Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

THE USE OF EVENT GRAPHS IN SIMULATION MODELING INSTRUCTION

Kevin J. Healy

School of Industrial Engineering
Purdue University
1287 Grissom Hall

West Lafayette, IN 47907-1287

ABSTRACT

There is a longstanding debate among educators
about how best to teach the concepts involved in
modeling and simulating discrete event dynamic sys-
tems (DEDS). The goal should be to convey funda-
mental modeling principles and to examine the im-
plementation of these principles in real settings. One
particularly contentious element of the debate deals
with the choice of and degree of emphasis on means
for implementing simulation models. This paper ad-
vocates the use of the event graph modeling formalism
as a vehicle for conveying the underlying structure of
DEDS models and their implementation.

1 INTRODUCTION

Building and implementing simulation models of dis-
crete event dynamic systems is more than just a pro-
gramming exercise. Too often though, programming
aspects of simulation modeling are the focus of in-
troductory courses in simulation. The tendency is to
focus too closely on the syntax and semantics of the
particular implementation to the exclusion of general
principles of simulation modeling and analysis. Top-
ics dealing with the statistical aspects associated with
designing, conducting, and interpreting output from
simulation-based experiments are a frequent casualty.

This is due in part to the nature of many traditional
simulation tools which are not so much modeling for-
malisms as computer software systems designed to fa-
cilitate the implementation of a model. This makes it
difficult at times to distinguish between a model and
its implementation. It can also be attributed to the
ad hoc design criteria employed in many of these tools
which in some cases have produced a rather unharmo-
nious assembly of features possessing both cumber-
some syntax and semantics. Whatever the reason, as
consequence of this misdirected focus, students may
develop proficient programming skills but fail to de-

1131

velop more important modeling and problem solving

skills.

At the lowest and most abstract level of implemen-
tation are general purpose programming languages.
Before the advent of special purpose simulation soft-
ware, general purpose programming languages like
FORTRAN were the only generally available means
of implementation. Many still advocate the use a gen-
eral purpose programming language together with a
library of routines to perform event-scheduling, file
manipulation, and statistics collection, although the
choice is more likely to be a modern language like C
or Pascal.

More often than not, courses are designed around a
commercial process simulation language like SIMAN
(Pegden et al. 1992), SLAM (Pritsker 1986), GPSS
(Schriber 1991), or SIMSCRIPT (Russell 1981). Fa-
cilities in these languages are designed to more closely
mimic and describe interactions amongst the phe-
nomena that characterize DEDS (e.g. entities, pro-
cess delays, queueing, and resource allocation). Most
also include higher level instances of these generic
phenomena tailored to represent features characteris-
tic of manufacturing systems such as material trans-
port devices. It is also now common to provide expo-
sure to companion software used to produce graphical
animations of simulation output.

At the highest level are a newer generation of
extensible data-driven simulators such as XCELL+
(Conway et al. 1987), Witness (Gilman and Gilling-
ham 1989), ProModel (Harrell and Tumay 1992), and
Arena (Pegden and Davis 1992). In contrast to tradi-
tional process languages, these systems employ elab-
orate interactive graphical means to combine and pa-
rameterize pre-defined (or in some cases user-defined)
submodels to specify the logic of the simulation model
and simultaneously the characteristics of the associ-
ated animation.

While the means of implementation have grown in
sophistication, the relatively small group of basic con-



1132 Healy

cepts on which all event-driven simulations are based
remains unchanged. It is relatively easy though for
these concepts to become obscured by unwieldy lan-
guages or the glossy veneer of a graphical user in-
terface. Only by understanding these basic concepts
first can one make effective use of the technique or
make meaningful comparisons among various means
of implementation.

Some might argue that a more theoretical treat-
ment is beyond the capacity of some and - to use an
analogy - that a “cookbook” language-oriented ap-
proach can at least inculcate the skills sufficient to
prevent death by starvation, if not instill an appre-
ciation for the finer points of culinary science. Any
benefits derived from such an approach though are
usually short lived. The long term interests of a stu-
dent are better served by a more broad-based treat-
ment of the topic.

The same rationale applies to designing courses to
teach programming language skills. The emphasis
should be on the development of skills used in the for-
mulation and specification of algorithmic solutions to
problems as well as on the salient features of program-
ming languages in general, and rationale for their de-
sign and inclusion in languages. It is both reasonable
and convenient to then choose a particular language
such as C, Pascal, or FORTRAN to examine an im-
plementation of these principles in a real language as
well as to develop practical skills in its use.

The structure underlying DEDS and their im-
plementation involve relatively straightforward con-
cepts. What is needed for educational purposes is
a reasonably high level device with sufficient model-
ing power and minimal complexity that makes these
concepts transparent. The event graph modeling for-
malism is a device conceived with these ideas in mind.

Situated on a level of abstraction above general
purpose programming languages but below process
simulation languages, event graphs are a simple yet
expressive modeling tool. The resultant models lend
themselves naturally to various means of implementa-
tion which helps to make clear the distinction between
the two.

After characterizing the structure of DEDS, a more
detailed description the event graph formalism is
given followed by a simple example. A brief overview
of SIGMA, a commercial software implementation of
the event graph formalism is then given and followed
by concluding remarks.

2 STRUCTURE OF DEDS

The behavior of a dynamic system can for model-
ing purposes be characterized as being discrete event

if changes to the essential elements can be associ-
ated with identifiable events that occur at particular
(possibly random) instances in time. The disposition
of the elements that comprise the system are repre-
sented by the values of status variables and changes
in the state of the system are modeled through the
occurrence of the specified events.

One aspect of the system dynamics is described by
how the isolated occurrence of an event changes the
state of the system. In addition, the occurrence of an
event might, under specified conditions, affect the be-
havior of the system by triggering one or more other
events to occur at some future point in time. These
dependencies constitute the other aspect to system
dynamics. Together, the specification of the system
state, event logic, and relationships between events
comprise the model.

From this standpoint, the underlying structure of
what are traditionally called discrete event and pro-
cess interaction models is fundamentally the same.
Each is merely an alternate representation arising
from the particular perspective employed in defin-
ing the system state and driving events. The process
approach focuses on the flow of transient entities -
process languages are designed to facilitate this per-
spective - whereas the discrete event approach typi-
cally focuses on cycles of resident resources (e.g. the
busy/idle status of a server).

It is instructive to think of the event logic being
implemented (at some level) as functions in a gen-
eral purpose programming language. The main pro-
cedure serves in an executive capacity, its job being to
execute events in the proper time ordered sequence.
This is accomplished by means of a global simulation
clock and future events list that contains (to the ex-
tent possible) known information about future events
and their time of execution.

After initialization, the process evolves by advanc-
ing the simulation clock to the time of the most im-
minent event that is scheduled to occur and then in-
voking the associated event routine. The latter alters
the values of system status variables and may sched-
ule future events by adding appropriate information
to the future events list.

3 EVENT GRAPHS

The event graph formalism (Schruben 1983) uses sim-
ple directed graphs to model the activity in a DEDS.
Unlike many other modeling tools, there is a simple
and well-developed mathematics connected with the
syntax and semantics of the formalism (Schruben and
Yucesan 1988).

Events and their associated state changes are rep-



The Use of Event Graphs in Simulation Modeling Instruction 1133

resented as vertices (nodes) while the logical and tem-
poral relationships amongst events are represented by
directed edges (arcs) between pairs of event vertices.
Almost everything else there is to know can be ex-
plained by means of the simple construct depicted in
Figure 1 which is interpreted as follows.

Whenever event A occurs...
1. Ezecute the set of state changes {Sa}.
2. If condition (1) is true, then
schedule event B to occurt time units later.

Each element in the set of state changes, {Sa},
represents an assignment to the value of a state vari-
able. In their most general form, the values of the
assignments as well as the time delay, ¢, and trigger-
ing condition, i, are expressions involving combina-
tions of constants, arithmetic operators and system
status variables. The condition i may also contain
logical and relational operators. The syntactic rules
for specifying these expressions are similar to those
employed in the C programming language.

@

t
()
{ Sal { Sgl

Figure 1: Basic Event Graph Construct.

Figure 2 depicts an event graph model of the single
server queue. The system status variables are S, the
status of the server (0 = busy, 1 = idle), and Q, the
number of customers residing in queue. The time be-
tween successive arrivals and time required for service
are denoted by t, and t,, respectively.

Although it is not reflected in the graph, t, and ¢,
would generally be specified as expressions involving
the generation of random variates. By convention,
we will also assume the triggering condition, ¢, when
omitted defaults to unconditional and ¢, the schedul-
ing delay, defaults to 0.

(@0

@ (50 5
(
o))
[5+1,Q=0} (Q=Q+1} (S=0,Q-Q-1) [s=11

Figure 2: Event Graph Model of Single-Server Queue.

Conceptually, the INIT event (which has no trig-
gering events) is processed once at the beginning of

the simulation. It initializes the queue to empty
(Q = 0), server to idle (S = 1), and triggers the first
ARV event to occur without delay. The ARV event
adds the arriving customer to the queue (Q = @ +1),
and unconditionally schedules the next ARV event to
oceur t, time units later. If the server is idle (S > 0),
the arriving customer also triggers a BEG event to
occur immediately. An occurrence of the BEG event
removes a customer from the queue (Q = @ — 1),
sets the server to busy (S = 0), and unconditionally
schedules an EN D event to occur t, time units later.
The EN D event frees the server (S = 1) and, if pos-
sible (@ > 0), initiates service on the next customer
in line by triggering the next BEG event to occur
without delay.

Persons familiar with commercial process simula-
tion languages might think of event graphs as having
a single, generic model building block as opposed to
many special-purpose process symbols. At the same
time, event graphs combine the advantages of pro-
cess modeling with the more general and efficient but
abstract event-oriented approach.

4 SIGMA

SIGMA (Schruben 1991) is a commercial software im-
plementation of the event graph formalism for DOS-
based microcomputers. It provides a graphical win-
dowing interface for interactive input, editing, and
execution of event graph models. The structure of
the graph is established by positioning and intercon-
necting nodes on the screen using a mouse-controlled
cursor. The associated state changes, triggering con-
ditions, and time delays are entered by means of pop-
up dialog boxes.

Several concessions have been made to more prac-
tical aspects involved in building and executing sim-
ulation models by embellishing the otherwise mini-
malist event graph formalism with such features as
built-in random variate generation, priority queues,
output display and analysis capabilities, and links to
user-defined events coded in the C language. The
program also provides several means for intervening
during the execution of a model to display the values
of state variables or the status of the future events
list.

One of the most interesting additions is a feature
that allows the modeler to automatically generate an
equivalent C or Pascal programming language im-
plementation of an event graph model. In addition
to providing a means for porting a model to other
platforms, the well-structured and commented code
that is produced is useful for conveying the struc-
ture underlying the implementation of DEDS mod-



1134 Healy

els. The same facility has been extended to include a
self-documenting English language translation of the
model.

5 CONCLUSION

Several recent simulation textbooks (Hoover and
Perry 1989), (Law and Kelton 1991), (Pegden et al.
1990) include limited material on event graphs. It is
the author’s opinion that the formalism should play a
more central role in the instruction process and that
language specific courses are more naturally the do-
main of commercial software vendors. This is not
to say that traditional commercial simulation soft-
ware does not have a place in university courses. In
fact the roles of the two can be complementary when
event graphs are used to help introduce the ideas be-
hind more complicated commercial simulation soft-
ware. The goal should be to make the modeling pro-
cess easier to understand so that more class time can
be spent on other crucial elements of the simulation
process such as validation, experimentation, analysis,
and communication of results.

REFERENCES

Conway, R., W. Maxwell, J. McClain, and S. Worona.
1987. User’s Guide to XCELL+. The Scientific
Press.

Gilman, A.R., and C. Gillingham. 1989. A Tutorial
on See Why and Witness. Proceedings of the 1989
Wainter Simulation Conference: 192-200.

Harrell, C.R., and K. Tumay. 1992. ProModel Tu-
torial. Proceedings of the 1992 Winter Simulation
Conference: 405-410.

Hoover, S.V, and R.F. Perry. 1989. Simulation: A
Problem Solving Approach. Addison-Wesley.

Law, A., and W.D. Kelton. 1991. Simulation Model-
ing and Analysis (2nd Ed.). McGraw-Hill.

Pegden, C.D., R.E. Shannon, and R.P. Sadowski.
1990. Introduction to Simulation Using SIMAN.
McGraw-Hill.

Pegden, C.D., and D.A. Davis. 1992. Arena: A
SIMAN/Cinema-Based hierarchical Modeling Sys-
tem. Proceedings of the 1992 Winter Simulation
Conference: 390-399.

Pegden, C.D. 1988. Introduction to SIMAN (2nd
Ed.). Systems Modeling Corp.

Pritsker, A.A.B. 1986. Introduction to Simulation
and SLAM II (3rd Ed.). Wiley and Systems Pub-
lishing.

Russell, E. C. 1981. Building Simulation Models with
SIMSCRIPT I1.5. CACI, Inc.

Schriber, T.J. 1991. An Introduction to Simulation
Using GPSS/H. John Wiley & Sons.

Schruben, L.W. 1991. SIGMA: Graphical Simulation
Modeling. The Scientific Press.

Schruben, L.W., and E. Yucesan, 1988. Simulation
Graphs. Proceedings of the 1988 Winter Simula-
tion Conference: 738-745.

Schruben, L.W. 1983. Simulation Modeling with
Event Graphs. Communications of the A.C. M. 26:
957-963.

AUTHOR BIOGRAPHY

KEVIN J. HEALY is an assistant professor in the
School of Industrial Engineering at Purdue Univer-
sity. He holds B.S. and M.S. degrees in Industrial
Engineering from The Pennsylvania State Univer-
sity and a Ph.D. in Operations Research from Cor-
nell University. He has taught numerous simulation
courses at both the undergraduate and graduate level
as well as short courses to practitioners of simulation
from industry, government and academia. In a for-
mer life, he was Vice-President of the Systems Mod-
eling Corporation and a key developer of the SIMAN
and Cinema simulation software. His research inter-
ests include stochastic optimization, simulation out-
put analysis, and modeling formalisms.



