (but highly autocorrelated) trans-
mission requirements (in bits), the corresponding coding
schemes are referred to as VBR (Variable Bit Rate).
Figure 1 displays the results of TES modeling of an em-
pirical sample path of VBR frame bit rate, for which the
coding scheme used was a variant of the H.261 standard.
The model was used, in turn, to study the performance of a
coded video multiplexer (Leeetal. 1992). In the upper-left
canvas, a typical sample path generated by a Monte Carlo
simulation of a TES model (diamonds) is superimposed
on the empirical data (bullets). The model histogram and
autocorrelation function are similarly plotted against their
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empirical counterparts in the upper-right and lower-left
canvases, respectively. The lower-right canvas contains
a visual specification of a TEST model with stitching pa-
rameter £ = 0.5 and an inverse-distribution distortion,
constructed from the empirical histogram in the upper-
right canvas, by appeal to Eq. (6). The innovation density
function consists of two steps and corresponds to a prob-
abilistic mixture of two uniform densities.

Several observations are in order at this point. First, the
simulated histogram closely approximates its empirical
counterpart as advertised (recall that TES theory guaran-
tees an exact asymptotic match as the simulated sample
size increases). Second, since an average scene lasts for
only a few seconds and the data available consists of 210
frames, it makes sense to only attempt to match the first
10 autocorrelations or so. Within this range, it would
be preferable to approximate shorter-lag autocorrelations
at the expense of longer-lags. Furthermore, rather than
achieving an exact match to the leading autocorrelations,
one primarily aims to capture their functional form (in our
case their monotone decreasing structure). And third, al-
though sample path “resemblance” is a highly subjective
judgment, the qualitative similarity of the sample paths is
surprisingly close to the unaided eye, thereby increasing
our confidence in the model.

3.2 MPEG-Compressed VBR Video

MPEG (Moving Picture Expert Group) is an emerg-
ing family of compression standards designed to encode
audio-visual signals over broadband transmission channels
(see Le Gall 1991). This section focuses on MPEG-video,
designed to compress a full-motion video stream into a bit
rate.of about 1.5 Mbits/second. The importance of MPEG
derives from its planned central role in facilitating future
delivery of multi-media services to customer premises.

Coded picture sequences in MPEG are composed of
cycles. A coded picture can be either an Intrapicture
(I-frame), Predicted picture (P-frame) or Bidirectionally
Predicted picture (B-frame). The sequence of picture
(frame) types within each cycle are deterministic, though
the corresponding bit rates are VBR, and therefore, ran-
dom. MPEG type sequences can be chosen as an MPEG
parameter, depending on the application. The particular
type sequence chosen in the case study described here had
a length-nine cycle of the form IBBPBBPBB. .. (see Fig-
ure 2). Observe that the marginal distributions of I-frames
(largest magnitudes), P-frames (medium magnitudes) and
B-frames (smallest magnitudes) are apparently very differ-
ent. Consequently, MPEG-compressed sequences exhibit
randomness as well as determinism, and are decidedly
non-stationary, all of which precludes the straightforward
type of modeling approach described in Section 3.1.

The approach devised for MPEG-encoded sequences

required a composite TES model. First, each subsequence
of MPEG frame types was modeled as a separate TES se-
quence as in Section 3.1 — I-frames and B-frames each
by a TES* model and P-frames by a TES™ model. Sec-
ond, a Monte Carlo simulation generated each of the three
MPEG frame type bit rate subsequences and the sample
paths were superposed (interleaved) from the three TES
bit rate models to form the correct type sequence. And
third, in order to induce cross-correlations into frame bit
rates comprising individual cycles, the TES background
variate of each cycle-inaugurating I-frame was reused to
obtain the corresponding background variates for the first
P-frame and B-frame within the same cycle. Subsequent
P-frames and B-frames within the same cycle were gener-
ated normally from their individual TES models.

Figure 2 displays sample paths and derived statistics
for both the empirical MPEG sequence and the composite
TES model following the format of Section 3.1, except
that the lower-right canvas displays the spectral densities
(power spectra) rather than a TES model. The autocor-
relation functions and spectral densities in Figure 2 were
formally computed from a single sample path as if the se-
quences were stationary, and therefore represent averaged
estimates of different correlation coefficients. Neverthe-
less, Figure 2 exhibitsexcellent agreement for all statistics,
as well as a marked similarity in functional form between
the empirical and model sample paths.

3.3 Machine Fault Arrivals

Traditional reliability models analyze the arrival of faults
by assuming that their interarrival times (up times) are in-
dependent random variables (Barlow and Proschan 1975).
Figure 3 depicts a TES model of machine up times, incor-
porating temporal dependence, based on measurements
taken from a semiconductor manufacturing line. Specifi-
cally, these data represent several months of up times of a
machine engaged in the photolithographic processes of a
wafer fabrication facility.

Many of the faults in semiconductor equipment are re-
lated to a machine processing wafers "out of specifica-
tion", rather than mechanical failures. Consequently, sev-
eral corrective actions may be related to an inaugurating
"out of specification event", resulting in bursty fault ar-
rivals. Such burstiness may result in temporal dependen-
cies among up times (another cause of burstiness may be a
multimodal marginal distribution of up times). Since poor
equipment reliability has been identified as a major cause
of uncertainty in semiconductor manufacturing (Harrison
et al. 1990), it is very important that the corresponding
reliability be modeled correctly.

An interesting feature of this example is that it relies
solely on the less common TES™ model in order to cap-
ture the functional form of the autocorrelation function.
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The reader’s attention is drawn again to the quality of the
of the model fit. Notice that while the model does not
precisely match the empirical autocorrelation function, it
does provide a good approximation which also captures its
functional form. In addition, the qualitative "resemblance"
of the sample paths is also good, and the histograms match
closely, as expected.

3.4 Financial Time Series

Stochastic models of financial time series are used ex-
tensively to guide buy/sell decisions in financial markets.
Financial models are used both for short-term forecasting
to guide day-to-day trading, and for mid-term scenarios to
guide long-term planning (1 to 5 years). Most quantitative
investment strategies generate Monte Carlo scenarios to
estimate internal parameters of various financial models
(Hull 1989). Many financial models, such as diffusion
processes used for interest rates, share the shortcoming
that they are difficult to calibrate against historical data in
a formal manner.

Figure 4 displays a TES model of a sequence of "real"
quarterly returns from Treasury Bills (nominal interest
rates minus inflation rate) for the period 1950-1990. Each
data point is the average of all daily returns in the respec-
tive quarter. The TES model approximates the leading
autocorrelations and gives rise to sample paths with con-
siderable qualitative similarity to the observed historical
price sequence. In view of the relatively low magnitude
of the empirical autocorrelations, it is doubtful that such
“black box” models would be useful as reliable predictors
of future yields. However, they can be used to generate
random scenarios for use in financial simulations.

4 CONCLUSION

This paper has surveyed a range of TES models from a
variety of disciplines. The purpose of the survey is to
demonstrate the efficacy of the TES modeling approach
in simultaneously capturing first-order and second-order
statistics of empirical time series, and to highlightits versa-
tility and flexibility by addressing a variety of applications
with a mix of TES-based models.

The major applications of TES to date have been to
capture the burstiness exhibited by autocorrelated traffic
in high-speed telecommunications networks, mainly VBR
video. Two TES-based modeling approaches to coded
video have been described in some detail: a simple TES
source model of frame bit rates for H.261 coding and
a more complex superposition of multiple TES models
interleaved in a deterministic sequence for MPEG coding.
A source model of machine fault interarrival times in a
manufacturing context has demonstrated the ability of TES
models to capture bursty fault arrivals. Finally, an example

from financial modeling suggests that TES models can
capture the statistical signature of financial time series, and
demonstrates its potential to model random phenomena
which might be used in financial scenario simulations.
We conclude that the TES modeling methodology of-
fers a new and powerful approach to input analysis, par-
ticularly in the domain of Monte Carlo simulations. We
have emphasized that practical TES modeling relies en-
tirely on software support to carry out heuristic searches
for appropriate models, and have described the TEStool
visual interactive software which we designed and imple-
mented for this purpose. The user interface of TEStool
casts the search process into the intuitive activity of suc-
cessively modifying a visual parametric representation of
the TES model. The TEStool modeling environment has
been found to yield remarkably accurate TES models in
a reasonable amount of time. It has also transformed a
potentially tedious search for an appropriate model into a
pleasant activity, not unlike that of a video arcade game.
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Applications of the TES Modeling Methodology
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Figure 1: A TES model of H.261-compressed VBR video.
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Figure 2: A superposed TES-based model of MPEG-compressed VBR video.

1337



1338

Melamed and Hill

xJ TEStool
view ) specify Model T ) Clear All ) _Snapshot) Quit)
SAMPLE PATH FORSAMPLE AND ——HISTOGRAM FORSAMPLE AND
MODEL OF SPD2-2.up.data.e r MODEL OF SPD2-2.up.data.e
—e- semple data dh sample data
e simulated TES—(xd=0.448 with multple cells) e . simulated TES—(xi=0.448 with multdple cells)
D
v E
A N
L S
u 1
E T
Y
JEENTY 1 Ja 4
w1 Data ) Update Method: Plot Comp W3
Computs ) Al hui} &)
AUTOCORRELATION FOR SAMPLE AND
A MODEL OF SPD2-2.up.data.e [ [
u e~ somple date
T —e. Bnalytical TES—(xi=0.448 with multiple cells) 1
o : :
c N .
R ; : 0s
R 2N K o8 e R B I I B X
R o3 : :
E : : .
L : : :
T 025 - P o \ ----------- 025
1 . : .
o . H :
N s : : :
LAG NUMBER -05 -025 00 025 05
JRENTY N ETY, d
w2 Data Update Plot C: H l wa| Graphic Model Specification N
Corpute ) i) xJ <J I Create/modify Sign: E : 04480 00 emmms |—— 1.0
¥ Move + | - Ux0.1422 00w — 10 |
- Delote x: —0.6700
y: 0.5480 Distortion: T| From data set
= Save/Clear S -
\
Figure 3: A TES model of machine fault interarrival times.
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Figure 4: A TES model of real Treasury Bill yields.




