Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

EXCEPTION MANAGEMENT ON A SHOP FLOOR
USING ONLINE SIMULATION

David Katz

S. Manivannan

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332, U.S.A.

ABSTRACT

A framework for a supervisory controller to manage hard
and soft exceptions on a shop floor is discussed. Various
tasks involved in managing exceptions, the times at which
these tasks are to be performed, and their impact on the
performance of a supervisory controller are studied. On-
line simulation methodology is utilized to detect, classify,
and handle exceptions. A synchronization procedure, an
essential step to perform on-line control using a discrete-
event simulation language, is developed. Its main purpose
is to resolve discrepancies between the behavior of entities
and resources in the simulation model and shop floor. The
framework is restricted to manufacturing cells; however, it
can easily be extended to manage exceptions in logistics
and distribution systems. A simulation model of a flexible
manufacturing cell is used to illustrate exception detection
and synchronization concepts.

1 INTRODUCTION

A tremendous amount of research is being conducted in
the area of supervisory control of manufacturing systems.
The relationships among the essential control aspects of a
manufacturing system are often captured in object-oriented
frameworks. Objects representing parts, machines, and
tools are utilized in a tool management system to optimize
the performance of a manufacturing cell (Bu-Hulaiga and
Chakravarty 1988). Also, several object-oriented control
frameworks for scheduling rail guided vehicles (Rogers
and Williams 1988) and for managing AGVs (Powner and
Walburn 1990) are found in the literature.

Manufacturing control strategies are often represented
using a hierarchical framework (Swyt 1988). Control at
the machine level is performed via state-tables in real-
time; whereas, the cell level control is achieved offline by

888

search algorithms to generate a routing and scheduling
combination. A hierarchical blackboard architecture for
modeling and analyzing manufacturing cells is described
in (Young and Rossi 1988). A control methodology for
FMS encompassing the cell and work stations is presented
by (Ben-Arich et al. 1988; Harmonosky 1990).

Several researchers have relied upon object-oriented
simulation to solve a variety of control problems in
manufacturing (Bischak and Roberts 1991; Shewchuk and
Chang 1991). An event-time synchronization method is
designed to ensure that a simulation model linked with a
production cell reflects the same behavior and complex
pattern of events occurring on the shop floor (Manivannan
et al. 1991). A timed-discrete event system is devised
using a formal language to monitor the behavior of a
production cell, synthesize and enforce control, and
provide offline feedback (Brandin et al. 1992). Recently,
the use of online simulation for supervisory control has
been advanced. A knowledge-based online simulation
architecture has been developed to handle interruptions
caused by single machine breakdowns and rush orders in a
flexible manufacturing cell (Manivannan et al. 1992).

Figure 1 shows the periodic control and exception
management activities performed using offline and online
algorithms on a shop floor. Offline algorithms are used to
perform planning, scheduling and routing functions. These
activities are managed by a human supervisor. Automatic
control devices such as PLCs continuously interact with
online procedures to perform both the hardware control
and the schedule changes due to breakdowns, rush orders,
and the major deviations in the original plans. If the pre-
determined schedule is carried out as planned, then the
only online controllers required are those responsible for
the actual implementation of control procedures (€.g.,
downloading a variety of CNC programs). In such cases,
offline analyses are performed only at predetermined time
intervals and the resulting schedules are implemented.

Exception Management on a Shop Floor Using Online Simulation 889

However, a priori plans are almost never realized in
practice due to unexpected events or trends that cause the
behavior of the shop floor to differ from the supervisor's
expectations. These events, known as exceptions, are
difficult to manage using offline control algorithms and
require online data acquisition systems, a detailed model
of the shop floor operations, and fast analysis tools.

On-Line /
Real-Time
Analyses

Periodic Control Shop Floor Exception Management
Planning ™ -Resources === Detection
Scheduling —» - Entltles Classification
Routng -+ - Activities -l Handling
l Sensor / Operator Online Data
Information V Collection

Machine Breakdown
Material Handling Failure
Rush Orders

Raw Material Problems

©

Analysis Tools

Exception Classes

Figure 1: Supervisory Control Activities on a Shop Floor

Although many areas of offline shop floor control are
well understood and thoroughly studied, an architecture to
analyze the intricate patterns of online events caused by
exceptions using a supervisory controller is lacking. An
integrated framework is needed to solve online control
problems in complex systems. In this paper, we focus on
the issues of developing a supervisory control architecture
for managing exceptions in a manufacturing cell via
online simulation. The architecture is based on the fact
that there is already an offline control mechanism in place
to provide acceptable schedules and product routings.

2 EXCEPTION MANAGEMENT PROBLEM

Exception management involves solving problems in three

distinct areas: detection, classification, and handling.

* Exception detection refers to the identification of
differences between expected and actual performance of
shop floor entities, resources, and activities that require
a human supervisor's attention. The most recent data
from the shop floor is required to ascertain its current
status. In addition, knowledge of the actual and expected
behavior of the shop floor and an approach to detect
departures from this expectation are needed.

* Exception classification refers to the determination of
the number and type of exception detected. For instance,
an operator reports that an AGV is out of order. This
exception can be classified as transporter unavailability.

This exception affects the machines being serviced by
that vehicle, the parts currently transported by it, other
carriers, and perhaps the load/unload stations and the
storage spaces on a shop floor. Exception classification
requires a propagation method to identify all the entities,
resources and activities that are affected by an exception.

® Exception handling requires the generation of a set of
possible alternatives to resolve an exception, evaluation
of these alternatives, selection of the best alternative,
and implementation of this alternative as the control
policy. The exception management system must include
the algorithms necessary to accomplish these goals.

To date, several supervisory controllers incorporate
simulation capabilities to provide planning, loading and
scheduling decisions. However, these controllers seldom
address the issues of online error detection and exception
handling. Trends in simulation software including object-
oriented designs, model builders and intelligent front ends
have led to substantial improvements in the accuracy of
models built to represent shop floor operations. Novel
data collection technologies have enabled users to
accurately capture the onliné data from production cells
for control purposes. These developments allow models to
mimic the shop floor more accurately; however, they still
require information on various distributions to represent
the stochastic events such as part arrivals, part processing,
machine breakdown, material handling carrier failure, tool
and fixture unavailability. Due to this reason, the behavior
of entities and resources in a simulation model often does
not closely resemble that of a shop floor. Indeed, this
becomes a major issue during the management of
exceptions; hence, a method is required to synchronize a
model with the shop floor.

3 EXCEPTION MANAGEMENT VIA OLS

A supervisory control framework is designed by linking a
shop floor with an online simulation (OLS) model. Various
data acquisition devices and object-oriented knowledge
bases are used to tie them together. The effectiveness of
control depends upon the (i) accuracy of OLS models, (ii)
online and offline data used to capture the deterministic,
stochastic, and control events taking place on the shop
floor, and (iii) methods employed in performing detection,
classification, and handling.

3.1 Terms and Definitions

Prior to designing a framework for exception management

we introduce the following terms and definitions:

e Entities {E} are raw materials, parts, or subassemblies
that are transformed to become finished goods, scrap,
or other byproducts.

890 Katz and Manivannan

® Resources {R} perform the value-adding tasks on a shop
floor and include machines, transporters, and people.

e Activities {A} represent the interactions between entities
and resources to form finished products, waste, etc.

o Exception type refers to a class of disruption caused by
an unexpected activity that affects one or more entities
and resources.

o Control horizon refers to the amount of time in which a
control decision is made.

o Number of exceptions refers to the number of identifiable
exceptions encountered concurrently during a control
horizon. Current supervisory controllers are capable
of managing single exceptions; however, they seldom
handle the more common multiple exceptions that
occur in large, complex manufacturing cells.

o Current exception knowledge is related to the learning
ability of the supervisory controller. If an exception
has been previously encountered, the control decision
is obtained from a learning knowledge base.

o Synchronization is essential for managing exceptions via
online simulation. It is a procedure in which the data
acquired from a shop floor is used periodically to
correct the variations or inaccuracies in OLS models.

Figure 2 shows the nature of shop floor exceptions and the

relationships between the various terms and definitions.

J Machine Breakdown

Selected by | |[Unknown and| {imposed by T ila bili
ransporter Unavailabili
Super\usor [Stochasttc} Excepnon Opera'::r Unavailability Y

Tool/Fixture Failure

Resourcel [PartRejects
ela Raw Material

Control \Horizon

Cunrent Shop Floor : Problems
Exception Excepﬁ ons Subassembly
Knowledge Related Unavailability

— Wrong
Activity .
Related Operation

v Rush Orders

Muttiple New Part Releases
Priority Changes

Number |of Exceptions

u | | |
Muttiple || Muttipte || Muttiple Resource Resource Activity
Resource|| Activity Entity ‘and ' gnd and

Types || Types Types Entity types | |Activity types| | Entity types

Figure 2: Exception Management Terminology and Issues
3.2 Exception Detection

Detection is the first and the most important step in
managing exceptions. We classify exception detection into
hard and soft. Hard exceptions are those tangible events
that force the performance of the shop floor to change in
some manner. Examples of hard exceptions are machine
breakdowns, priority changes in processing parts, and rush
orders. These events are easy to detect and usually reported

by operators or automatic controllers. Soft exceptions are
unexpected trends in the behavior of the entities and
resources which are not so easy to detect. A soft exception
occurs when the resources and entities on the shop floor
behave differently than expected, without an obvious cause
for the difference. For instance, if a machine does not
perform as expected, then parts may begin to accumulate
in the queue in front of the machine. This buildup may
cause parts to be completed late, and the schedule, as
planned, will not be met. In this case, a soft exception has
occurred with no extraordinary evidence. For hard
exceptions, the detection phase is trivial, however, the
detection of soft exceptions is very difficult. A state-based
approach to detect exceptions is described in this section.
The terms relating to exception detection are depicted in
Figure 3.

Shop Floor

F
I 1 T s e e '

time

0 2
\/ Es Monitored variables
from Shop Floor

Times at which

data collection Possible values of
is performed els/‘j ezf e‘sff e?"f monitored variable
i — 1° ™ onwhichdata
an- &; ar + is collected
{
Times at which & ¢ U b Ew
exception detection
is performed Monitored variables
N t from OLS Model
h OLS Model '™
0 t ty

Figure 3: Exception Detection Via OLS

Let us define a matrix E; representing the states of
entities on a shop floor s. The components e;; represent
the value of state variable j of entity / monitored at time f.
Each entity is assigned a unique number. Similarly, let R/
be defined with elements 7;; to represent the value of state
variable j of resource i at time #. Let 4° be defined with
components ay; representing the value of state variable j of
activity 7 at time ¢.

By keeping track of the entries in the matrices E;, R/,
and 4/, the current status of the shop floor can be obtained
at time . Using an OLS model created using predefined
arrival and departure patterns, process data, and schedule,
we can compute the expected behavior and performance of
entities, resources, and activities on the shop floor. Let us
define E/", R, and 4" as the expectations of E;, R/, and
A/ respectively. The superscript m denotes the entities and

resources in the OLS model developed to mimic the
operations of a shop floor. Suppose &,; provide the half-

Exception Management on a Shop Floor Using Online Simulation 891

width of the interval about ey in which we expect e;; to
fall. Similarly, p,; and o are the half-widths of the

intervals about 7 and ag; in which we expect rj; and ag;

to fall respectively. The parameters ¢, Pyp and oy are
necessitated by the stochastic nature of the shop floor.
Using these notations, we conclude that a soft exception
has occurred at or before time ¢ if and only if

{ety € [enj £ €0y 1} v {1y € [1] £Poj I} v {ay; e[agy o]} (1)

Equation (1) can be used to detect a soft exception
more succinctly at time ¢ for any (i, j). The matrix entries
with superscript s are obtained from the shop floor via
online data collection systems; whereas, the m values are
obtained from OLS model. Equation (1) describes several
parameters that should be selected rather cautiously for
successful detection of exceptions. Their values greatly
affect the performance of the detection process and can be
obtained analytically, empirically, or heuristically.

The specification of E;, R/, and 4 values requires a
decision by a supervisor as to which state variables of {E},
{R}, and {4} are monitored by the exception management
system. This decision depends upon the function, cost,
and availability of data collection devices on the shop
floor. Further, the nature of interfaces between the
operator and the exception management system play a
critical role in deciding on these state variables. However,
there is a tradeoff between the cost and level of detail
during the selection and monitoring of state variables. In
addition, higher levels of detail increase the cost of
building and maintaining the OLS model.

The specification of parameters in Equation (1) for
exception detection is a complex task. Many experiments
and statistical analyses need to be performed to obtain the
initial values. A learning knowledge base to systematically
correct and update the parameters is required to improve
the precision of the detection module. Finally, the human
supervisor must be "in-the-loop", so that he or she can
alter the parameters to achieve varying goals.

3.2.1 Synchronization

An event-time synchronization (ETS) to modify the events
and their associated times in a simulation model was
developed (Manivannan et al. 1991). ETS is achieved by
altering the future event list of the OLS model in order to
adjust for the differences between the model and the shop
floor. This approach fails to consider the relationships
between events and (E}, (R}, and {4} and does not make the
necessary corrections to the OLS.

The problems are resolved using a two-step procedure.
First, the current data pertaining to (£}, (R}, and {4} from

the shop floor is transmitted to the OLS. For example, if
an AGV is waiting at machine M1 on the shop floor, then
the OLS model will be adjusted to ensure that an AGV is
waiting at M1 at the same time. Next, the synchronization
procedure utilizes an object-oriented knowledge base
during the exception classification phase to determine why
certain state variables disagree. For instance, let us assume
that a machine takes twenty-one minutes to process a part
on the shop floor, whereas, the OLS model reflects a
processing time of nineteen minutes. In this case, the
synchronization procedure will correct the data in the OLS
model to reflect the actual performance of the shop floor.
Figure 4 shows the changes in a state variable value over
time before and after synchronization in OLS models.

OLS Mode! Behavior
Dueto
Synchronization

OLS Model
Selected Behavior without
Attribute Synchronization 4
Value),A""
P
Actual Behavior of
Shop Floor being
Controlled
| | | [l 1
At | At | At | At | At f o
Time

Figure 4: Changes in a State Variable Over Time in OLS Model
Before and After Synchronization

3.2.2 Selection of Control Period

The exception management system is invoked by the
controller whenever one of the two events occur: (i) a hard
exception is reported, or (ii) a control period expires. We
define the control period, denoted by At, as the amount of
time between successive invocations of the detection
procedure. The choice of At has a significant impact on the
performance of the exception management system. If At is
quite small then it will result in a "nervous" control system
that is continuously comparing the simulation model with
the shop floor. In fact, if we consider the /im Ar—0, the
exception management system tends to follow approaches
currently employed in process monitoring systems. This is
undesirable for a shop floor in which the status variables
do not change frequently enough to warrant continuous
monitoring. Further, the CPU time required by such a
monitoring scheme is quite large.

Alternatively, specification of a large At will cause the
exception management system to ignore soft exceptions for
a period of time longer than desirable. This further reduces

892 Katz and Manivannan

the frequency with which the synchronization procedure is
applied, resulting in divergence of the model and shop
floor. Hence, when the control period expires, the shop
floor will almost always be in an exception state that may
or may not actually exist (the exception may be merely a
manifestation of the stochastic nature of the shop floor).
The choice of At is highly subjective and dependent upon
the characteristics of the shop floor. The choice of At
requires the human supervisor's inputs. The supervisor
will specify an initial control period, and the learning
knowledge base for the exception detection phase will
modify the control period as necessary. The impact of At
on exception detection is illustrated in Section 5.

3.2.3 Selection of Eip Pryj and 0ty

The three parameter sets &, p,;; and a,; are responsible for
controlling the sensitivity of detection procedures. These
parameters allow for the implicit variation in both the
shop floor and OLS model. For ease of analysis, we
assume that the values of ¢, p,;, and a,; are constant for a
specific i and j; i.e., we do not allow the values of these
parameter to change over time.

The initial specification of ¢, p,;, and a;; requires an
empirical study via simulation. Using the OLS model, first
the value of At is determined. Estimates of £, p,;;, and oy,
are then obtained by running the OLS model using
different random number streams. The matrices E;", R/",

and 4" are generated from the OLS model at every At time

units and these values correspond to the average behavior
of the shop floor entities and resources.

Analogous to other exception parameters, the values
of &, p,;, and a,; are continuously monitored and stored
in the learning knowledge base. For instance, suppose the
value of the parameter for the number of parts finished at
operation i in OLS model is one. Then, this may lead to
detecting exceptions many times without sufficient reason.
In such cases, the learning knowledge base would adjust
the parameter automatically to two.

3.3 Exception Classification

The exception classification procedure is activated by the
controller whenever an exception is Getected. It uses the
online data from the shop floor and a knowledge base
consisting of multiple rulebases to determine the number,
type and novelty of exceptions. It then identifies whether
synchronization and/or exception handling is appropriate.
In addition, the exception classification procedure utilizes
the object-oriented relationships among (E}, (R}, and {4} to
describe the impact of exception (i.e., propagation effects).
For instance, consider the following rule:

IFLqS at M(x) >> Lq'" at M(x) and
arrival_rate’ = arrival_rate™ and
speed (AGV)® = speed (AGV)™

THEN exception is resource_degradation at M(x) and
Number of exceptions = 1

qu and L, denote the number of parts currently in the
queue at machine M(x) on the shop floor and OLS model
respectively. The exception classification procedure uses
the relationships among machines and part types to find
that M(x) is related to part type P¢y), so that the current
exception affects P@). Several such rules are developed to
reside in the knowledge base for classifying exceptions
whenever detected.

3.4 Exception Handling

The exception handling procedures receive the data
created during detection and exception phases through the
controller and determine an appropriate action to resolve
exceptions. A knowledge-based online simulation system
(Manivannan et al. 1992) is implemented to handle hard
exceptions due to rush orders and machine breakdowns.
The architecture is being extended to handle both soft and
hard exceptions. A key enhancement is a shift to a parallel
processing mode so that the exception management system
can continue to monitor a shop floor while selecting the
best control decision via simulation. This enhancement
ensures that the shop floor status does not change too
much during analyses. Further, the simulation model used
by the exception handling procedure greatly benefits from
synchronization performed throughout the control history;
the accurate OLS model allows for more precision in the
evaluation of alternatives.

4 A NEW EXCEPTION MANAGEMENT SYSTEM

Figure 5 describes the operating principles of an exception
management system as part of a supervisory controller. It
is capable of performing exception detection (ed_module),
classification (ec_module), and handling (eh_module).

At time ¢, the ed module determines whether the
expected and actual performance of the shop floor agree.
If the data captured is sufficiently similar to the data
contained in the OLS model, then the ed module deduces
that no exception has occurred, performs synchronization,
and continues to monitor the shop floor. On the other
hand, if the OLS model and shop floor are sufficiently
different, then it is inferred that an exception may have
occurred. At this time, a message is sent to the ec_module
describing the type and number of exceptions and
conveying all the relevant data about the shop floor.

Exception Management on a Shop Floor Using Online Simulation 893

Control Policy
Selection
Knowledge Bases

Alternative
Generation
Knowledge Bases

Scenarib1 Synchronization

Incorrect OLS Model Data
Requires Adjustment

Generate Alternative
Control Policies

i

Implement Exception Novel? Correct OLS Model
Control Status and Data
Decision

Execution

Determine Type
and Number of
Exceptions,
and Current
Exception Knowledge

”Shop Floor and
OLS Model
ufficiently Different?.,

Compare Attributes of
S Model and Shop Flo

Attime t,
Obtain Status of
ntities, Resources,
and Activities of

Shop Floor

Attime ¢
Obtain Status of
Entities, Resources,
and Activities of
OLS Model

Monitor Shop Floor Monitor OLS Model

Shop Floor Simulation Model
Data Collection Devices Data Collection Programs
Piece Counters, RF Tags, Software Interfaces,
PLCs, Scanners, Sensors Output Processors

) o

B = E =

Figure 5: Exception Management Framework

Once the ec module receives the message that an
exception has occurred, it first determines the #ype and
number of exceptions. It then uses the current exception
knowledge from the learning base to check whether or not
the exception is novel. If not, a control decision or OLS
model update is performed immediately, and the controller
Tesumes monitoring the shop floor. If the exception and
situation are novel, one of the following scenarios exists:

scenario 1: There is an exception on the shop floor that
requires revision of a control policy.

scenario 2: The data contained in a model (i.e., arrival
time distribution, process time distribution) is
incorrect and the model requires revision.

Other exceptions recorded during this time period also
play a significant role in classification. For instance, if an
AGYV is already unavailable, the ec_module considers this
fact when classifying another exception. If the number of
exceptions during a control horizon is more than one, then
the ec_module would classify this instance as a multiple
exception case. The ec_module contains a set of rules
stored in a knowledge base that determines which situation
exists and what action to take next.

If scenario 1 exists, the ec_module passes the type
and number of exceptions and the associated data to the
eh_module. First, the eh_module ascertains the control
horizon, and initializes an internal clock to ensure timely
output. Exception handling is performed using a "best
control policy so far" rule to be applied when the control
horizon expires. Once the control decision is reached, the
eh_module passes the results to the shop floor and OLS
model, maintaining the correspondence between the two.

If scenario 2 occurs, then the ec_module invokes the
synchronization procedure. Synchronization modifies the
model data, model status, and future event list to reflect
the actual shop floor performance and status. Once this
activity is completed, the exception management system
resumes monitoring the shop floor.

The exception management system also contains a
learning knowledge base. This enables the supervisory
controller to learn about the OLS model and shop floor
during detection, classification and handling phases. This
feature improves the performance and responsiveness of
the exception management system.

5 APPLICATION

The implementation of the exception management system
on a shop floor requires a better understanding of the
different state variables and the interrelationships between
them. In this section, a flexible manufacturing cell (FMS)
is used to illustrate various exception detection and
synchronization concepts. Instead of testing directly on a
real FMS using data acquisition devices, a simulation
model written in SIMAN and Cinema emulates the cell. A
copy of the simulation model performs the functions of
OLS. The emulated FMS uses one random number stream
and the OLS model uses another. In this way, the
stochastic variations found within the emulated FMS and
OLS are generated.

894 Katz and Manivannan

The FMS consists of six machines and four AGVs, and
produces six part types. Parts arrive according to a pre-
planned loading schedule following an exponential
distribution with a mean of twenty-five minutes. The parts
are fixtured onto a pallet at a loading station requiring five
minutes. The parts are transported by AGVs and processed
by a series of machines. After all the processing steps are
completed, the parts leave via an unloading station. The
distance between any two adjacent machines is fifteen feet
and the AGVs travel at a rate of twenty feet per minute.
Table 1 provides the sequence and processing times for
each of the six part types.

Table 1: Operation Sequence and Process Times

Machine Number/Process Time for each Operation Opr(j)
Part # Opr(l) Opr(2) Opr(3) Opr(4) Opr(5) Opr(6)

P1 M1/9 M2/18 M4/24 M3/8 Mé6/16 M5/38
P2 M2/26 M4/18 M3/34 M6/12 MS/17 M1/9
P3 M4/21 Ml/16 M2/9 Mé6/12 M1/8 MS5/4
P4 Mé6/17 M2/24 M3/31 MI/13 M6/14 M3/21
P5 M1/24 M2/8 M3/28 M4/31 MS/12 M6/18
P6 M2/11 M4/30 M3/23 MI/16 M4/9 M2/13

Several simulation experiments were conducted with
the emulated FMS and OLS model. Two state variables
related to the loading station were monitored to detect the
occurrence of exceptions. These are
(i) number of parts waiting at the loading station, and
(ii) total number of parts of type six (P6) arrived at the

loading station.

State variable (i) reflects the activities and behavior of
resources in the FMS, and state variable (ii) corresponds to
the part loading activity. The emulated FMS and OLS
model were each warmed up for a period of 1000 minutes.
At this point, synchronization was performed to ensure
both the emulated FMS and OLS model would reflect the
same initial behavior. From ¢ = 1000 minutes, simulation
runs were made to demonstrate the

o need for synchronization,

e impact of Ar on synchronization/OLS accuracy,

o selection of &g Pryp and %y, and

e detection of exceptions.
The results generated during these simulation experiments
are provided in Figure 6. This figure shows six graphs
which plot the values of state variable (i) and (ii) for
emulated FMS (thick solid lines), OLS model without
synchronization (dashed lines), and OLS model with
synchronization (thin solid lines). The results from the
simulation experiments are described in the following
sections.

5.1 Need for Synchronization

The impact of synchronization on the accuracy of the OLS
model for supervisory control purposes was studied. By

examining the thick solid and dashed lines in Figure 6, we
infer that the values of state variable (i) or (ii) for the
emulated FMS and OLS model exhibit greater differences
over time. For instance, at = 1050, the values of state
variable (i) for the emulated FMS and OLS model were 10
and 9, respectively. At ¢ = 1200, the corresponding values
were 6 and 10. By viewing the thick solid and thin solid
lines, we can conclude that synchronization has reduced
the variability between the emulated FMS and OLS model.
This ensures that the OLS model accurately depicts the
dynamic state changes in the emulated FMS.

5.2 Impact of Af on Synchronization

Synchronization was performed using the OLS model for
various At values. For state variable (i), three sets of
simulation runs were made at control periods At = 10, 50,
and 100 starting from ¢t = 1000. The effect of At on state
variable (i) in OLS model is shown in Figure 6 (a)-(c). A
small value of At results in a near-perfect match between
the emulated FMS and OLS model; however, this leads to
frequent data collection from the emulated FMS to perform
synchronization (see Figure 6 (a)). On the other hand, a
large value of At leads to less frequent data acquisition and
synchronization; however, large discrepancies between the
values of state variable (i) in the emulated FMS and OLS
model result (Figure 6(c)). At At = 50, a reasonable degree
of accuracy is achieved with the OLS model while avoiding
excessive data collection and frequent synchronization (see
Figure 6(b)).

Another set of simulation experiments was conducted
to examine the impact of At on the accuracy of the OLS
model using state variable (ii). The results, shown in
Figure 6 (d)-(f), indicate similar behaviors for varying At
values.

5.3 Selection of g, p;j» and ay;

Once an appropriate control period was chosen, the values
of &, p,» and o, were obtained. Let us assume Af = 50
minutes. Figure 6 (b) shows the changes in the values of
state variable (i) for the OLS model after synchronization
and for the emulated FMS. This variable is associated with
an activity; namely, waiting at a loading station. Hence,
the value of 0y for this activity is required.

The value of Oy is computed either by (a) avcraging
the difference between state variable (i) values of the
emulated FMS and OLS model after synchronization over a
period of time, or (b) performing an off-line statistical
analysis. If method (a) is selected, then from Figure 6(b),
o;; is found to be one. Likewise, the values of all the otper
Eip Py and Oy for (E}, {R}, and {4} are computed using
the state variables monitored by the supervisory controller.

Exception Management on a Shop Floor Using Online Simulation 895

OLS Model with
Synchronization

Emulated FMS

.
nd

o
4
4
4

4

., K
Kd
.\'.a'
OLS Model withou
Synchronization

State Varniable (1)
o
’

7

1000 lo'lo 10;0 lO'JIJ 10:10 IO'SO
Time

(a) Changes in State Variable (i) for At=10 in OLS Model

With and Without Synchronization

o4 - .
= .
e OLS Model without
2 ;1 OLS Model wmith Synchronization
-E) Synchronization /q
3
w ST
Emulated FMS

4

3 ’ N . . .

1000 1050 1100 1150 1200 1250

Time
(b) Changes in State Variable (i) for At=50 in OLS Model
With and Without Synchronization

OLS Model without
Synchronization e
10 r = _.=-A"" OLS Model with
TSem Synchronization
T

-

[Emulated FMS

-

-

State Vanable (1)
-

) + — + t+ nl
1000 1100 1200 1300 1400 1500
Time
(c) Changes in State Variable (i) for At=100 in OLS Model

With and Without Synchronization

N Emulated FMS
OLS Model with
_nt Synchronization
3 o
2.,
3
3 OLS Model without
ZI Synchronization
10 + - + + '
1000 1010 1020 1030 1040 1050
Time

(d) Changes in State Variable (ii) for At=10 in OLS Model
With and Without Synchronization

167 OLS Model without =~ je=r=r=cmrmemcmeme e
Synchronization *
’

Zut Emulated FMS
2
g 13 OLS Model with
3 Synchronization
2 124
g
(7]
"
10 + + + + +
1000 100 1100 1% 1200 1250
Time

(e) Changes in State Variable (ii) for At=50 in OLS Model
With and Without Synchronization

. OLS Model without

. Synchronization
7} OLS Model with .
Synchronization

Emulated FMS

State Variable (ii)

1000 II; I;Oo 13:)0 u:)o 1500
Time

(f) Changes in State Variable (ii) for At=100 in OLS Model

With and Without Synchronization

Figure 6: Results of Simulation Experiments

5.4 Exception Detection

Once the OLS model and the emulated FMS were fine-
tuned via synchronization to be almost identical, the OLS
model was used to manage exceptions. Using the value of
4t =50 and o, = 1, a simulation run was made from ¢ =
1000 to detect exceptions based on the value of state
variable (i). For this purpose, a soft exception was
injected into the emulated FMS by changing the mean of

the exponential inter-arrival distribution from 25 to 23.
The outputs generated by the OLS model and the emulated
FMS are shown in Figure 7. At ¢t = 1050, the difference in
the values of state variable (i) was one. The ed_module
found this value to be within the acceptable range and
concluded that no exception had occurred during this
observation period. Synchronization was performed at this
point and the ed module continued to monitor the
emulated FMS.

896 Katz and Manivannan

Emulated FMS

-
o

©

OLS Model with
Synchronization

Synchronization

State Variable (i)
[+ -]

is Performed An exception
7 Soft Exception is Detected
/ is Injected
6 t 1
1000 1050 1100
Time

Figure 7: Detecting an Exception in the Emulated FMS

At t = 1100, the difference was two and at this point,
the ed_module detected an exception and sent a message
to the supervisory controller. Once the exception was
detected, the ec_module classified the disruption and the
eh_module provided an appropriate control decision.

6 SUMMARY

An integrated framework for a supervisory controller to
manage exceptions on a shop floor was described. A state-
based approach for detecting soft exceptions was outlined.
A synchronization procedure was developed to model the
shop floor more accurately. Future research will involve
further enhancements to ed_module by interfacing it with
a knowledge base and online data sources. The various
modules in the exception management system will be
linked via an object-oriented knowledge base, a supervisor
interface, and a learning base.

REFERENCES

Ben-Arieh, D. H., C. Moodie, and C. Chu 1988. Control
Methodology for FMS. IEEE Journal of Robotics and
Automation, 4 (1).

Bischak, D., and S. Roberts 1991. Object-Oriented
Simulation. In Proceedings of the 1991 Winter
Simulation Conference, ed. B. Nelson, W.D. Kelton,
and G. Clark, 194-203. Phoenix, Arizona.

Brandin, B., W. Wonham, and B. Benhabib 1992.
Manufacturing Cell Supervisory Control - A Timed
Discrete Event System Approach. [EEE International
Conference on Robotics and Automation, 931-936.

Bu-Hulaiga, M., and A. Chakravarty 1988. An Object-
Oriented Knowledge Representation for Hierarchical
Real-time Control of Flexible Manufacturing Systems.
International Journal of Production Research 26:
777-793.

Harmonosky, C. 1990. Implementation Issues Using
Simulation for Real-Time Scheduling, Control, and

Monitoring. In Proceedings of the 1990 Winter
Simulation Conference, ed. O. Balci, R. Sadowski,
and R. Nance, 595-598. New Orleans, Louisiana.

Manivannan, S., and J. Banks 1991. Real-Time Control
of a Manufacuring Cell Using Knowledge-Based
Simulation. In Proceedings of the 1991 Winter
Simulation Conference, ed. B. Nelson, W.D. Kelton,
and G. Clark, 251-260. Phoenix, Arizona.

Manivannan, S., and JBanks 1992. Design of a
Knowledge-Based Simulation System to Control a
Manufacturing Shop Floor. IIE Transactions, 24 (3).

Powner, E., and D. Walburn 1990. A Knowledge Based
Scheduler. In First International Conference on
Expert Planning Systems.

Rogers, P., and D. Williams 1988. A Knowledge-based
System Linking Simulation to Real-time Control for
Manufacturing Cells. Proceedings of the 1988 IEEE
International Conference on Robotics and Automation
2: 1291-1293.

Shewchuk, J., and T. Chang 1991. An Approach to Object
Oriented Discrete-Event Simulation of Manufacturing
Cells. In Proceedings of the 1991 Winter Simulation
Conference, ed. B. Nelson, W.D. Kelton, and G.
Clark, 302-311. Phoenix, Arizona.

Swyt, D. 1988. AI in Manufacturing: The NBS AMRF as
an Intelligent Machine, Intelligent Manufacturing,
The Benjamin/Cummins Publishing Company.

Tayanithi, P., S. Manivannan, and J. Banks 1992. A
Knowledge-Based Simulation Architecture to Analyze
Interruptions in a Flexible Manufacturing System.
Journal of Manufacturing Systems, 11 (3).

Young, R., and M. Rossi 1988. Toward Knowledge-Based
Control of a Flexible Manufacturing System. IIE
Transactions, 20 (1).

AUTHOR BIOGRAPHIES

DAVID KATZ is a Doctoral Candidate in the School of
Industrial and Systems Engineering at Georgia Institute of
Technology. He is a recipient of an NSF Graduate
Fellowship which supported this research. His research
interests are in the area of exception management via
simulation, supervisory control systems, and artificial
intelligence. He is a member of IIE, SME and Alpha Pi Mu.

S. MANIVANNAN is an Assistant Professor in the School
of Industrial and Systems Engineering at Georgia Institute
of Technology. His current research interests lie in the
area of intelligent systems engineering, with an emphasis
on integrating discrete-event simulation, knowledge bases,
and novel data acquisition techniques in logistics and
manufacturing systems. He is a member of IEEE, SCS,
SME and ASEE.

