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ABSTRACT

This paper presents two algorithms developed for
a distributed, discrete-event, and object-oriented
traffic simulation, such as the Traffic and Highway
Objects for REsearch, Analysis, and Understand-
ing (THOREAU) (McGurrin and Wang, 1991)
and (Hsin and Wang, 1992). THOREAU was de-
signed for the study and analysis of Intelligent
Vehicle Highway Systems (IVHS) [1] applications.
The purpose of using distributed processing for
traffic simulation is to extend the scope which can
be modeled at an individual vehicle behavior level,
by significantly increasing execution speed. The
first algorithm was derived to decompose a large
traffic model into submodels distributed over a
network of workstations, with a minimum amount
of inter-processor interactions, and to achieve the
highest degree of parallelism. The second algo-
rithm is an improvement of the Floyd algorithm
for finding shortest paths using submodel decom-
position and node to arc incidency to achieve
a 10m3— fold speed improvement using m dis-
tributed processors. Both algorithms are being
implemented for IVHS-related applications in a
new version of THOREAU.

1 INTRODUCTION

IVHS is a multimillion dollar program, jointly un-
dertaken by government and private sector, to
improve roadway mobility, driving quality, and
safety using advanced computer, communication,
and control technologies. Two major parts of
IVHS are Advanced Traffic Management Systems
(ATMS) and Advance traveler Information Sys-
tems (ATIS) (Federal Highway Administration,
1991). Object-oriented traffic simulations serve
as very powerful tools in determining cost/benefit
tradeoffs and in analysis of implementation alter-
natives under various IVHS technologies. Object-
oriented discrete-event simulation is desirable be-
cause of its modularity, portability, and flexibil-
ity. Microscopic (individual vehicle behavior) trip-
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specific traffic simulations are preferable because
of the dynamics of interactions between vehicles,
roadway, and control elements such as signal con-
trollers, detectors, and a traffic management cen-
ter. Large scale trip simulation is essential for
IVHS cost/benefits analysis. Only by large scale
traffic simulation, can the cumulative impacts of
ATIS and ATMS technologies over a great num-
ber of trips covering an entire metropolitan area or
networks of surface streets and freeways be deter-
mined. To date, more abstract macroscopic and
mesoscopic flow models must supplement micro-
scopic models due to the long run-time associated
with large area microscopic models.

It is quite obvious that simulation time for object-
oriented microscopic event simulation tends to in-
crease almost exponentially with respect to model
size since the number of objects and potential in-
teractions among all objects increases rapidly as
model size increases. Therefore, to achieve a rea-
sonable speed in simulation, decomposition of a
large model into submodels of equal size to be
distributed evenly among a number of process-
ing elements will be necessary. Moreover, certain
key algorithms that require access to objects in
each submodel may have to be processed in paral-
lel among submodels with results combined later
to obtain the final result for global use. One such
example is the computation of shortest paths for
every node (or link) pair to be used by ATIS for
route guidance simulations. Thus, it is quite im-
portant to derive optimal or near optimal model
decomposition techniques and parallel algorithms
for object-oriented IVHS traffic simulation.

Intuitively, an m-fold speed improvement for
object-oriented simulation over m distributed pro-
cessing elements can be expected. However, be-
cause of inter model interactions and potential
causality violations, the expected gain in simu-
lation speed may be noticeably less than the full
m—fold improvement. Since the prime goals for
distributed object-oriented traffic simulation are
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scope and speed, distributed submodels should
be balanced in both size and speed. Balance in
the pace of simulation clocks among submodels is
the most significant factor in achieving the desired
speed of the overall simulation. One natural as-
sumption is that the simulation clock of an object-
oriented traffic simulator runs inversely propor-
tional to some power of the number of active vehi-
cles in the model. Strategies to balance the num-
ber of objects among submodels while minimiz-
ing inter-model interactions (messages or objects
transferred) are examined and a near optimal sub-
model decomposition strategy is developed.

In addition to submodel decomposition for dis-
tributed simulation, certain algorithms that deal
with objects across submodel boundary may be
distributed and the results from submodels com-
bined to provide solutions for use by objects
among all the submodels. One such example is
the shortest path between any origin/destination
node-pair of a traffic simulation model. Short-
est paths within a submodel may be computed lo-
cally; the results must be combined to yield short-
est paths across submodels. In this paper, it is
shown that the Floyd algorithm to compute short-
est paths for all node pairs may be revised and dis-
tributed to achieve a 10m3—fold improvement in
computation time using m distributed processing
elements. Alternatively, the revised Floyd algo-
rithm may be applied sequentially to all submod-
els and the results from submodels combined to
obtain shortest paths for the entire model with a
10m2—fold speed improvement without the use of
distributed or parallel processors. Consequently,
a revised and distributed Floyd algorithm offers
a real possibility for use in real-time IVHS appli-
cations without the need of buying an expensive
massive parallel processing computer.

2 SUBMODEL DECOMPOSITION

The scope and speed of an object-oriented simu-
lation may be improved noticeably by distributed
processing. The first step to achieve this goal
is to balance the number of objects among sub-
models, subject to additional constraints such as
adjacency of objects and minimum boundary in-
teractions. The objectives of balanced submod-
els, maintaining adjacency, and minimizing inter-
model interactions may not always be feasible be-
cause of the dynamic nature of all the contributing
factors. Therefore, optimal submodel decompo-
sition appears to be NP-hard, and a polynomial
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time algorithm to solve for optimal submodel de-
composition is unlikely to exist. Consequently,
one will have to settle for near optimal by sim-
plification or heuristic rules. Some submodel con-
straints in traffic simulation, such as the need to
minimize submodel interactions and the desirabil-
ity of including closely connected nodes in the
same submodel (because of traffic signal synchro-
nization) may turn out to be incompatible to each
other. As a result, perfectly balanced submodel
decomposition may not always be achievable. For
practical applications, any submodel decomposi-
tion that is well-balanced and near optimal should
be quite acceptable. The following polynomial
time algorithm is an approach designed to main-
tain adjacency, minimize boundary interactions,
and balance model size for object-oriented traffic
simulation.

In our approach, a traffic network (model) con-
sists of intersections (nodes) and surface streets
or freeway segments (arcs or links). Submodels
are defined by subsets of adjacent nodes and re-
lated arcs. Submodels are sized by the sum of all
node traffic, R, for all the nodes in a submodel.
To decompose a large traffic network consisting
of thousands of nodes and arcs into m balanced
submodels, the following steps are recommended.

Node and link sizing: Each node, i € N , (the
set of intersections or branching points) is sized
by total expected rate of vehicles, R;, (volume in
unit of time) passing at the node, ¢. Similarly,
each link, (z,y) € L where z and y are nodes in N
and L is the set of all links in a traffic network, is
sized by T,,), the total expected rate of vehicles
passing thru that link. More precisely, we define

i€ P;
Tz = Z Ai
(z.¥)EQ;
where P;: consists of all nodes
traversed by the j-th path
Q: : the set of all links
traversed by the i-th path
Aj or A; : the arrival rate

of trips using path j or ¢

I Expected submodel size: Compute expected sub-

model volume: E,, = (Z, R,)/m
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Recursion: Let r =1 and U = N, where U is the
set of unallocated nodes available for submodel
allocation. The recursion consists of five substeps:
Seed identification: A seed, z € U, for a new sub-
model S, is determined by the highest expected
node traffic volume in U. Equivalently, a new sub-
model is created as:

Sr = {z | R = max{R:}}

Boundary links computation. Compute bound-
ary links for S, as B, = {(z,y) | with (z,y) €
L,andz € S,,andy € U, or vice versa } If
B =0 and 3° .5 R: < (1/2)En, redistribute
S, to its neighboring submodels by Step IV

Submodel ezpansion: Increase submodel size of S,
by selecting the node 2 € U with y € S, for the
highest link sum L(; y) + L(y,:), and all the nodes,
w € U such that either link (w,y) or (y,w) in
B, has a very small link length I, ) or I¢y u).
Equivalently, let the nodes selected be AS, with

AS, ={z ' Ty + Ty, sy =

{Tz) + Tty )}
U {w | ly,w) < lmin or

I(w,y) <lmin; VY E Sr}

max
(z,y)or(y,z)EB,

where [, ;) denotes length of line (z,y) and Iy is
the minimum link length acceptable for a bound-
ary link between submodels. Node z from U is
unique while node(s) w may be different from node
z or none. The inclusion of w in AS, is optional
and the value l,,;, should be determined by the
overall model topology. Optimal value of I,
such that the ratio of total node traffic volume
of the largest submodel to that of the smallest
submodel is minimum may differ from model to
model. Heuristic and iterative procedures can be
used to determine the range and sensitivity of l,;;;
for a given network.

Recursion: Update S, = S,UAS, andU = U-S5;,.
Repeat ii and iii until Ezesr R:>Enor B, =0
with 3" s Rr > (1/2)En.

Termination: If 3,y R; > (1/2)Em, increase r
and repeat i, ii, and iii, otherwise, distribute nodes
in U to neighboring submodels by Step IV.
Distribution of nodes to neighboring submodels:

We now reach a regional submodel with size less
than (1/2)E,, or the remaining nodes in U are
not adjacent to each other and the size of U
is less than (1/2)En. Since minimizing inter-
submodel traffic is equivalent to maximizing intra-
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submodel traffic because of their complementary
nature, the best strategy in this case is to redis-
tribute these nodes to its immediate neighbor-
ing submodel with the highest link traffic vol-
ume. To achieve this, for each node, z, in S, or
U from Step III, determine its neighboring links
M;={(z,y)€Lor(yz)€L|y¢U(orS)} If
M_ is nonempty, determine y* such that Tz 4«)+
Tiy+ ) = maxy(zy)em, {T(z,9) + T(y,r)}- Add node
z to the submodel where y* belongs if the sub-
model does not exceed 2E,,. Otherwise, select
the submodel adjacent to £ with the smallest sub-
model size. Repeat Step IV until either S, or U
is empty.

The proposed submodel decomposition algorithm
is local greedy in that it always seeks for a neigh-
boring node with the most traffic volume while
maintaining the size of a submodel as close to E,
as possible. Since traffic may be distributed to a
given network in any conceivable way, no single
decomposition algorithm can balance all submod-
els perfectly while maintaining adjacency and the
node clustering (ignoring very short links) require-
ments, the goal of submodel decomposition should
be limiting the maximum submodel size. For
randomly distributed objects and events, this lo-
cal greedy approach will generate submodels with
the smallest submodel size greater then (1/2)Ep,
(Steps III-iv & III-v) and the maximum submodel
size smaller than 2E,, (Step IIl-ii and Step III-v
may contribute up to (1/2)E,, each).

3 DISTRIBUTED PATH UPDATES

Traffic simulation for IVHS requires the simula-
tion of ATIS. One important aspect of ATIS is the
capability of providing route selection and route
guidance information to individual drivers. Con-
sequently, there is a need to determine shortest
paths for every driver from his current position
to his destination. Effective algorithms to com-
pute shortest paths between node (or link) pairs
include Moore (1957), Dijkstra, and Floyd algo-
rithms (Chandy and Misra, 1982), (Mateti and
Deo, 1982), (Harary, 1968), (Chrsutofides, 1975),
and (Berge, 1973). The Moore algorithm was
shown to have a worst case of exponential search
in computational complexity; the Dijkstra algo-
rithm computes shortest paths from a single node
to all other nodes; while Floyd algorithm com-
putes shortest paths for all node pairs. Both the
Dijkstra and Floyd algorithms are of O[n®] in com-
putational complexity. Recently, a modified Floyd
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algorithm was shown to achieve a computational
complexity of O[nlogn] with \/n massive paral-
lel processors (Romeijr and Smith, 1992). With-
out the use of /n parallel processors, its Floyd
algorithm is of O[n3®logn] which is slower than
the original Floyd algorithm of O[n3]. More-
over, aggregation techniques are needed to achieve
the desired degree of parallelism. The modified
Floyd algorithm can only provide approximations
to shortest paths across submodels as macronodes
(Romeijr and Smith, 1992). In this paper, we take
a different approach to improve the Floyd algo-
rithm for distributed traffic simulations.

Two factors contribute to the significant improve-
ment in the speed of the Floyd algorithm. First,
the triple operation described below need only be
computed for adjacent arcs (¢,1) and (I, j) while !

is reachable from 7 and j is reachable from . i
is the shortest path length (delay, or cost) from
node i to node j computed during the kth itera-
tion.

k) _ . k—1) ,(k—1) k—1)
dgj —Ieiﬂ{dg,- ydin +d§|j |
V 1<ijk<n

For traffic networks, not every node or link are
reachable from all the other nodes (or links). For
example, source nodes do not reach each other,
sink nodes do not reach each other, and certain
links and nodes have only one-way traffic. Besides,
most of the nodes or links are not adjacent to each
other. Therefore, the Floyd algorithm may be
modified to take this sparsity in network connec-
tivity into consideration by using the adjacency
relation of nodes and links and performing only
the required triple operations. Figure 1 compares
the original Floyd algorithm with a revised Floyd
algorithm. Both algorithms store shortest paths
between every node pair as a successor matrix.
The total number of updates of the successor ma-
trix needed for the revised Floyd algorithm is con-
siderably less than the original Floyd algorithm in
a sparsely connected network, e.g, a traffic net-
work consisting of arterial streets, intersections,
and freeway segments. Experience on traffic net-
works has shown that the expected improvement
in speed of the revised Floyd algorithm is 10 times
faster over the unmodified algorithm. The gain
of 10-fold improvement in speed can be achieved
without using either distributed or massively par-
allel computing resources.
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Second, the revised Floyd algorithm can be fur-
ther enhanced to provide exact solutions of short-
est paths for all node (or link) pairs using dis-
tributed computing resources. The following dis-
tributed Floyd algorithm will achieve an addi-
tional [m3]— fold in speed.

Let S be an n node traffic network to be decom-
posed evenly into m subnetworks with approxi-
mately n/m nodes in each subnetwork. Assume
that nodes in a subnetwork are adjacent to each
other such that no hole or island nodes are allowed
in each subnetwork. Let I; and O be the sets of
boundary nodes of the k—th subnetwork for which
there is an incoming and outgoing arc respectively.
For a typical traffic network, the size of I} and Ok
are of O[,/ng); where n; is the size (number of
nodes) of the subnetwork (or submodel) Si.

Shortest paths between every node pair in a sub-
model can be computed with the revised Floyd
algorithm in Figure 1 in O[n}]. Referring to Fig-
ure 2, let P;y be a path from a node z in the i—th
submodel to a node y (exit nodes in O; only) in
the j—th submodel. The shortest path between z
and y is simply:

min (P(z,) + P(3,9))

If the shortest paths P(z,j) and P(j,y) are
known, exact shortest path P(z,y) can be com-
puted accordingly. The shortest path P(z,j) is
available from the submodel S;. For P;y, we can
construct an aggregated network (a supermodel)
consisting of only and all the nodes in Iy and O
for k = 1,2,...,m. Given the successor matri-
ces for all shortest paths within each submodel,
and applying the revised Floyd algorithm to the
aggregated supermodel, we obtain shortest paths
for each node pair in the original model, S, in
O[h®], where h = Y7, c(y/7k) = c(v/nm). The
parameter c¢ is the ratio of the expected number
of boundary nodes in a submodel to /n; where
ni is the expected submodel size. For traffic net-
works, we have approximately 4 < ¢ < 5. If all
submodels are perfectly balanced in nodes, i.e.,
ng = n/m, The computational complexity of the
revised Floyd algorithm is O[(n/m)3]; while that
of the supermodel is O[(y/nm)3]. Without using
distributed or parallel computing elements, we can
use a “divide and conquer” approach to achieve an
10m?—fold speed improvement of the Floyd algo-
rithm by computing each submodel sequentially.
If n < m?, the Floyd’s algorithm for the super-
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model can be computed faster than the submodel
and a m3— fold improvement in speed over the
undistributed model, S, can be achieved. Conse-
quently, we conclude that with the distributed and
revised Floyd algorithm, a 10m® improvement in
shortest path computation for real time ATIS or
ATMS is theoretically feasible.
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Figue 1 A Revised Floyd Agorihm

Figure 2 Distributed Shortest Paths Across Submodels

4 CONCLUSIONS

We have concluded that distributed, object-
oriented, traffic simulation is a very promising
technique for IVHS applications; it offers poten-
tial for use in real time ATIS or ATMS appli-
cations. A local greedy algorithm to decompose
a large traffic network into balanced submodels
for distributed simulation is recommended. The
Floyd algorithm is enhanced by skipping redun-
dant triple operations to achieve a 10—fold and
additional m3—fold improvements using m dis-
tributed processors. A technique to obtain exact
shortest paths for the aggregated model from the

distributed submodel is also provided. Future re-
search in distributed/parallel object-oriented traf-
fic simulations should include enhancement and
analysis of various ATIS and ATMS control al-
gorithms, examination of various object-oriented
simulation models for their speed factors (i.e.,
number of objects vs. simulation time) so that ef-
fective distributed/parallel techniques may be de-
rived.
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