Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

WORK FLOW ANALYSIS

Valerio O. Pinci
Robert M. Shapiro

Meta Software Corporation
125 CambridgePark Drive
Cambridge, Massachusetts 02140, U.S.A.

ABSTRACT

We present a new approach to the study of work flows in
organizations. Using well-known modeling paradigms
and existing computer-based tools, we show how to
rapidly model and analyze complex work structures to
improve throughput and resource utilization. The speci-
fication of a work flow is done using IDEFO (SADT),
extended with behavioral details. We have developed a
program (Work Flow Analyzer) that processes the result-
ing model to automatically generate a Colored Petri Net
(CP-net) complete with the logic for loading input files
and printing reports about processing bottlenecks and
idle resources. This greatly reduces the cost and time to
use simulation.

1 INTRODUCTION
In the past few years we have acquired experience build-
ing and analyzing simulation models from IDEF (Marca
and McGowan 1988) work flow diagrams in the follow-
ing application domains: sales order processing, com-
mand and control, check processing, insurance applica-
tion processing, loan origination processing, engineering
design release, and project management.

The main reasons for using IDEF are:
* Use of graphics - IDEF diagrams are created by draw-
ing rectangles that represent activities and by wiring
them together with arrows representing input and output
relations between them.
» Use of hierarchies - IDEF is a top-down methodology
where a process is specified by systematically decom-
posing higher level activities into more detailed subdia-
grams until the meaning (e.g. behavior) of the lowest
level activities is sufficiently precise.
* Easiness of use - IDEF is easy to learn since it has very
few primitives and makes extensive use of graphics.
Most courses that teach how to read IDEF diagrams take
half a day. Most courses that teach how to create IDEF
models typically take 2-3 days.
* Widespread - IDEF has proven itself mature as a pro-
cess description language. Tens of thousands of analysts

1122

throughout the US and Canada have been trained in its
use. The US Government uses it widely, especially for
business process analysis. The US Department of
Defense has mandated its use for the Corporate
Information Management Program. In Europe IDEF is
used for the early specification phase of software design,
particularly in the aerospace industry and in some of the
larger projects (e.g., Columbus) undertaken by the
European Space Agency.

On the other hand the use of IDEF alone is not enough
to create performance models since attempts to provide
IDEF with a well-defined semantics making it possible
to execute diagrams have not been satisfactory. One of
these attempts conceived of associating IDEF activities
with activation rules, expressed in the form of tables,
where the relationship between inputs and outputs could
be precisely defined. Unfortunately, these tables were
too low-level to have any real practical value and did not
provide adequate semantics for concurrent processes.

CP-nets [Jensen 1992, Jensen and Rozenberg 1991)
provide the capability to simulate IDEF models. IDEF
and CP-nets have many common properties including the
extensive use of graphics and hierarchies. Previous pa-
pers (Shapiro, Pinci and Mameli 1993, Pinci and Shapiro
1991) describe the translation of IDEF diagrams into CP-
nets both conceptually and from the point of view of
implementation. CP-nets have a well-defined semantics
that complements IDEF with a general purpose
simulation language. This allows the IDEF models to be
used for performance analysis. CP-nets also add the
potential of formally validating the correctness of a
simulation model, though this aspect has not yet been
explored.

Any executable model, such as a CP-net, is ultimately
a computer program. Viewed in this way IDEF diagrams
provide, via the automatic translation to CP-nets, the
control structure of a simulation model/computer pro-
gram. This well-defined CP-net control structure, made
of places and transitions connected via arcs, but still
lacking the appropriate net inscriptions, has been the
starting point for our construction of simulation models.

Summarizing, the main strengths of CP-nets have
been:

* Executability - this provides for the opportunity to cre-

Work Flow Analysis 1123

ate performance models that can be used for optimization
and trade-off analysis.

+ Formal definition of concurrency - this makes it possi-
ble to understand how a CP-net model works without de-
tailed knowledge of the internal implementation of the
simulation tool used to execute it.

» Use of graphics and hierarchies - this makes it possible
to map IDEF diagrams into CP-nets and retains their
original structure.

From a theoretical standpoint it was not essential to
use IDEF to build the initial structure of the CP-net
model. However, CP-nets, unlike IDEF, do not support
any specific design method. As a result, novice users of
CP-nets often fail to create models because of the lack of
structure in the creation process and lack of a widespread
CP-net culture.

Our simulation models were constructed by importing
the IDEF diagrams into a hierarchical Colored Petri Net
tool (Meta Software Corporation 1992a and 1992b).
Behavioral inscriptions were added to the models to cap-
ture all the intended dynamics. This included providing
code for loading data from input files and generating re-
ports characterizing the performance of the models. All
behavioral inscriptions used a syntax based on an exten-
sion of the language SML (Harper 1986, Paulson 1991,
Meta Software Corporation 1992b).

Writing behavioral inscriptions has proven to be an
obstacle to many potential users. Even for a CP-net ex-
pert, this effort is often tedious and error-prone. A mod-
est IDEF diagram (approximately ten pages) might take
five days to fully inscribe and test. Based on this experi-
ence we have developed a technique that automatically
generates the inscriptions. This greatly reduces the time
required and cost of using simulation in Work Flow
Analysis.

We use a set of conventions for modeling work flows
in IDEFO. A computer program (Meta Software
Corporation 1993) deduces the behavioral details auto-
matically for models following these conventions. This
eliminates the need to write (and debug!!) complex in-
scriptions. It is our hypothesis that many work flow
problems can be described using this approach. In any
case, the CP-net generated by the program provides the
starting point for further elaboration or modification.

In our approach, a Work Flow Model describes how
'Documents’ flow through an organization. The organiza-
tion consists of interrelated activities which require re-
sources for their execution. The resources are typically
various categories of staff and equipment. Input files
characterize the staff and equipment available for a simu-
lation, as well as the time-ordered set of 'Documents’ to
be processed. The results of simulation are a set of re-
ports which evaluate the performance of the organization
and point to bottlenecks (delays) in processing as well as
inefficient use of resources (idle resources) .

The remainder of the paper is organized in the follow-
ing way. In section 2 we present the basic constructs in
IDEF for specifying behavior. In section 3 we discuss the

reports generated by an analysis of a simulation, In sec-
tion 4 we discuss the input files required for a simulation
run. In section 5 we present advanced behavioral fea-
tures. Section 6 describes aspects of the hierarchical
Colored Petri Net created by the model generator (Work
Flow Analyzer). This section need be read only both
those readers familiar with CPN who wish to understand
some details about the generation of the simulation
model. Finally, in the last section we discuss future work
and draw some conclusions.

2 BASIC CONSTRUCTS

The basic paradigm for understanding the behavior of an
IDEF activity is as follows. When all the inputs required
by an activity are present and all the resources required
are available, the activity consumes the inputs, producing
outputs based on the inputs and delaying the availability
of the outputs and resources according to the time re-
quired for the activity to be performed.

The Simulation Clock advances only when there is
nothing more that can happen at that time. This means
that an activity takes place repeatedly so long as there are
inputs present and resources available. This interpreta-
tion of behavior allows true concurrency in work flows.
Sequentialization is a consequence of constraints.

In what follows we present a series of IDEF diagrams
that illustrate the rudiments of behavior for work flow
models. The diagrams are from a description of a simple
Sales Order Processing model. Our objective here is to
convey an intuitive understanding of the relationship be-
tween IDEF diagrams and their behavioral semantics. A
precise definition is provided by the CP-net constructed
automatically from the IDEF diagram by the Work Flow
Analyzer.

First we examine a simple case: a sequence of activi-
ties with one input and one output.

Assembled
Product

C'l:kﬁu
Sipoen ——0

1124 Pinci and Shapiro

Each order flows through a sequence of three steps.
The time to ship an order is the sum of the times of the
three steps. Since there are no resources required, orders
flow through unconstrained by resource limitations. A
million orders can be processed in the same time it takes
to process one order.

Now we add a resource.

M1
Siafl

Each activity is constrained by the availability of staff.
If there is only one shipper, the shipping forms can be
filled out for only one order at a time. The same shipper
cannot fill out a form and assemble a shipment at the
same time. Orders may now be delayed because staff is
not available. On the other hand, staff may be idle be-
cause there are no orders to ship.

The time to service an order is determined by the dif-
ference between its arrival time and its shipping time.
This may become large if a lot of orders arrive at the
same time. The processing time for an order is the sum
of the times of each step it goes through. This remains
the same in this model irrespective of loading or staffing.
The delay time for an order is the total delay it experi-
ences. In this simple case time to service = processing
time + delay time. Where multiple parts of the same
order can be processed concurrently, this relationship no
longer holds.

There can be multiple inputs.

Shipping Order

Fill Out s
" Shipping Forme
Forms
Adl
shipper
Assmble Assembiod
Shipment |
]
A2
Final Approval shipper
Carrier
Takes
Shipment fmmmeeepO1
AN
\ cantor Shipped Product

M1
Stalt

Assemble Shipment may now be delayed for another
reason. Both the Shipping Form and Final Approval are
required inputs. Thus, processing delays can occur be-
cause multiple inputs arrive at different times. The criti-
cal path is the longest, the critical input is the latest.

There can be multiple resources.

Shipping
Forms
Aswemble ot
Shipment
AR
shrink
wrapper
Carrier
St [P
A3 Shipped Product
carrior
M1 M2
Staft Equipment

Now Assemble Shipment requires two resources: a
staff person who is a shipper and a piece of equipment,
the shrink wrapper. This activity cannot take place until
both are available. Various causes of processing delays
are possible for this activity. The lack of one resource
may force the other resource to be idle.

Activities can generate multiple outputs. This allows
concurrent processing of different parts or copies of an
order (i.e.. document). In the sequel we will discuss
conditional outputs.

3 REPORTS

The content of the IDEF model is used to determine the
format of three standard reports. A run of the model fills
in these reports with the data collected during the run.

3.1 Activity Bottleneck Analysis

Each leaf activity in the model is analyzed. The delay
each input experiences and the idle time for each re-
source is accumulated for the entire run. The average
values of these delays and idles (per processed
‘document’) are displayed in a bar chart.

3.2 Summary Bottleneck Analysis

The following pieces of information are displayed:
1. Average time to process an input 'document’. 2. For
each category of resource, broken down into each type
within that category (e.g. Category: Staff and
Type:Shipper) the idle time and the processing time (per
processed 'document’). 3. For each type of 'Document’,

Work Flow Analysis 1125

the delay time and the processing time (per processed
‘document’) .

3.3 Expense Analysis

The following pieces of information are displayed:
1) Average cost to process an input 'document’, broken
down into Overhead (the sum of all idle time costs) and
Direct (the sum of all processing costs). 2) For each cat-
egory and type of resource, average cost as in 1). 3) The
basic cost information is provided in the Resource input
files, to be described in the sequel.

4 INPUT FILES

There are three types of input files that must be provided
to run a simulation: 1) Delays, 2) Resources, and 3)
Documents' to be processed.

4.1 Delay Files

Associated with each activity is a time delay (duration
time). Once an activity starts, its outputs are not avail-
able until the specified time delay has elapsed. All re-
sources needed by the activity are also unavailable for
this period of time. The time delay is assigned a default
value obtained from a parameter file. The Work Flow
Analyzer creates an initial set of values for the file. The
user may change these at will. The user may specify the
calculation of a time delay. We discuss this in the sequel.

4.2 Resource Files

The IDEF model defines several categories of resources.
These are the mechanisms on the top level (A-0) page.
Typical examples are 'Staff' and 'Equipment'. A resource
file will be created for each category. Types within these
categories are mentioned in association with activities
whose behavior is affected by this distinction. (E.g. ship-
per) The Work Flow Analyzer creates an initial set of
values for each type in each category. The user may
change these at will by introducing new types, changing
the number of each type to be present at the beginning of
a simulation run. Speed and cost data associated with
each individual resource may also be modified by the
user. The speed affects the calculation of the duration
time at the instant that an activity takes place. The
maximum speed factor across all resources used by the
activity, is multiplied by the Delay File parameter (for
this activity) to calculate duration time. Cost Data affects
the Expense Analysis.

4.3 'Document' Input Files
Each document to be processed is listed in the input file.

A document is characterized by at least four pieces of in-
formation: a unique identifier for coordinating the pro-

cessing within the work flow (e.g. several copies or parts
of the same document); a type which may affect the way
in which the document is handled; an arrival time which
designates when the document arrives to be processed;
and a size which may be used to affect the calculation of
activity duration and the order in which Documents' are
handled (e.g. a priority scheme). Discussed in the se-
quel.

5 ADDITIONAL BEHAVIORAL FEATURES

In this section we illustrate more sophisticated behaviors
based on labels added to the IDEF diagram:

*Complex Constraints

«Calculation of Duration Time

«Calculation of Size

«Conditional Outputs

*QOutput Transmission Time

*Priorities

*Branching and Joining

We start with a simple diagram presented previously,

where labels associated with arrow tips designate re-
quired attributes (subtypes) of resources.

5.1 Constraints

The behavior of any activity can be constrained by speci-
fying type requirements for specific inputs and resources.

Shipping Order Fil Owt

L Shipping
" Shipping Forms
Forms
A
shipper
Assemble
Shipment
AR
shipper

O |

Shipped Product

M1
Statt

Activities A31 and A32 require a specific type of Staff
person: a shipper. Activity A33 requires a carrier. If
these labels had been omitted, any staff person available
would be able to perform the activity. Type constraints
may be placed on any combination of inputs and re-
sources.

The type of any output is usually determined by the
type of the dominant input (i.e.. topmost). The type of an
input or resource may be constrained by providing a la-
bel. In the following example, constraints force
Big_Orders to be handled by Expert Staff with Fast
Equipment while Small_Orders are handled by Novice
Staff with Slow Equipment.

1126 Pinci and Shapiro

"
Completed
%:hr Order Form

Process
Small
Orders

Al2

Novice j Slow

L Small_Orders

Staff w1 M2 Equipment

5.2 Complex Constraints

In special cases it may be necessary to specify some
complex requirement on the inputs and resources of an
activity. This may be expressed as a list of Boolean ex-
pressions involving input types and sizes, resource types

and speeds.

5.3 Size and Duration Time

The calculation of a time delay for the completion of an
activity can be influenced by the size of the dominant in-
put. If so specified, the maximum speed factor across all
resources used by the activity, multiplied by the Delay
File parameter (for this activity) is further multiplied by
the size to calculate duration time.

5.4 Computing a New Size

Normally the outputs of an activity have the same size
value as the dominant input. The user may specify the
calculation of a new value.

5.5 Conditional OQutputs

Normally, all outputs are produced for an activity. The
user may specify that only one output in a set be pro-
duced. The user provides weights for each output in the
set and the simulation uses the weights to select the out-
put.

5.6 Output Transmission Time

Normally, an output is available at a time determined by
the calculated duration time for the activity. In some cir-
cumstances it is convenient to specify for individual out-
puts a transmission time. This delays these outputs that
much longer.

In the following example we illustrate a number of
these concepts:

Enter Completed
i Ord Order Form Incomplete _
“u Orders
Customer
Order ‘
Process] Shipping Order
Order
Az
Novice Sow
Ship
Product 3’“_’“’",’:;:
w7
Shipped
Product
Staff w Equipment .

Activity A3 has two outputs. The inscriptions on its
output arrows have a simple syntax. The first expression,
if present, is an integer weight, discussed in the sequel.
The second expression is a transmission delay for that
particular pathway. The third expression specifies the
type of the output document on that pathway.

The two outputs have relative weights 3 and 7. This
means that only one of the outputs will be produced for
each occurrence of the activity. The simulator chooses
which one randomly, on the average selecting one 30%
of the time and the other 70%. The output from A3 that
goes to A2 is given an additional transmission delay of 1
time unit. The type field in this output is set to the value:
Incomplete.

5.7 Priority

Normally, all inputs waiting to be processed by an activ-
ity have equal priority. The user may specify that a prior-
ity scheme be used to order the inputs. This might typi-
cally choose the 'document’ with the largest size to be
processed first. Consider the following example:

Enter Completed
n Order Order Form
Al L ~
Customer /-/ o
Order Shipping Order
Process
Order Incomplete
A2 [Orders
priar
Novice 1
Product [olremeees
@'7 Shipped
Product
Staff w1 Equipment ,

Work Flow Analysis 1127

Activity A2 has been assigned a priority function. The
priority function specified (‘prior': a built-in function)
will choose from the waiting order forms the largest, ac-
cording to the Size field. More generally, the user may
supply priority functions which order waiting documents
based on the contents of each document.

5.8 Branching

Normally, a single copy of a 'document’ is generated for
each output. But arrow decomposition by branching may
connect an output arrow to more than one leaf activity
input. In this situation the user must specify whether all
destinations should receive the document ("fan-out") or
only one.

59 Joining

Analogously, a single 'document’ is normally required as
an input. But arrow recomposition by joining may con-
nect several leaf activity outputs to the same input of an
activity. In this situation the user must specify whether
all sources are required to send the document ("fan-in")
or only one.

The Work Flow Analyzer detects any ambiguous
branch/join structure and asks the user to decide. The an-
swers are recorded and re-used later should the user re-
build the IDEF model. The following two level model il-
lustrates branching and joining.

The intention in this model is to allow the order pro-
cessing (activity A2) to proceed in two concurrent sub-
steps: Section A (activity A21) and Section B (activity
A22).

In this example three ambiguous structures will be de-
tected by the Work Flow Analyzer.

—F Incomple{e
n Ofd
n Orders
Customer
Order
Shipping Order
Completed
Order Form ‘
3
..?—.01
* % Shipped
- Product
Staff mt Equipment .

Branching and Joining: Top Level

e —

Completed
Order Form

Process
Section B
An)

Novice Siow

M1
Staft

M2
Equipment

Branching and Joining: Decomposition

Activity A1 produces outputs for both activity A21
and activity A22. This is a fan-out situation. The same is
true for activity A3.

Activity A21 requires an output from either activity
Al or activity A3. This is not a fan-in. The same is true
for activity A22.

Activity A3 requires an output from both activity A21
and activity A22. This is a fan-in.

6 INSCRIPTIONS IN THE COLORED PETRI
NET

The structure of the hierarchical Colored Petri Net is
generated directly from the IDEF model. For a detailed
description refer to (Shapiro, Pinci and Mameli 1993 and
Pinci and Shapiro 1991). Every activity maps to a transi-
tion; decomposed activities become substitution transi-
tions and leaf activities become simple transitions. The
arrow structures determine the places and arcs in the
CPN model. The ICOM (Input, Control, Output,
Mechanism) structure determines the relationship be-
tween a substitution transition and its subpage. The
color sets for places are deduced from their manner of
use. Inputs, Outputs and Controls all represent
'documents’. Mechanisms represent ‘resources’. The
Work Flow Analyzer checks to make sure the arrow
structure is consistent from this perspective.

Inscriptions are generated for leaf activities and their
associated arcs. The following types of inscriptions are
generated: arc expressions, guards, and code segments.

6.1 Arc Expressions

Arc expressions are based on the following information:
they are classified by which edge of the transition they
attach to, into Inputs, Controls, Outputs and
Mechanisms, as prescribed by the IDEF methodology.

1128 Pinci and Shapiro

The arc expressions for Inputs, Controls and Outputs
have token structures that represent 'documents’. The to-
ken structure for Mechanisms represent 'resources'.

Each arc expression is a tuple; the number and type of
the components in the tuple being determined by the ap-
propriate token structure. The components (for inputs,
controls and mechanisms) are variables with the excep-
tion of the Type component which may be explicitly re-
stricted to a specific value. The components of output to-
kens are determined by the inputs, in combination with
explicit specification as well as the effect of the guard.

Every mechanism arc automatically generates a re-
verse arc. The corresponding arc expression returns the
resource token to its place of origin, with the available
time component and the time stamp updated as specified
in the guard.

6.2 Guards
Guards are used in the following ways: 1) To calculate a
time delay to be used on output arcs. The default value

for a time delay is obtained from the Delay File de-
scribed in section 3 above. This is multiplied by the

ard
Completed__Order_Form

[dt= (tm A2) * max [1, sm1, sm2], osz = sz1]

(id,ptl 1,521 af1at1) Process

P Order
c] A2

(m2,112,sm2,cm?2)

ml,rl,sml,cml)

@-

Staff

Equipment
(m2,Time(Q+dt,sm2,cm2)@-+dt

document
input arc
expression

resource
input arc
expression

resource
output arc
expression

Shipping_Order

maximum speed factor for all the resources used in an
occurrence of the transition. It is further modified by the
value of the Size component of the input ‘document’, if
specified. 2) To provide complex constraints on the
documents and resources involved. 3) To calculate new
values for the Size component of output tokens. 4) To
obtain the 'document’ at the head of the queue when a
priority scheme is being used.

6.3 Code Segments

Code Segments are used for two purposes. Firstly, to
compute all the delay and idle information that is re-
quired by the reports produced at the end of a run.
Secondly, to use the arc weights described above to de-
termine which arc in a mutually exclusive set should
have an output token.

All these inscriptions are generated automatically from
the IDEF structure.

In the following CP-net fragment we show some of the
inscriptions.

input (dt,t1,ptl,rtl,cml,ml, t2,cm2,m2);

action

let

val ct = Time ();

in

A2s =1 A2s +dt;

A2w1 =1 A2w1 +if (ct > t1) then (mt - t1) else O;

1°(id pt1,Time(Q+dt,0sz,"A2" , "")Y@+dt update_idle_time (pt1,t1);

update_busy_time (pt1,dt);

A2r] :=1 A2rl +if (ct > 1t1) then (ct - rt1) else 0;
update_idle_time (mi,1tl);

update_busy_time (m1,dt);

update_idle_cost (ml,rtl,cml1);
update_busy_cost (ml,dt,cm1),

A212 :=! A212 +if (ct > rt2) then (ct - 1t2) else 0;
update_idle_time (m2,1t2);

update_busy_time (m2,dt);

update_idle_cost (m2,1t2,cm?2);
update_busy_cost (m2,dt,cm2);

0

end;

document
output arc
expression

code segment

Work Flow Analysis 1129

In addition to the submodels that correspond to each
page in the IDEF diagram, the Work Flow Analyzer cre-
ates three additional pages in the CPN model. These are:

« The Global Declaration Page
» The Input Submodel
« The Report Submodel

Global Declaration contains all the declarations needed
for the model. This means all the color sets, variables
and functions, including those used in the input and re-

port submodels.
Input Submodel is a net that contains the logic for

loading the 'document’, 'resource' and delay files. The
document and delay files provide information that is
converted into tokens that represent all the documents to
be processed and all the resources available at the begin-
ning of a simulation run. The delay file information is
loaded into parameters accessed by the individual transi-
tion guards. The contents of all three files have been dis-
cussed previously in section 4.

Report Submodel is a net that contains the logic for
recognizing the end of a run and triggering the analysis
of the simulation data collected during the run by the
code segments of the transitions in the model. Invokes
the functions for creating and filling in the reports.

7 CONCLUSIONS

The Work Flow Analyzer greatly reduces the time in-
volved in creating a simulation model suitable for identi-
fying bottlenecks and idle resources in a complex work
flow. It accomplishes this by assigning to the activities
of an IDEF model a simple behavioral interpretation,
based on the arrow structure in IDEF and the behavioral
semantics of transitions in hierarchical Colored Petri
Nets.

This makes it possible for a computer program to gen-
erate, from the IDEF model, the entire structure of the
CP-net, including all inscriptions and the additional logic
required to load input files and generate reports.

As a result. a much broader group of people will now
be able to build models to study the performance charac-
teristics of work flow systems.

It remains to be seen whether the specific interpreta-
tion of behavior is general enough to handle a high per-
centage of work flow problems. Our objective in the
near future is to extend the functionality based on the ex-
periences of early users of the approach.

Immediate plans include the following:

1) Reports: No set of fixed reports can satisfy every
need. By exporting the raw data collected during simula-
tion, users can format and generate graphs of their own
choosing, using standard statistics and presentation pack-
ages (e.g. EXCEL).

2) Input Generators: Making up the input sets for a
simulation run can be tedious, especially when detailed

historical knowledge is lacking. Users will be able to
characterize inputs in terms of groups of inputs satisfying
specified statistical distributions.

3) Mor mplex ' ments' and 'R rces': The
user will be able to extend the number of components in
a document or resource token and use the new compo-
nent values to affect the details of occurrence of activi-
ties.

4) Resource Schedules; The user will be able to spec-
ify time periods for the availability of resources. This
will facilitate staff schedules etc.

5) Resource Roles: The user will be able to specify
different roles that resources may play. This will sim-
plify the accurate representation of staffing problems in
work flow.

6) Formal Analysis: The model may have errors in it
which result in 'documents’ being stuck at some point in
the work flow. If this occurs only in connection with
low-probability pathways, testing by simulation alone is
a poor technique for finding such errors. Occurrence
Graph Analysis (Meta Software Corporation 1992c) for a
small input set can discover many of these errors.

REFERENCES

Harper, R. 1986. Introduction to Standard ML.
Technical Report ECS-LFCS-86-14, Department of
Computer Science, University of Edinburgh,
Edinburgh, Scotland.

Jensen, K. 1991. Coloured Petri Nets: A High-level
Language for System Design and Analysis. In:
Advances in Petri Nets 1990, ed. G. Rozenberg, 342-
416. Lecture Notes in Computer Science Vol. 483,
New York: Springer-Verlag.

Jensen, K. 1992. Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Volume 1:
Basic Concepts. EATCS Monographs on Theoretical
Computer Science. New York: Springer-Verlag

Jensen, K. and Rozenberg, G. (eds.). 1991. High-level
Petri Nets. Theory and Application. New York:
Springer-Verlag,

Marca, D. A,, and McGowan, C. L. 1988. SADT. New
York: McGraw-Hill.

Meta Software Corporation. 1992a. Design/IDEF User's
Manual. Cambridge, Massachusetts: Meta Software
Corporation.

Meta Software Corporation. 1992b. Design/CPN User's
Manual. Cambridge, Massachusetts: Meta Software
Corporation.

Meta Software Corporation. 1992c. The Design/
CPN Occurrence Graph Analyzer. Cambridge,
Massachusetts: Meta Software Corporation.

Meta Software Corporation. 1993. Work Flow Analyzer
Tutorial. Cambridge, Massachusetts: Meta Software
Corporation.

Paulson, L. C. 1991. ML for the Working Programmer.
Cambridge University Press.

1130 Pinci and Shapiro

Pinci, V. O., and Shapiro, R. M. 1991. An Integrated
Software Development Methodology Based on
Hierarchical Colored Petri Nets. In Advances in Petri
Nets 1991, ed. G. Rozenberg, 227-252. Lecture Notes
in Computer Science Vol. 524. New York: Springer-
Verlag.

Shapiro, R. M., Pinci, V. O., and Mameli, R. 1993.
Modeling a NORAD Command Post Using SADT and
Colored Petri Nets. In Functional Programming,
Simulation and Automated Reasoning, Lecture Notes
in Computer Science. New York: Springer-Verlag.

AUTHOR BIOGRAPHIES

VALERIO O. PINCI is Product Manager for
Simulation Tools at Meta Software Corporation. His
current responsibilities include the design and manage-
ment of software tools to support business process simu-
lation. His expertise lies in modeling, simulation and
analysis of colored Petri nets. He often lectures and pre-
sents tutorials at international conferences and has had
numerous articles published in books and periodicals.

ROBERT M. SHAPIRO is Chairman of the Board,
CEO, and Founder of Meta Software Corporation, a pri-
vately held company that develops, sells and supports
modeling and simulation tools for business process re-
engineering. A 36 year veteran of the information sys-
tems industry, he has pioneered the development of bet-
ter and faster computer-based simulation using Petri net
technology. He has had a number of his writings pub-
lished in books and journals.

