Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

SIMULATION IN SUPPORT OF SOFTWARE DEVELOPMENT

Darby F. McBeath
William S. Keezer

Mead Data Central, Inc.
P. O. Box 933
Dayton, Ohio 45401, U.S.A.

ABSTRACT

This paper discusses supporting the development of
computer applications with simulation models from the
early design phases through implementation. It presents
a number of techniques we have found useful to
communicate with customers and to build models of
application systems. The greatest value in simulating
developing systems is bringing all the information
concerning a system to a single focus. Simulation
support also greatly reduces the development time.

1 INTRODUCTION

For several years we have been supporting the design
and development of software application systems with
discrete event simulation. Jain (1991) considers the use
of simulation to support performance analysis a difficult
option, and lists a number of pitfalls and potential
problems. The support of software development holds
similar problems in our experience. However, we have
been successful in our efforts to build fairly large and
complex models in the same time frames as the systems
under development.

Our motivation and goals are similar to those listed by
Park and Getz (1992), though in a different environment.
Our primary concerns are to analyze both system design
and implementation with respect to resource
requirements and performance measures. The models
attain relatively large size over time through incremental
growth, and, because the model schedule is parallel to
the development, time constraints are often severe,
particularly in the later stages of a project.

Though much has been written, for example, by
Martin (1985), and by Sommerville (1992), on careful
and accurate design, particularly with respect to logic
flow and program module interaction, documented ways
of looking at designs from a performance standpoint are

1143

few or non-existent. For example, McManus (1987)
only considers performance of the most critical systems
after the software is developed and is in testing. Many
times intuition and experience are used to provide the
desired judgement on design performance rather than
quantitative techniques, and Card (1990) explicitly states
that designs must be measured subjectively. Tanik
(1991) uses Petri Nets to model system control for
concurrency and interaction, but not for the system
performance. However, by using simulation models of
the designs, we can increase the accuracy of early
estimates of performance and even provide early capacity
estimates to support hardware procurement. In addition,
we are able to anticipate problems and often indicate
design changes before programming starts, thus saving
effort at an early stage of development, rather than
waiting unti] after the system is implemented and tested.

We also were able to use our models to make capacity
requirement forecasts, estimate the behavior of the
system from a user perspective, and help establish
software and hardware configurations.

In this paper we discuss the environment in which both
the computer applications and the models are built, the
modeling process in general, the assumptions and
simplifications used in modeling in detail, and some
results and conclusions.

2 SOFTWARE DEVELOPMENT ENVIRONMENT
2.1 Software Development Environment

The software created by the developers provides the
features and services of our on-line information service
LEXIS® / NEXIS®. Thus both the functionality and the
performance of the software are critical, and a large
number of the departments in the company have an
interest in or a need for the software being developed.
The main customers of the model results are developers

1144 McBeath and Keezer

and the production or information delivery system
support groups. The developers are mainly interested in
design feasibility early in the process and performance in
the later stages. The production support people are
interested in capacity issues and platform requirements
from the beginning. Additionally, the groups that will
use or market the product are as interested as the
developers in the model results. Often they are not
technically sophisticated, but must understand how the
models work in general and the significance of the
requirements, assumptions, and results, especially, as the
modeling results may impact their planning for rollout of
functions or addition of new features.

Many of the challenges we faced resulted from the
environment and organization of work used by the
software developers. Although the overall design is set
early in a project, the actual implementation may vary
significantly from the available documentation as
problems are encountered and resolved. Especially
during rapid development, the project documentation is
scarce, and often out of date. The challenge then
becomes one of keeping up with the changing designs
and implementations.

Large projects are split among teams that develop
functional units independently of each other. In addition,
the membership and responsibilities often shift over time.
This makes keeping track of the key sources of
information an interesting problem at times. One
solution was to develop good rapport with project
leaders, who are generally the organizationally most
stable participants.

Early in a project, the software developers may find
the requests for design data bothersome. We found that
positioning ourselves as having a mission of assisting
them was very important. We were also fortunate in
having strong management support for our work, both in
the modeling area and in the overall software
development area. This enabled us to easily obtain the
desired information early in the process, before we had
shown the utility of our work. Because we were
sufficiently successful in our early efforts, all subsequent
significant changes were brought to us for analysis.

The single greatest challenge was obtaining parameters
for resource utilization in the model. Ideally such
information would come from test results. However, we
found that early testing of software is only for
functionality, and that unless critical to the development
effort or specifically required, internal instrumentation of
the software modules was rarely created to measure
resource usage or response times. At this stage, the
Jjudgement and experience of the modelers is important
to providing reasonable estimates and place-holder
values. Occasionally, there was a benchmark obtained
on a module of the system, but these generally require

analysis and recalibration to provide a good estimator for
the model being developed. Once integration testing
begins, performance information is much more readily
available and can be incorporated to help calibrate the
model. Since application development and preliminary
testing is often carried out on platforms other than the
final production platform, any parameter used in the
model based on these results must be recalibrated to
reflect the final implementation platform.

2.2 Model Development Environment

The models have a dual purpose; in addition to
supporting development, they have to provide an
accurate representation of the system for the production
departments to use as performance analysis tools.
Therefore, unlike Sussman in Crain, et al, (1992), we
have to obtain predictive numerical results and answers,
in addition to the insights and indicators of system
behavior. This places a great importance on model
validation, which, as just described, is often quite
difficult until very late in the development cycle.

We are fortunate in the support we have available.
Early in the development process, both the human
factors group in the company and the modeling
department analytical specialist were able to make
estimates of the potential user behavior by extrapolating
current user behavior (Keezer, Fenic, and Nelson,
1992). This allowed us to simulate realistic work load
inputs from the start.

Since one of the goals of the modeling work is to
create models that are independent of the simulated
hardware platform, we had to have some means of
creating parameters to describe the platform upon which
the software is being implemented. Such parameters
include the power of the CPU and the operating
characteristics of the disk storage systems. Disk
operating parameters are obtainable from the
manufacturers in a reliable form. However, CPU power
is subject to considerable interpretations by the
manufacturers and by those producing benchmarks. We
were very fortunate to have a specialist in benchmarking
in the department, and he was able to provide us with
measures of CPU power that could be used as ratios to
a base value to adjust CPU costs in the models.

The members of the modeling team included one or
more persons with little or no modeling experience.
Their lack of experience was an asset, because it
frequently forced us to clarify our own thinking in order
to explain the work to them. Because everything was
new to them, they frequently found problems that we had
missed. From this experience, we recommend bringing
in people new to modeling as members of the team. Co-
op students or summer interns are one possible source.

Simulation in Support of Software Development 1145

Model development has been on SLAMSYSTEM®
Release 3.0, from Pritsker Corp.,, on PC’s
(Pritsker,1986). On rare occasions model runs would be
made on a mainframe when time was critical. For the
size models we were running, we generally experienced
a run time on the order of 12 to 24 hours. In an
environment with severe time constraints, these kind of
run times create a need for careful planning of work, and
even then, when debugging problems occur, schedules
may be impacted. Several times over the development of
models, the compiled SLAMSYSTEM boundaries were
reached and exceeded. Pritsker Corp., in all cases, was
very responsive in sending us new compilations to allow
the expanded models to run.

3 MODELING PROCESS

3.1 Overall Modeling Process

The modeling method used by our department is an
iterative process. As described in (Withers,1992), the
process steps for developing a model are the following:

Understand the customer needs.
Understand the system to be modeled.
Construct a conceptual model.
Review customer concept .

Develop a model.

Review model code .

Run model and analyze results.
Present results.

P NAND WD -

Communication with customers is most important in
defining the goals of the analysis. "Every study must
begin with a clear statement of the study’s objectives;
without such a statement there is little hope for success.”
(Law and Kelton, 1982) The statement of the objectives
should not be done just at the beginning, but should be
revisited throughout the project. The eight steps above
are iterated many times, especially steps numbered 2-6
when changes and expansions of model detail are
occurring. Once the concepts of the design of the
software project are understood, the conceptual model
can be constructed and reviewed by the customers. Itis
important at the concept review to have ALL the
interested groups, especially the non-development
groups, in the meeting. Our experience has shown that
this is a major opportunity to clarify misunderstandings
between groups and insure that everyone agrees on the
overall design and goals of the software system. Once
the model concepts are agreed upon, the model code can
be developed and reviewed. The people most likely to
use the model in the future and people knowledgeable of
the language used to construct the model should

participate in the code review. Next, the model can be
run and the results analyzed. The final step is to share
the results. In all results presentation, the model
assumptions should be presented again, then the results
will be understood and believed. All questions and
comments were welcomed, and any issues were visibly
recorded by an assigned scribe (a member of the
modeling group).

Model validation at the conceptual phase is essential in
building a model, and begins by communicating with the
model customers. During information gathering,
extracting information from the software designers and
developers was difficult. Little design documentation
existed, which caused us to rely on one-on-one
discussions with the design experts.

One tool we have found to be very valuable for
communication throughout the project is the use of flow
diagrams. An example appears in Figure 1. The flow
diagram follows high level logic of the model flow
closely, but does not deal with the modeling details of
reserving and using resources. We used a number of
conventions in our flow diagrams. We always indicated
the physical platforms involved in the flow, such as the
user terminal, the new system platform, and other
systems. Generally, we would indicate the overall
physical configuration as a separate diagram (not
shown), to provide an overall orientation before
discussing the details of the transaction flows. Every
data movement had a separate arrow between the source
and the destination for that movement. This had the
value of indicating how many times data had to flow
between modules, terminals, or other systems to
accomplish the purposes of the transaction. Any process
that was initialized, used and terminated on a per
transaction or per session basis was indicated by a
rectangle. Permanent processes such as servers used by
all transactions were indicated by circles. Hardware
adaptors for communications or other details of the
platform were not indicated. Disks were represented by
one symbol for each functional use, such as spooling or
data storage. If there were more than one spool in the
system or more than one file type, there would be a
symbol for each.

In this hypothetical example shown in Figure 1,
transactions are generated at the user terminal, and pass
to the platform via Path 1, where the communications
processing may be simulated by modules A and B. Both
would be software modules used to process the message
at the central processor level. The transaction flow
inside the platform is described in the following
sequence:

1146 McBeath and Keezer

Hardware Platform

User

Terminal

Figure 1. Example of a Flow Diagram. The large, unlabeled rectangle represents the hardware platform upon
which the software system is to be implemented. The lettered boxes, A-F, represent software modules. The
rectangular boxes are programs which are initialized, executed, and terminated. The circle, F, is a program which
is available all the time. G represents a logical disk operation. The numbers 1-12 represent interaction and

communication paths.

Path 2, request to module C from module B

Path 3, message to module D from module C

Path 4, Disk 1/0 by Module D

Path 5, request to Server F from module D

Path 6, return information to module C

Path 7, return information to module B

Path 8, request further information from module C

Path 9, request information from remote system

Path 10, return information to module C

Path 11, return information to module B.

Finally the transaction would return to the user terminal
via Path 12. In the cases where there are more than one
passage of information in one transaction, the path
arrows are replicated to show this, such as (2,7) and
(8,11).

Using flow diagrams proved to be an excellent way to
describe the software applications and configuration of
the system modeled. The customers, who have minimal
modeling knowledge, can see the flow of the transactions
in much the way they think of them, and in addition see
interactions of which they may not have been aware and
the overall picture of what is to be modeled. We have
found that distributing these flow diagrams to the
developers helps in obtaining more knowledge about
what is actually being designed and developed, and the

customers have a device for communicating change and
additions to the design.

Cycling many times through this process from defining
designs and requirements to delivering results has taught
us much. Meeting with the developers of the software
project early in the process forces them to pull together
ideas in order to answer our questions. Meeting with all
customers of the model often brings the entire project
team together and closes some of the communication
gaps in the designs.

For large development projects, where many complete
cycles are necessary, we found that a cycle lasting six to
eight weeks from concept to results provides the most
benefit to the customers. If the cycle lasts more than
eight weeks the customers may have forgotten many of
the model assumptions and inputs as well as the details
of the requested changes and additions. In addition, the
software development cycle moves rapidly, and a model
cycle of longer than eight weeks will not answer
questions in a timely manner. Because of the validity
checks and the necessity to conduct reviews, logic
changes in the model generally required a minimum of
six weeks to accomplish. @ We therefore created
incremental releases requiring about six to eight weeks
of work, prioritizing the desired changes. Following a

Simulation in Support of Software Development 1147

model release and results presentation, a series of "what-
if* requests are frequently received. These include
configuration changes, additions to the application
system, or parameter changes.

"No good decisions are made from results and analysis
that no one understands. "(Garrambone, 1992)

If the customers of models do not understand the inputs
and assumptions going into the models, there is little
hope they will understand or believe the analyses of the
results. To assist the customers of the models in this
understanding, we created a format for the results
reviews that was never varied. We always presented the
changed input assumptions and critical assumptions,
whether changed or not, as the first section of the
review. We then presented at a high level all the new
logic introduced into the model. At both these steps all
questions were invited and answered or recorded for
later answer. Once we had an agreement that the inputs
and changes were correct, we then presented the results
and discussed them. This procedure is especially
valuable when the results may not be the answer
desired. By obtaining the buy-in up front as to the
validity of the inputs and logic, the participants are less
likely during the presentation of results to argue with
the answer simply because they do not like it. In order
to avoid giving the results before all assumptions were
agreed on, we npever handed out copies of the
presentation foils ahead of time or at the meeting. We
passed around a sign-up sheet from which we then sent
out copies of the foils.

3.2 Level of Detail and Assumptions

A more detailed model is not always the better model.
Developing a detailed model requires more development
and debugging time. The more detailed the model the
more data needs to be gathered for the model inputs.
Furthermore, adding details and making assumptions
about them when the data is unavailable or unknown
could add unnecessary inaccuracies. As Sussman in
(Crain, et all, 1992) points out, we must model the
appropriate level of detail. Generalizing and making
assumptions simplifies the model.

The sections of the model, where more analysis is
required, should be expanded into more detail when
needed by the customers. The approach we took from
the beginning of the model development was to put
generic modules as placeholders into the model where
the details were unknown. These placeholders would use
an estimated amount of the system resources. As the
designs were created, the details could be easily
incorporated into the placeholders’ positions.

The following describes some of the areas where we
decided to simplify models and make assumptions about
the details.

3.2.1 Components outside the Application System
Platform

Our policy was not to determine the resource
consumption for those components outside the platform
of interest. Such components as the work at the user’s
terminal or the work on a remote system were
represented by fixed delays. If the user’s terminal had
software modules that interacted with the software on the
hardware platform, estimated delays were incorporated
for the processing times, but since the user terminal was
assumed to be a single threaded, single user system, no
resources or competition for resources were modeled.
In the case of remote systems providing information, we
generally had measures of the elapsed time to provide
that information, and incorporated it as a delay in the
processing.

3.2.2 UNIX - Operating System Simplifications

Some of the platforms under analysis ran the UNIX
operating system. We decided not to distinguish between
system CPU time and user CPU time in models, and
therefore did not model the UNIX kemel. To do so
would have required modeling details of kernel locking,
priority scheduling, and time slicing. We would have
had to estimate the proportion of user to system work for
every module, thus doubling the number of CPU
parameters in the model. System overhead, such as
daemons and process accounting, was built into the CPU
ratings we used, as was multiprocessing overhead in
multiple CPU machines.

3.2.3 CPU Utilization

When projects begin, the software being modeled does
not always exist, which forced us to make assumptions
on the amount of CPU time each module would need. As
the software was developed, we did not add any more
detail, such as explicitly modeling subroutines. Our
purpose was always to focus on the overall module
behavior and the interaction between modules.
Therefore, we refined our assumptions by running the
code and extracting the measured CPU processing times
for each software module from the system statistics
reports. This approach kept the models simple and
accurate for the intended purpose.

1148 McBeath and Keezer

3.2.4 Process Scheduling

We had insufficient time and resources to model the
multiprogramming and scheduling aspects of the UNIX
operating system. We made the simplification that when
an entity entered a simulated process, it would enter the
queue for the CPU and stay in memory utilizing the
CPU until it was done. This removes the time-slicing
aspects of the operating system from the model. The
impact of this would be on the distribution of the
response times. The overall capacity requirement would
be the same.

3.2.5 Disk I/O Operations

To simplify the models, we decided not to model disk
1/0 operations in detail. We used the manufacturer’s
average seek and latency times and values for the
;ransfer time per character, as constants all at the spindle
level. We assumed controllers were fast enough to never
experience contention from the command and data
transfers, and also assumed that controllers could have
more than one outstanding operation. We also assumed
that if a disk spindle were available it was the one to be
used. This allowed us to avoid modeling data placement
details.

3.2.6 Memory Allocation and Paging

Modeling the memory management process was too
much detail for the scope of our models. We made the
assumption that processes would not have to wait for
paging, and we did not concern ourselves with memory
allocation after the earliest releases of the model, in
which we found that memory was not a constraint in our
systems.

3.2.7 Data Base Management

Data base management systems, especially relational
managers, are often considered to be major consumers
of CPU resources and a source of response time
increases. In our models, we created a fairly detailed
sub-model of a relational manager, and simulated the
behavior of non-relational managers as part of the
simulation network. The relational manager sub-model
was designed and built to be independent of the relational
structures and operations for a given model, and to be
easily modified to model relational managers other than
the one of interest. This effort was well worth while,
because by properly modeling the relational managers,
we were able to place a proper perspective on their
resource consumption and response time impacts. In one
application system, though they were not trivial

consumers of resources, they were not the resource hogs
that folk lore often suggests they are.

3.3 Specific Techniques

Many techniques are developed and reused throughout
each modeling project. This section describes a few of
the techniques we have used.

3.3.1 Creating Hierarchical Sub-models in a Non-
hierarchical System (SLAMSYSTEM Release 3.0)

The sub-modeling technique was created because we
wished to keep the number of entity attributes as small
as possible. We found reusing attributes in a submodel
accomplished this need. The secondary goal was to
create a reusable submodel that was easily incorporated
into other system models. The first step was to copy the
entity entering the submodel and its attributes. The
copied entity would then enter the submodel, where its
attribute space could be reused. The main entity would
wait until its copy had finished execution in the
submodel. Any information that the main entity would
need at termination of the copy would next be obtained.
Then the copy was terminated, leaving the main entity to
continue throughout the rest of the model.

3.3.2 Modeling Communication Lines in an On-Line
Transaction Processing (OLTP) System

We modeled individual sessions to ensure that we
measured the utilization of the communication lines to
the platform box, and that we guaranteed a simulated
user was connected to the system through the same
communication line resource throughout the session. To
accomplish this, we created an array of the
communication line indices with an indicator of whether
they were free or in use, and by which entity. The
entity, which represented a user session, was assigned
the first available communication line. The index of this
line was stored in an attribute and remained constant
throughout the simulated session. At the termination of
the entity, the communication line was marked available
for reuse. This created a very accurate simulation of a
communications pool.

We did not model communications protocols
specifically. For asyncronous communications, we
adjusted the effective data transfer rate to account for the
start and stop bits and the inability of the software
drivers to place data on the line at full bandwidth. For
X.25 communications, we calculated the number of
packets each transmission required, added 9 bytes of
packet overhead for each packet, and then calculated
delays based on a bandwidth utilization recommended by

Simulation in Support of Software Development 1149

the telecommunications engineers. For Bisynchronous
communications, we adjusted the available bandwidth to
account for polling, selecting, and acknowledgement
overhead.

3.3.3 User Behavior Characterization

In an OLTP system each of the transactions modeled
require different amounts of system resources, which
means variations in user behavior can have a major
impact on system resources. In the aggregate, users are
fairly consistent, but individually have highly variable
user behavior. Therefore, we needed a stochastic process
to simulate user behavior in terms of transaction choices.
The process we used, a transition matrix application, is
found in Keezer, Fenic, and Nelson (1992).

3.3.4 Quickly Modeling Configuration Changes

The responsibility of the Systems Modeling group is to
analyze systems on specified configurations. Based on
the results there may be a choice to try a different
configuration or even change the type of platform, thus
changing the characteristics of the model’s CPU
processing times. By using a base CPU power rating and
calculating the CPU processing times at the start of the
simulation, the simulated platform could easily be
changed. The calculation is based on the ratio of the
CPU power values of the base and simulated platforms.

3.3.5 Print Delivery

Print despooling was modeled as two concurrent
interacting processes. One process despooled data from
a disk spool to a buffer area that was then delivered in
smaller increments. The emptying process, which
delivered the data to a printer, checked the large buffer
contents, and issued a request for more data as
necessary.

3.3.6 Initial Condition Bias and Analysis of Results

Because we were performing a steady state simulation,
we were interested in removing the initial condition bias.
We used the detection of initial-condition bias and data
deletion techniques as described in Nelson (1991). We
also used the analytical techniques as described in the
same paper to analyze the results.

4 RESULTS
4.1 Impact to Projects

"The knowledge gained about a system while designing

a simulation study may prove to be invaluable to
understanding how the system really operates as opposed
to how everyone thinks it operates. "(Shannon,1992)

Most of the benefits of the modeling effort are realized
in the first few steps during information gathering. As
a result of the modeling efforts, numerous and extensive
changes occurred in the development of the systems from
the earliest stages. In several cases, the initial designs
were shown to have severe capacity or performance
impacts before application code was created. This
caused a number of beneficial design changes at a much
earlier than usual stage in development. In one
outstanding case, the entire project was re-oriented as a
result of the analysis of the capacity requirements of the
initial design. We found that design flaws could surface
after development had started, wusually due to
implementation choices or requirements not being
compatible with the design or not achieving the expected
capacity and performance goals.

Numerous bottlenecks in the flow between modules
were identified and corrected, prior to testing.

As new features and functions were proposed, we
were able to estimate their impact on capacity and
performance and assist in their correct placement and
implementation.

There were a number of capacity and configuration
questions answered throughout the development process,
both as to the amount of CPU power required and the
amount of disk capacity. Many of these efforts were on
a quick ad hoc basis. Quick turnaround was possible
because of the modularity and high degree of
parameterization of the models. Some efforts were made
to estimate memory requirements, but in our systems this
was the least constraining resource and the most difficult
to model.

We were told by senior management that we had
reduced the development time by a factor of 2 to 4.

4.2 Documentation

Throughout the development process, the presentation
foils, the records of the configuration changes, the flow
diagrams, our own documentation of all parameters
used, and other model documentation provided a
resource that continued to be referred to by the
developers during testing and design changes. This
became the single central source of all information on
the systems being developed. This may be the single
greatest contribution of a simulation project. It was
especially valuable since we made an effort to keep it
current with the actual rather than the formally
documented design.

1150 McBeath and Keezer

4.3 Further Uses

There are three uses for a system model after it has been
developed. One, production analytical departments can
use it to analyze performance questions both actual and
hypothetical. Since our models are highly
parameterized, questions of platform choice, function
placement, system load, and configuration can be easily
answered. Two, it can provide a theoretical
performance target for the later stages of development
when the system is under test. As a predictive tool at
this stage, models are not as valuable; developers can
sometimes change and test configurations faster than
modelers can alter model logic. Third, it can provide a
base of modeling code for assisting new projects,
especially those that are offshoots of the current project.

5 CONCLUSIONS

Discrete event simulation:

s Provides insight to the performance of designs
before any programs are developed.

s Gives hardware planners capacity and configuration
information at a very early stage, allowing longer
lead times and greater confidence in hardware
procurement.

s Describes the system performance from the users
perspective, showing where there are problems in
transactions or communications.

s Shortens the development time frame with early
detection of problems and decreases the effort on
code that must be reworked due to design
problems.

Important ideas to remember:

» The modeling process must be approached
incrementally from the start, with cycles of 6-8
weeks to develop new, changed, or more detailed
simulations of the software system.

= Care must be taken to communicate frequently and
accurately with the developers.

®= It is essential that documentation be properly
maintained.

Discrete event simulation has a great value in providing
support for large software development projects, and
perhaps its greatest value lies in the integration and
documentation of all the designs and subdesigns in one
place and revealing their various, sometimes unexpected,
interactions.

ACKNOWLEDGMENTS

We wish to acknowledge the many fruitful discussions
with the members of the Systems Modeling Department
concerning the models during development. Our thanks

also to Jim Robinson, Jack Eddington, Neal Keller,
Linda Showalter, and Dave Withers for reviewing this
paper during preparation. Their comments were helpful
and very much to the point.

REFERENCES

Card, D.N. and Glass, R.L. 1990. Measuring Software
Design Quality. Englewood Cliffs, New Jersey:
Prentice Hall.

Crain, R.C., et al 1992. Twenty-Fifth Anniversary
Keynote Address. Proceedings of the 1992 Winter
Simulation Conference, Vol. 25, ed. Swain, J.J.,
Goldsman, D., Crain, R.D., Wilson, J.R. 3-33.
Baltimore, MD: Association for Computing Machinery.

Garrambone, M.W. 1992. An Overview of Airland
Combat Modeling and Simulation. Proceedings of the
1992 Winter Simulation Conference, Vol. 25, ed.
Swain, J.J., Goldsman, D., Crain, R.D., Wilson, J.R.
1130-1138. Baltimore, MD: Association for Computing
Machinery.

Jain, R. 1991. The Art of Computer Systems
Performance Analysis. New York: John Wiley and
Sons.

Keezer, W.S., Fenic, A.P., and Nelson, B.L. 1992.
Representation of User Transaction Processing
Behavior with a State Transition Matrix. Proceedings
of the 1992 Winter Simulation Conference, Vol. 25, ed.
Swain, J.J., Goldsman, D., Crain, R.D., Wilson, J.R.
1223-1231. Baltimore, MD: Association for Computing
Machinery.

Law, A.M. and Kelton, W.D. 1982. Simulation
Modeling and Analysis. New York: McGraw-Hill Book
Co.

Martin, J.R. 1985. System Design from Provably Correct
Constructs. New York: Prentice Hall +.

McManus, J.I. 1987. "How Does Software Quality
Assurance Fit In?" Chapter 2 in Handbook of Software
Quality Assurance. New York: Van Nostrand Reinhold.

Nelson, B.L. 1992. Statistical Analysis of Simulation
Results. Chapter 102 in Handbook of Industrial
Engineering, 2nd ed. New York: John Wiley and Sons.

Park, C.A., and Getz, T. 1992. The Approach to
Designing a Future Pharmaceutical Manufacturing
Facility. Proceedings of the 1992 Winter Simulation
Conference, Vol. 25, ed. Swain, J.J., Goldsman, D.,
Crain, R.D., Wilson, J.R. 933-935. Baltimore, MD:
Association for Computing Machinery.

Pritsker, A.A.B. 1986. Introduction to Simulation and
SLAM II . New York: John Wiley and Sons.

Shannon, R.E. 1992. Introduction to Simulation.
Proceedings of the 1992 Winter Simulation Conference,
Vol. 25, ed. Swain, J.J., Goldsman, D., Crain, R.D.,

Simulation in Support of Software Development

Wilson, J.R. , 65-73. Baltimore, MD: Association for
Computing Machinery.

Sommerville, 1. 1992. Software Engineering, 4th Ed.
New York: Addison-Wesley.

Tanik, M.M. and Chan, E.S. 1991. Fundamentals of
Computing for Software Engineers. New York: Van
Nostrand Reinhold.

Withers, D.H. 1992. Protocols for Discrete Event
Simulation. Presented at the 1992 Joint National
ORSA/TIMS Meeting, Orlando, Florida.

AUTHOR BIOGRAPHIES

DARBY F. MCBEATH has been a Software Engineer
with Mead Data Central (MDC) for over three years.
She is currently with the Systems Modeling Department
where she develops application system models. Her
work also includes capacity and performance analyses on
.developing systems. Previously at MDC she has worked
in the human factors area. She holds a BS degree in
Mathematical Sciences from the University of North
Carolina at Chapel Hill and is a member of the ACM.

WILLIAM S. KEEZER has been with Mead Data
Central (MDC) for over five years and is currently a
Staff Analyst focusing on system and communications
performance issues. Before coming to MDC, he was an
in-house consultant on OLTP system performance
problems for the Data Pathing Division of NCR. He
holds B.S. and Ph.D. degrees from the University of
Oklahoma, and is a member of the ACM.

1151

