Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

MULTI-HOSPITAL VALIDATION OF CRITICAL CARE SIMULATION MODEL

Julie C. Lowery

Great Lakes Health Services Research & Development Field Program
Department of Veterans Affairs Medical Center
P.O. Box 130170
Ann Arbor, MI 48113-0170, U.S.A.

ABSTRACT

The objective of the study reported herein was to
design and validate a general simulation model of a
hospital's critical care units, such that with minor
changes to the model's input variables, the model can
be used to represent the critical care area in a variety of
different hospitals. A model was written in GPSS/H
and validated for four Department of Veterans Affairs
medical centers (VAMCs). The model includes
exponential patient interarrival time distributions and
lognormal length of stay distributions. The results
from this research suggest that a general critical care
model can be written which is valid for multiple
hospitals. The general model described in this article is
easily tailored to the unique patient characteristics and
critical care unit configurations of a given hospital.

1 INTRODUCTION

The objective of the study reported herein was to
design and validate a general simulation model of a
hospital's critical care units, such that with minor
changes to the model's input variables, the model can
be used to represent the critical care area in a variety of
different hospitals. The model can then be used to help
determine critical care bed requirements, given certain
characteristics of a hospital's critical care patient
population (i.e., patient arrival rate and length of stay
for each unit). By using the model to examine the
effects of alternative bed levels on average bed
occupancy and number of emergency turnaways (due to
lack of available beds), decision-makers can select the
bed levels which best meet the hospital's performance
objectives.

A number of simulation models of the critical care
area and other hospital bed services have been
developed for the purpose of determining bed
requirements (Clipson and Wehrer, 1973; Cohen,
Hershey, and Weiss, 1980; Fetter and Thompson,
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1969; Kwak, Kuzdrall, and Schmitz, 1975; Lowery,
1992; Williams, 1983; Zilm and Hollis, 1983).
However, few of them have been validated by
comparing model predictions with actual hospital
performance; and none of them has been validated in
more than one hospital, thus limiting their
generalizability. This paper describes the validation of
a critical care simulation model in four Department of
Veterans Affairs medical centers (VAMCs).

The critical care units included in the model are the
surgical intensive care unit (SICU), medical intensive
care unit (MICU), and coronary care unit (CCU). The
model represents patients' arrival to, and lengths of stay
in, these units, as well as the flow patterns followed by
patients in the event they arrive to find all beds full in
the desired unit. To identify these flow patterns and
common critical care unit configurations (i.e., does a
hospital have separate, specialized units, or combined
units?), a survey was sent to 44 medium-sized, medical
school-affiliated, tertiary care VAMCs. The results,
which were received from 35 VAMCs, show that
patient flows through the critical care units follow one
of four patterns. These four patterns are summarized in
Table 1.

A bed location policy of "accommodate, then bump"
indicates that when a bed is not available in the desired
unit, the patient is accommodated on another critical
care unit. However, if a bed is not available in any of
the other critical care units, then an attempt is made to
identify a patient in the desired unit who can be
"bumped” to the next lower level of care. A policy of
"bump, then accommodate” is essentially the reverse.
First an effort is made to identify a patient in the
desired unit who is eligible for bumping. If one is not
available, the incoming patient is accommodated on an
alternative unit. As an example, a flow chart of Pattern
1, which is for a configuration of two units
(CCU/MICU and SICU) and an "accommodate, then
bump” bed location policy, is presented for SICU
arrivals as Figure 1. It should be noted that "bumping”
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Table 1: VA Medical Center (VAMC) Patient Flow Patterns

Pattern No. No. of VAMCs Unit Configuration* Bed Location Policy
1 13 2 Accommodate, then bump
2 9 3 Accommodate, then bump
3 9 2 Bump, then accommodate
4 4 3 Bump, then accommodate

*A unit configuration of "2" refers to a combined CCU/MICU and an SICU. A unit configuration of "3" refers
to a separate CCU, MICU, and SICU.
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Figure 1: "Accommodate, then Bump" Bed Location Policy for SICU Patients
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a patient does not mean that the patient's care is
compromised as a result of the transfer; only that the
patient would have stayed longer in the critical care unit
if a bed was not needed for an incoming patient.
Patients are not bumped unless they are sufficiently
stable to be transferred to the next lower level of care.

The simulation model of the patient flow patterns
was written in GPSS/H (Henriksen and Crain, 1989).
The remainder of this article describes the process of
defining the length of stay and interarrival time
distributions for, and of validating the model in, four of
the 44 VAMGCs to which the survey was sent. (The
four hospitals were selected based on their ability to
readily provide the data required for conducting the
research.) All four hospitals follow an "accommodate,
then bump” policy for locating beds; three of the four
hospitals have three distinct critical care units; the
fourth hospital has two units.

2 LENGTH OF STAY AND INTERARRIVAL
TIME DISTRIBUTIONS

In developing a simulation model that can be used by
multiple hospitals, one of the objectives is to keep the
major model components as consistent as possible
across multiple hospitals, thereby limiting the number
of adjustments required for a given hospital to use the
model. One of the major components is the shape of
the patient interarrival time (IAT) and length of stay
(LOS) distributions. For a given unit (i.e., SICU,
MICU, or CCU) and a given distribution (i.e.,
interarrival time and length of stay), it is desirable to
keep the shape of that distribution the same for all
hospitals. If so, each hospital need only supply the
values of the distribution's parameters (e.g., mean and
variance) to use the model, rather than develop its own
empirical distributions or try to fit its historical data to
a variety of theoretical distributions.

To identify the theoretical distributions in the four
study VAMCs and to determine if they indeed are the
same across all four, detailed data on admission and
transfer dates and times (to and from the critical care
units in each hospital) were obtained and analyzed from
each hospital's admission/discharge/transfer (ADT) data
base. The data from each VAMC included all
admissions and transfers to the CCU, MICU, and SICU
from October 1, 1988, through December 31, 1988.
This three-month time period may or may not be
representative of the admission patterns throughout the
year; however, the intent here is to identify the general
shape of each distribution, which is assumed to remain
relatively constant over time. To the extent that the
admission rate increases or decreases with the seasons,
or the length of stay increases or decreases with a

change in case-type, these changes can be
accommodated by the values for the mean LOS and IAT
variables. Table 2 presents some general descriptive
statistics on the critical care data obtained from the four
VAMC s, which were used for determining the shapes
of the relevant distributions.

To identify the shape of the required distributions,
the computer package UNIFIT was used (Law and
Vincent, 1983). UNIFIT is an interactive software
program for fitting probability distributions to observed
data. Table 3 presents the hypothesized distributions in
order of best fit, primarily based on the results of the
formal goodness-of-fit tests. However, a review of the
graphical presentations of the density and frequency
distributions revealed that often two of the hypothesized
distributions appeared to represent the sample data
equally well.

The decision as to which of the hypothesized
distributions should be used in the simulation model for
each of the six input distributions required some
attention to a practical issue. The method of sampling
from a given distribution is much more straightforward
for some of the distributions than for others. In
particular, the exponential distribution function has
already been defined as a GPSS/H function, from which
sampling is easily done. Straightforward algorithms are
available for sampling from the lognormal and Weibull
distributions (Law and Kelton, 1982), with a slightly
more cumbersome process available for sampling from
the gamma (Fox and Guire, 1976). An algorithm or
software for sampling from the inverse Gaussian or
Pearson Type V distributions was not located at the
time the study was conducted.

Consequently, it appeared worthwhile to examine
closely the differences between some of the second and
third ranked distributions in Table 3, to determine the
implications of using one of the lower-ranked
distributions to facilitate the sampling process. The
Pearson Type V or inverse Gaussian distribution
provides a better fit than does the lognormal
distribution for MICU LOS in three of the four sample
VAMCs. A review of the density and frequency
figures for VAMCs A and B showed that the lognormal
distribution has a lower proportion of shorter lengths of
stay, and a higher proportion of longer lengths of stay,
then does the sample data (and, correspondingly, the
Pearson Type V model fitted to the sample data).
Therefore, the probable implication of using a
lognormal distribution, rather than a Pearson Type V
distribution, for MICU LOS would be an over-estimate
of the expected occupancy rate and number of
turnaways, as higher occupancies are generally
associated with longer lengths of stay. Assuming that
decision-makers would prefer to err on the high side of
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Table 2: Descriptive Statistics on ICU Admissions in
Four VAMCs, October - December 1988
VAMC
Unit Statistics A B C D
CCu Beds 7% 4 5 7
Total admits 94 89 145 102
Avg LOS (Days) 3.1 2.4 2.5 3.1
MICU Beds - 6 8 7
Total admits 62 97 114 78
Avg LOS (Days) 33 3.8 3.1 4.3
SICU Beds 11 10 8 8
Total admits 165 142 108 122
Avg LOS (Days) 4.4 4.1 6.8 3.4
* CCU and MICU beds are combined into one unit.
Table 3: Fit of Hypothesized Distributions
VAMC
Data Set Order of Fit A B C D
CCULOS 1 Lognormal Gamma Lognormal Gamma
2 Gamma Lognormal Gamma Inv Gauss
3 Lognormal
MICU LOS 1 Pearson V Pearson V Lognormal Inv Gauss
2 Inv Gauss Inv Gauss Gamma Lognormal
3 Lognormal Lognormal Pearson V
SICU LOS 1 Inv Gauss Inv Gauss Inv Gauss Pearson V
2 Lognormal Lognormal Pearson V Inv Gauss
3 Gamma Lognormal Lognormal
CCU IAT 1 Exponential Exponential Gamma Exponential
2 Gamma Weibull Exponential Gamma
3 Weibull Gamma Weibull Weibull
MICU IAT 1 Exponential Exponential Exponential Gamma
2 Gamma Gamma Weibull Exponential
3 Weibull Gamma Weibull
SICU IAT 1 Gamma Gamma Gamma Gamma
2 Weibull Weibull Weibull Weibull
3 Exponential Exponential Exponential Exponential

Note: "Inv Gauss" refers to Inverse Gaussian.
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resource predictions (i.e., build slightly more beds than
are required, rather than not build enough), use of the
lognormal distribution for MICU LOS may produce
satisfactory results.

A comparison of the density and frequency figures
for the inverse Gaussian and lognormal models fitted to
the VAMC D MICU LOS data revealed that both
models provide a good representation of the data.
Furthermore, given that the lognormal model is the best
representation for the VAMC C data, there is support
for selecting the lognormal model for representing
MICU LOS in the simulation model.

The inverse Gaussian distribution appears to be the
model of choice for the SICU LOS data. However, a
review of the density and frequency figures for the
inverse Gaussian and lognormal models across all
VAMCs revealed that the fit of these two models to the
data is very similar. Given the greater ease of sampling
from a lognormal model than from an inverse Gaussian
model, the lognormal model was used for representing
SICU LOS.

The lognormal model is the most representative
model for CCU LOS for two of the four VAMCs; but
for the other two VAMCs, it provides a similar fit to
the gamma model, judging from the density and
frequency figures. Again, because of the simplicity of
sampling, the lognormal model was selected to
represent CCU LOS.

The exponential distribution is clearly the
distribution of choice for the CCU and MICU IAT
data. For the SICU IAT data, the gamma distribution
appears to provide the best fit, judging by the results of
the formal goodness-of-fit tests. However, given the
greater ease of sampling from an exponential
distribution than from a gamma distribution, the
exponential distribution was chosen for representing
SICU IAT.

In summary, then, the six input distributions selected
for use in the simulation model are as follows:

CCU LOS: Lognormal
MICU LOS: Lognormal
SICU LOS: Lognormal
CCU IAT: Exponential
MICU IAT: Exponential
SICU IAT: Exponential

However, to ensure that the selection of these
distributions over some of the better fitting distributions
would not adversely affect the model's validity to a
significant degree, model validation (see the mnext
section) was repeated with the gamma distribution for
CCU LOS for VAMCs B and D, and for SICU IAT for
all VAMCs.

3 MODEL VALIDATION

Validation refers to the process of determining that
the model is an accurate representation of the real
system. One of the most recommended approaches to
helping validate a simulation model of an existing
system is to compare the outputs of the real world
system with those from the model (Shannon, 1975, p.
227). The outputs of primary interest from the critical
care simulation model are the occupancy (or average
daily census) of each of three critical care units (i.e.,
CCU, MICU, and SICU) and the number of turnaways
due to lack of available beds. The four VAMC data
sets used for identifying the L.OS and IAT distributions
were also used to calculate the average daily census
(ADC), by day, for each VAMC, during the time
period October through December 1988. A two-sample
t test was used to compare the actual ADC from the
four VAMCs with the ADC produced by the simulation
model, using the VAMCs' LOS and IAT data, as well
as their policies for locating beds, as model input.

The ¢ test requires that the sample observations be
independent of one another, which, unfortunately, is
not the case for the ADC of a unit from one day to the
next. That is, a unit's census on one day is highly
correlated to the census on the immediately preceding
day, and is likely to be somewhat correlated to the
census two days earlier. Therefore, a decision must be
made regarding the interval to use in selecting
observations from the sample of ADCs, such that the
observations are not highly correlated with one another.
The UNIFIT computer package produces a correlation
plot and scatter diagram of the sample data, which can
be used to make an informal assessment of whether the
observations in the sample are independent.

Correlation plots and scatter diagrams of ADC were
produced and reviewed for each critical care unit in
each of the four VAMCs, including one set of figures
for the actual data obtained during the study period (85
days), and another set of figures obtained from a
simulated period of 360 days, following a 90 day
warmup period. (A three-month warmup period
allowed sufficient time for the simulation to reach
steady-state.) Plots were produced at intervals equal to
one (every day), two (every other day), three (every
third day), and four (every fourth day). Based on these
results, an interval of width three was selected for
defining the validation samples. This interval size
appeared to eliminate the correlation in the majority of
the samples (16 out of 23, or 70 percent), with the
remainder requiring an interval of width four. Using
four as the interval width, however, would produce a
sample size of only 22 for the actual data from the
VAMCs; and the reduction in correlation obtained from
increasing the interval width from three to four did not
appear to be substantial in many of the samples.
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Table 4: Results of Model Validation

Lowery

Actual Data Model Data Comparison of Actual and
(n=29) (n=240) Model Means

Mean S.D. Mean S.D. T-stat P-value
VAMC/Unit ADC ADC ADC ADC =Pr{ T stat >}
VAMC A
CCU/MICU  5.31 1.39 5.38 1.67 =22 >.80
SICU 8.66 1.78 8.28 2.40 .82 41
VAMCB
CCU 2.34 1.26 2.41 1.19 -.30 17
MICU 3.90 1.90 3.75 1.57 47 .64
SICU 6.86 2.08 6.60 2.16 .61 .55
VAMCC
CCU 4.34 1.59 4.05 1.19 1.19 .24
MICU 5.72 1.39 6.02 1.76 -.88 .38
SICU 6.31 1.07 6.24 1.69 22 >.80
VAMCD
CCU 3.83 1.14 3.54 1.78 .86 .39
MICU 3.03 1.55 3.31 1.70 -.85 .40
SICU 4.45 1.38 4.21 2.06 .61 .55

In summary, then, the validation consisted of
comparing the following: actual ADC, October through
December 1988, every third observation (n=29); and
model ADC, two-year simulation (after three-month
warmup), every third observation (n=240). A length
of two years was chosen for the simulation run in order
to generate a sufficient number of randomly sampled
observations from the LOS and IAT distributions for
obtaining the average values actually experienced by the
sample of VAMCs. The results of the validation are
presented in Table 4. For all of the comparisons, the
P-value is > .20, suggesting the ADCs of the two
sample populations are not significantly different. That
is, the hypothesis that the means of the two populations
are the same cannot be rejected for all of the units in all
of the sample VAMCs. The statistical tests provide no
evidence of model inadequacy.

Turnaway data are not routinely collected within the
VAMC s, and were not available during the same time
period for which the ADC were obtained. However,
turnaway data were collected by the participating
hospitals for this study during the time period April
through June 1989. Unfortunately, a rigorous test for
the equality of the number of turnaways could not be

performed, because of an inadequate sample size of the
actual turnaway data, which were collected during a
period of three months. Unlike the ADC observations,
which are measured daily, the number of turnaways is
generally measured over a time period of at least one
month, because of the small numbers that occur. Thus,
the sample size would be only three. Consequently, an
informal comparison of actual versus model turnaways
must be used for the validation. The results of this
comparison are presented in Table 5.

Table 5: Turnaways/Month: Actual versus Model

VAMC Actual Model
A 7 2
B 0 0
C 0 1
D 1 0

One of the reasons for the large discrepancy in
VAMC A between the actual number of monthly
turnaways and the number predicted by the model (7
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versus 2, respectively) is that the admission rate for the
time period during which the actual turnaway data were
collected (April through June 1989) was considerably
higher than the rate used as model input (401
admissions versus 321, respectively). Recall that the
admission rate used as input to the model was taken
from the actual admission rate during October through
December 1988, in order to validate the ADCs
produced by the model. (Actual ADC data were
collected during this same time period.) The model
was rerun for VAMC A using the admission rates for
April through June 1989, and the model predicted a
total of five turnaways, which more closely resembles
the number that actually occurred during that same time
period.

Finally, Table 6 presents the results of comparing the
actual ADCs with the model ADCs when two of the
CCU LOS distributions, and all of the SICU IAT
distributions, in the model follow a gamma
distribution, rather than a lognormal and exponential
distribution, respectively. Three combinations using
the gamma distribution as an alternative were tried: (1)
gamma SICU IAT, with all other distributions
remaining the same; (2) gamma CCU LOS for VAMCs
B and D, with all other distributions remaining the
same; and (3) gamma SICU IAT, gamma CCU LOS
(VAMCs B and D), with all other distributions
remaining the same. The results of the ¢ tests show
increases in the value of the T statistic for some of the
units in some of the VAMCs, and decreases in the
values for others. For any given VAMC, however,
there is no overall decrease in the values of the T
statistics. One can conclude, therefore, that use of the
gamma distribution does not appear to improve the
validity of the simulation model.

4 CONCLUSION

The results from this research suggest that a general
critical care model can be written which is valid for
multiple hospitals. The general model described in this
article is easily tailored to the unique patient
characteristics and critical care unit configurations of a
given hospital. Specifically, the model requires the
following data as model input to tailor its use to a given
hospital:

(1)  Average IAT of patients, for each critical care
unit (calculated directly from total admissions
during a given time period)

(2) Average LOS of patients, for each critical care
unit

(3) Variance of LOS, for each critical care unit

(4) Number of beds in each critical care unit

(5)  Unit configuration (CCU and MICU separate

or combined?)

Variables (1), (2), and (3) define the parameters of the
IAT and LOS distributions. (Note that the exponential
distribution is a single-parameter distribution, because
the mean is equal to the standard deviation.) The
values for each of the above input variables are easily
supplied by the user, and do not require rewriting any
of the model's GPSS/H code.

The research also demonstrates the benefit of using
theoretical distributions as model input, rather than
empirical distributions. If it can be demonstrated (as
was done in this research) that a theoretical distribution
works well for multiple facilities, it is easier for each
facility to simply enter the distributions’ parameters as
model input, rather than develop its own empirical
distributions from historical data. Furthermore, the
research demonstrated the benefits of conducting a
sensitivity analysis of the model's validity to different
distribution types. The results of the analysis showed
that a model with "simpler" input distributions (in
terms of modeling) work as well as a model with more
complicated input distributions, even though the more
complicated distributions provide better representations
of the actual input data.

Additional research is needed to provide more
confidence in the model's ability to accurately represent
the critical care area in different types of hospitals,
including hospitals with different bed location policies.
Current research involves expanding the model to
include intermediate care units, and to validate the
model in approximately 40 VA medical centers.
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