Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

COAST: THE CONTROLLER’S ASSISTANT

William H. Duquette

Jet Propulstion Laboratory
California Institute of Technology
Pasadena, California 91109, U.S.A.

ABSTRACT

COAST, the Controller's Assistant, is a semi-automated
player of the CBS wargame training simulation. It uses
rule-based techniques to maneuver a collection of
platoons through a complex infiltration mission in
response to a single high-level order from a CBS
controller.

CBS is driven by orders from controllers of the
simulation. It delivers a great deal of internal state
information to the controllers' work stations. COAST
monitors this information flow, and controls the
infiltrating units by sending orders of its own.

Infiltrating units are controlled by two tiers of rules.
Each unit has a plan, or job-list, containing the jobs it
must successfully complete. Each job has a cluster of
job rules which enable the unit to carry out that job.
Over the job rules are the control rules, which plan the
job-list for each unit and handle contingencies.

1 INTRODUCTION

This paper concerns the design of a rule-based system to
do real-time analysis and control of a military training
simulation. The system, COAST, is written in OPS5
and C. To understand COAST, one must first understand
its environment: the Corps Battle Simulation (CBS).
1.1 The Corps Battle Simulation

CBS is a wargame/training simulation written in
SIMSCRIPT IL5. The training audience consists of
brigade-level commanders and staffs, and higher echelons
up to the corps level. The trainees are located in
command posts as though a real war were in progress,
and communicate with their subordinate officers (e.g.,
battalion commanders) using normal military
communications. The subordinates, however, are
playing a role; they are really operators of the CBS
system. They translate the military orders they receive
into terms the simulation can accept.

Between 20 and 50 commanders and staffs are being

1063

trained during a typical training exercise; they interact
with hundreds of operators, called controllers, who in
turn interact with CBS. Each has command of one or
more simulated military units, to which they send orders
via a CBS work station. In return, the simulation sends
a wide variety of status reports to the controllers, as
shown in Figure 1. Some reports are displayed
graphically, overlaid on a map of the battlefield. The
controllers relay this information back to the training
audience.

Simulation

Figure 1: Normal CBS Dataflow

The two conflicting sides in a CBS training exercise
are called BLUFOR (blue force) and OPFOR (opposing
force). All trainees are on the BLUFOR side. The
OPFOR side is played by a team of specially trained
controllers. Running a CBS training exercise is labor-
intensive—the overall ratio of controllers to trainees is
typically 1:1 or higher. Cost-effectiveness would be
improved if the controller-to-trainee ratio could be
decreased without sacrificing training value.

1.2 An Automated Player

For many years, we have been interested in developing
an automated player for CBS. The automated player
would assist or replace a human controller, improving
the controller-to-trainee ratio. The nominal problem
domain is battalion command, since that is the level at
which the controllers operate. At present, each simulated
battalion is managed by one or more controllers; in the
heat of battle, as many as four controllers might be
needed. As we envision it, the player would use rule-
based and robotics techniques, and would interact with
CBS just as a controller does: by sending orders and

1064

reading reports. Such a player might allow a single
controller to be responsible for several battalions; this
would be a great savings in labor, especially on the
OPFOR side. In addition, an automated player can
increase the resolution of the training by playing the
battalions as groups of smaller units, such as companies
and platoons.

COAST, the Controller's Assistant, is our first step
toward an automated player. Written in C and a rule-
based language called OPSS5, it assists a human
controller in performing a complex and time-consuming
task: battalion infiltration. The essence of infiltration is
moving a large number of personnel from one location
to another, usually behind enemy lines, while avoiding
enemy notice. Since it is difficult for a battalion to
move quietly, the battalion generally splits into many
smaller units, which move in strict march order along a
predetermined route, as shown in Figure 2. Infiltration
thus trades cohesion and communications for stealth.
Once the entire battalion reaches its destination, it
reforms—and most likely becomes quite noticeable in
short order. A typical infiltration mission may last for
days, and takes place in a small region. COAST
automates this process.

Furnishing Battalion

[N N J
Platoon moving to LD
LD XX
Infiltrating Platoons
XX
| Reassembled
LUP | Battalion

Figure 2: A COAST Infiltration Mission

In response to an order from a controller, as shown in
Figure 3, COAST will take control of a battalion. The
battalion is split into platoons, maneuvered in a strict
march order along a route, and reassembled at the far end.
In the meantime, COAST watches for contingency
situations, such as enemy activity, and either handles
them itself, or requests aid from the controller. With
COAST's aid, a controller may start such a mission, and
let it proceed with only occasional supervision.

For example, a particular mission might involve

Dugquette

infiltrating a battalion, by platoons, from a line of
departure, to a link-up point. First, the controller would
send an order to COAST, giving a complete specification
of the mission. Next, COAST would split each platoon
out of the battalion unit, creating platoon units. Each
platoon would be ordered to move to the line-of-
departure, and then ordered to infiltrate to the link-up
point. As each infiltrating platoon arrived at the link-up
point, it would be ordered to link up with the platoons
which had already arrived, creating a single, larger unit.
When all of the platoons have merged, the battalion has
been reassembled at the link-up point. COAST
accomplishes this using standard controller orders, and
monitors mission progress by reading standard reports.

Station

Figure 3: CBS Dataflow with COAST
2 COAST ARCHITECTURE

COAST consists of two parts. The first is the rule-based
system, which is called the Mission Operations
Manager, or MOM. It is written in OPSS5, and is
concerned almost completely with the problem domain.
The second part, called the Server, is written in C. The
Server is the interface between the MOM and the rest of
CBS. The Server receives and processes orders from the
controllers and reports from the simulation; the Server
allows the MOM to send orders to the simulation. One
can think of the Server as the MOM's work station.
The Server and the MOM together comprise COAST.
The Server's basic algorithm is as follows:

Receive a controller order

Create a new mission

Create a new instance of the MOM

Give control of the mission to the MOM

COAST: The Controller’'s Assistant

Loop
Give new reports to the MOM
Send the MOM's orders, if any,
to the simulation
Until mission termination

In response to the controller's order, COAST creates a
new infiltration mission. At the mission start time, the
mission specifications and all pertinent battlefield data
are loaded into the MOM's working memory. Then, the
MOM is given control and the loop begins.

The MOM's basic algorithm is as follows:

Loop
Get reports from the Server
Update battlefield model
Do analysis and control
Until mission termination

To behave reasonably, the MOM must always have
good knowledge of the simulated battlefield—that is, of
the state of the simulation. Therefore, the MOM
maintains a model of the battlefield in its working
memory. The initial model is loaded into the MOM by
the Server with the mission specifications. The MOM
updates the model with each new set of reports.

As each relevant set of reports is received, the Server
loads the new data into the MOM's working memory.
Next, the MOM uses the data to update its battlefield
model, until it has a complete, consistent picture of the
battlefield. Each datum is fit into the structure, and a
variety of facts are inferred. For example, the MOM
constantly tracks the distance of each infiltrating unit
from several pertinent locations. Finally, the MOM
analyzes the battlefield situation, and decides whether to
act. The MOM acts by sending one or more orders to
the simulation. The effects of those orders will be
learned as future reports are received. Once the MOM
has taken all necessary steps, the loop ends, and the
MOM waits for new reports.

For instance, one kind of report COAST receives is a
movement report: it says that a particular unit has moved
to a new location, e.g., unit 1/A/1-75RNG is now at
UTM coordinate 33UUQ447365. This report is loaded
into working memory, and the model maintenance rule
sets compute that 1/A/1-75RNG is within 100 meters of
the link-up point. The analysis and control rules
determine that 1/A/1-75RNG can link up with its
comrades, and order the simulation to make it so.

The bulk of the processing described here is simple in
concept, even if complex in implementation, and will
not be discussed further. The step labeled "Do Analysis
and Control", however, corresponds to the brain of our
robot.

3 ANALYSIS AND CONTROL RULES
3.1 Jobs and Roles

The previous section described how COAST keeps track
of each unit it controls, and noted that it monitors the
unit's location, strength, and so forth. COAST must
also keep track of what each unit is trying to do. To
facilitate this, we broke the basic infiltration mission
down into a number of jobs. Figure 4 shows some of
the jobs units might do during a typical infiltration
mission. The battalion, pictured at the top, is furnishing
platoons to the mission. The platoons must move to
the line of departure, where they begin infiltrating.
Finally, as the platoons arrive at the link-up point, they
must merge with their predecessors. The jobs a unit
might do are determined by its role. For example, the
battalion's role is to furnish; it does not stage, infiltrate,
or link-up. An infiltrating platoon will stage, infiltrate,
and link-up, but it does not furnish.

AL

Furnishing

[N N J
Staging
LD [XX
Infiltrating
[N N J
Infiltrating

Figure 4: Units and Their Jobs

Each job is defined by a rule set, which consists of
three kinds of rules: progress, success, and failure.
Progress rules are what actually get the job done. Given
any reasonable state the unit might be in while doing
this job, there must be a progress rule to move it along
toward completing the job. Consider a unit with the
staging job. If it does not yet exist, it must be split out
of the battalion. Once it exists, it must be ordered to
move to the line of departure. These statements are
embryonic progress rules.

Success rules recognize that the job has been
completed successfully. A unit has staged successfully
when it is at the line of departure, the beginning of the

1065

1066 Dugquette

infiltration route. The success rule's only purpose is to
identify successful completion.

Failure rules recognize that the job cannot be
completed successfully, for job-specific reasons. For
example, suppose that the platoon cannot be split from
the furnishing battalion—perhaps the remaining
personnel are too few to staff a new platoon-sized unit.
Clearly, the platoon cannot stage, since it cannot even be
brought into existence. A failure rule would identify the
failure. External forces that might prevent successful
completion will not be recognized by the job's failure
rules. Combat, for instance, would prevent the platoon
from staging successfully, but handling combat is not
part of a staging unit's job description. External
conditions are the province of the control rules, described
below.

An infiltrating unit will nominally execute three jobs
in sequence: staging, infiltrating, and linking-up.
Rather than writing special rules which say, for example,
"If a unit has successfully completed staging, it should
now begin infiltrating,” we give the unit a job-list
containing the three jobs. As each job is completed
successfully, it is removed from the unit's job-list, and
the unit proceeds with the next job. This is done by a
control rule.

3.2 Control Rules

Control rules control units (and thus, the entire mission)
by manipulating their job-lists. The most fundamental
control rule is sequential execution; as mentioned above:
as each job is successfully completed it is removed from
the unit's job-list. This allows the next job to begin.
There are also initialization control rules, which assign
each unit an initial job list based on its role, and
contingency control rules, which handle special
conditions.

A contingency rule recognizes that the job a unit is
doing is no longer appropriate, or that the job's failure
flag has been raised. For example, it is inappropriate to
continue staging while under attack.

A contingency rule may take any of several actions.
First, a job might be inserted at the beginning of the
unit's job-list. For instance, infiltrating units usually
hide during the day. When day breaks, a contingency
rule puts the DAY-HIDE job at the beginning of the job-
list for all units which are currently infiltrating. When
night falls, the DAY-HIDE job succeeds, and the units
resume infiltrating—provided nothing has happened in
the meantime.

Next, a unit might be given an entirely new job list.
An infiltrating unit which is fired upon too many times
is demoralized, and will abort its mission. A
contingency rule clears the unit's job list, and gives it a

new one which will cause it to move to an abort rally
point.

In extreme cases, the contingency rule will transfer the
unit to the controller. That is, COAST will notify the
controller that the unit is in trouble, return control of the
unit to the controller, and take no further responsibility.
This is also the standard operating procedure when
COAST encounters problems that are rare or for which
solutions have not been implemented.

4 EVALUATION

The combination of control rules and job rules proved an
effective way to manage the units in an infiltration
mission. We believe this technique can be used, as is, to
automate other tasks as well. Nevertheless, there is
room for growth.

OPS5, unlike procedural languages, has very little
structure. There are only rules, which can work together
in convoluted and obscure ways. It is difficult to
program a large system at the level of single rules
without become hopelessly lost. It is necessary to
impose structure on the language, preferably without
losing the fluidity which makes a rule-based language
attractive. The development of the MOM has been one
of increasing structure and expressive power. From the
first, we used several conventional OPS5 control
mechanisms, such as subtasks and agendas. On top of
this foundation, we built the main loop and the rule sets
which update the battlefield model. On top of that, we
built the analysis and control rules.

Originally, the analysis and control rule set was very
unstructured. There were no job rules and control rules,
and no job-lists. Each unit had a scalar state variable,
and control was based on its state and all external
circumstances. For example, a unit infiltrating to the
link-up point might have the INFILTRATE-TO-LUP
state. A unit that was hiding during the day might have
the DAY-HIDE state. Essentially, the state variable was
the MOM's summary of the unit's condition and current
goal. This proved completely unsatisfactory. Each
state had to have specific rules for each state it might
jump to; for example, at day break, INFILTRATE-TO-
LUP jumped to DAY-HIDE. To ensure that this rule
fired when it was supposed to, every other
INFILTRATE-TO-LUP rule included the condition that
it was night time. Each time a new unit state was added,
we had to consider all possible transitions to other states.
Finally, a scalar state could not encode enough
information. For example, a unit in the DAY-HIDE
state forgot whether it had been in the INFILTRATE-
TO-LUP state or the ABORT-TO-RALLY-POINT state.
When night fell, it was not clear which state the unit
should return to:

COAST: The Controller’s Assistant

The solution was, again, increased structure. The
individual jobs a unit might do were defined as job rule
sets, and the job list was born. Each job rule set is
concerned only with that job; all higher-level concerns
are the province of the control rules. Increased structure,
carefully designed, yielded greater expressive power.
Note that the job rule/control rule paradigm relies on the
fluidity of the underlying rule-based system. Each unit
has its own job, but all units pursue their jobs
completely in parallel. Control rules are active at the
same time as job rules, but with higher priority, so that
contingencies are handled immediately.

The control rules are still rather unstructured. As
COAST's capabilities are expanded, further structure will
be needed. The current paradigm allows the MOM to
manage a single, focused task. In theory, COAST can
be extended to coordinate complex missions comprising
a number of interdependent tasks. Each task would
control one or more units. In this scheme, COAST
would be given mission specifications and resources
(e.g., units), and would assign resources to tasks to
accomplish the mission. For example, COAST could be
ordered to take and hold a particular region. Given
appropriate resources, COAST might conduct a company
infiltration mission, attack at dawn with the rest of the
battalion, and call on an artillery unit to provide fire
support.

At present we are enhancing COAST operationally:
making it a more user-friendly, useful, and reliable part
of the CBS system. In the future, we hope to extend its
capabilities along the lines given above, and to apply the
techniques to managing additional kinds of missions.

ACKNOWLEDGEMENTS

This work was sponsored by the U.S. Army Simulation,
Training, and Instrumentation Command, through an
agreement with the National Aeronautics and Space
Administration. Technical guidance was provided by the
U.S. Army National Simulation Center. The author
thanks Robert G. Chamberlain, Joseph P. Fearey, and
Joseph P. Provenzano for their comments and assistance,
both with this paper and with the development of
COAST itself. The research described in this paper was
carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

AUTHOR BIOGRAPHY

WILLIAM H. DUQUETTE is a Member of the
Technical Staff in the Modeling and Artificial
Intelligence Applications Group at the Jet Propulsion
Laboratory. He received a B.A. degree in mathematics

and economics from Claremont McKenna College in
1985, and an M.S. degree in operations research from
Stanford University in 1986. He designed and
implemented COAST as part of Version 1.4 of the
Corps Battle Simulation.

1067

