Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

A GENERALIZED HOLD MODEL

Chien-Chun Chou

Department of Computer Science
Tamkang University
151 Ying-Chuan Road
Tamsui, 251, TAIWAN

Steven C. Bruell
Douglas W. Jones

Department of Computer Science
University of lowa
Iowa City, Iowa 52242, U.S.A.

Wen Zhang

12 Flo Drive
Syosett, New York 11791, U.S.A.

ABSTRACT

The conventional hold model was first analyzed in de-
tail by Vaucher (1977). Several problems have been
encountered in applying this model to evaluate the
performance of certain pending-event set implemen-
tations. For example, the conventional hold model is
incapable of taking into account those performance
degradation factors that are caused by changes in the
size of the event set. Another problem occurs because
of the fixed pattern of hold operations performed in
the hold model. Finally, the conventional hold model
is not suitable for evaluating the performance of con-
current (or parallel) pending event set implementa-
tions.

To solve these problems, we describe an extension
to the conventional hold model that we call the gener-
alized hold model. Our generalization possesses sev-
eral interesting mathematical properties that make it
useful in studying the behavior of implementations of
the event set used in traditional sequential simulators.
In addition, we also describe a generalized concurrent
hold model that permits us to study the behavior of
concurrent pending event set implementations. The
empirical measurements made with our generalized
hold model have borne out the hypotheses concern-
ing the inaccuracies of the conventional hold model
as applied to the binomial queue and calendar queue
data structures.

1 INTRODUCTION

The conventional hold model was first analyzed in
detail by Vaucher (1977). The overall organization
of the conventional hold model consists of an initial-
ization, a transient and a steady-state phase. In the
initialization phase, a pending event set is initialized
with N events. In the transient phase, a series of hold
operations is performed to allow the model to reach
a steady state. Finally, in the steady-state phase, an-
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other series of hold operations is performed in order
that the average time taken by each hold operation
can be measured. Each hold operation performs the
following actions: First, the current event (say, with
timestamp t;) is dequeued from the event set — we
refer to this as the Get-Nezt operation. Then, one
and only one new event is scheduled with timestamp
tg + dt (where dt is a time value obtained from sam-
pling outcomes from a random variable with cumula-
tive density function F(z)) — we call this the Insert
operation.

It has been shown, for example, by Vaucher (1977)
and by Kingston (1985), that as t; — co, a steady-
state condition of the hold model is achieved. In addi-
tion, a cumulative density function Gpm(z) (which is
independent of the time t4) can be asymptotically de-
rived to represent the distribution function for the rel-
ative event times of the events currently in the event
set. By applying this asymptotic result, Gy, (z), and
the fact that the event set size is fixed at N — 1 im-
mediately before each Insert operation takes place,
an average-case cost for the hold operation of vari-
ous event set implementations can be derived as a
function of Gym(z) and N.

Several problems have been encountered in apply-
ing the conventional hold model to evaluate the per-
formance of certain event set implementations. In
particular, the conventional hold model is incapable
of taking into account those performance degrada-
tions that are caused by changes in the size of the
event set. For example, as shown in the empiri-
cal comparisons done by Jones (1986), the binomial
queue data structure performs well for some event set
sizes and worse for others, depending on the number
of one bits in the binary representation of the size.
Another example is provided by the calendar queue
developed by Brown (1988); here, the major cost of
the implementation occurs whenever the size of the
event set grows or shrinks by more than a power of
two. Another problem occurs because of the fixed
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pattern of Insert and Get-Nezt operations that re-
sults from the exclusive use of hold operations. Some
pending event set implementations will deliver their
best performance under sequences of hold operations.

The balance of this paper is outlined as follows:
Section 2 describes our generalized hold model. The
mathematical properties of this model are developed
in Section 3. Section 4 provides empirical evidence
that the generalized hold model is able to capture
the true behavior of several pending event set im-
plementations, whereas the conventional hold model
does not do so. Section 5 extends our new model to
the domain of parallel processing. This model per-
mits us to study the behavior of concurrent event set
implementations. Finally, Section 6 provides some
concluding remarks.

2 GENERALIZED HOLD MODELS

Previous attempts at deriving generalized hold mod-
els can be found in Ayani (1987), Brown (1988), and
Chung, Sang and Rego (1992). Of these, Brown’s
model is perhaps the weakest, using a random se-
quence of Insert and Get-Nezt operations to grow
the event set up to a preset size, and then revers-
ing the probabilities of Insert and Get-Nezt to empty
the event set. In Ayani’s model, after an initial event
set of size N is prepared, Insert and Get-Nezt opera-
tions are performed randomly, with equal probability.
The model used by Chung, Sang and Rego is an in-
dependently developed generalization of Ayani’s; in
it, the sequence of Insert and Get-Nezt operations is
viewed as a Markov chain. For both of these mod-
els, the size of the pending event set will vary along
a random walk from the desired value of N, but for
large N and modest numbers of Insert and Get-Nezt
operations, this allows for reasonably accurate and
reasonably realistic measurements of hold time as a
function of N.

Although random sequences of Insert and Get-Nezt
operations are far more realistic than the fixed se-
quence of operations in the conventional hold model,
the resulting behavior of the event set becomes dif-
ficult to model analytically. Specifically, the random
walk in the size of the event set under these models is
uncontrolled, and as a result, although these models
allow for practical measurements, they never reach a
steady state in the strict sense of the term.

Our generalized hold model is based on the behav-
ior we observe in closed queueing network simula-
tions. In such simulations, all events represent the
end of service at some server. An end of service event
may result in zero, one or two new events being sched-
uled: One new event is scheduled if the server that

completed has a non-empty queue, and one new event
is scheduled if the customer is passed to a server that
had an empty queue.

In our model, we use a generalized hold operation
that operates as follows: First, as in the conventional
hold operation, we use Get-Nezt to remove one event
notice from the pending event set. Following this, the
generalized hold operation schedules from zero to two
new events, where the time-stamp of each new event
is independently determined as in the conventional
hold operation as t4 + dt. The number of new events
scheduled is determined by the type of the event no-
tice.

When our generalized hold operation processes a
type-1 event, it schedules exactly one new event. In
this case, the new event will be a type-1 event, and the
generalized hold operation will be exactly the same
as a conventional hold operation.

When our generalized hold operation processes a
type-2 event, it schedules two new events. One of
these will be another type-2 event, and one will be
a type-3 event. We introduce a new pending event
set operation Set-Insert to allow the insertion of a
set of new items in the pending event set as a single
operation because for some pending event set imple-
mentations, merging a set of new items into the event
set can be done significantly faster than a sequence
of independent insert operations.

Finally, when our generalized hold operation en-
counters a type-3 event, it schedules no new events.
The following section discusses the net effect of the
combination of type-1, type-2 and type-3 events with
our generalized hold operation.

3 MATHEMATICAL PROPERTIES

In the generalized hold model, a type-1 event always
schedules another type-1 event. We can view the
scheduling process for type-1 events as a renewal pro-
cess with recurrence times (77,73, ...T;) being inde-
pendent and identically distributed with a cumula-
tive density function F(z). Moreover, a type-2 event
always schedules another type-2 event and an addi-
tional type-3 event. The scheduling process of type-2
and type-3 events is also a renewal process, where
type-2 events represent renewal points. Furthermore,
the recurrence time distribution of type-2 events has
the same recurrence time distribution, F(z), as type-
1 events.

When the generalized hold model has reached a
steady state so that we can ignore the specific time
t4, we can analytically determine: (1) the cumulative
density function of the relative event times of events,
(2) the average number of events in the event set with
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event times less than z, and (3), the average event
set size and the distribution of event set sizes prior to
calls to Get-Nezt by the generalized hold operation.

To simplify our analysis, we assume that the pend-
ing event set is initialized with equal numbers (N') of
each type of event. Let us define Ggnm(z) as a steady
state cumulative density function (cdf) which repre-
sents the number of events of either type-1, type-2 or
type-3 with relative event times < z:

Gg;.m(a:) = lim Gghm(td,a:)

thm P[(t. —ta) < z] (1)
4—00

Where t. is the timestamp on the next event ¢. The
type of an event ¢, can only take one of three values,
so we can further represent Ggpm(z) as

Gohm(z) = t}i—l.noo { P[(tc — ta) < z|typel] P[typel]

+  P[(tc - ta) < z|type2] P[type2)]

+ P[(tc — ta) < z|type3] P[type3]

} (2)
As we have mentioned, the scheduling process of a
type-1 event is a renewal process with recurrent time
distribution F(z). From renewal theory (see, for ex-
ample, Ross (1983)), when F(z) is a non-lattice dis-

tribution, the cdf of the relative event time (the re-
maining time) for type-1 events is

lim P[(t;. — tq) < z|typel] =

1 T
/ [ - F(t)dt
tq— 00 7y 0

(3)
where pur is the mean of F(z), t. is the timestamp of
a type-1 event, and ¢4 is the timestamp of the current
event. The scheduling process of type-2 events is also
a renewal process with the same recurrent time dis-
tribution F(z), so we can use equation 3 for type-2
events by the simple substitution of type-2 for type-1
throughout.

The scheduling process of type-3 events is based on
each renewal of a type-2 event, so the cdf of the num-
ber of type-3 events with relative event time < z can
be derived as follows: Let ¢(¢4) represent the relative
event time (a random variable) for type-3 events with
the current event having timestamp ¢4. Now, we can
write

lim P[(t. —tqa) < z|typeld] =

tqg— o0

Jlim_Pl(ta) < o]

()
Furthermore, by considering all cases at the first
renewal point and by applying Laplace transforms,
as well as Blackwell's Renewal Theorem (see Chou
(1993)), we have

Jlim Pl(ta) < 7] = _1; /O U-Fea ()

Chou et al.

By substituting (3), (4), and (5) into (2), we can ob-
tain Ggnm(z) and ggnm (), the pdf, as
1 z
Gopm(a) = o [ 1= P
and (6)

1 1 o0
—[1- Fe)] = - / [F(w))du

4

ggnm(z) =

By using equations (6) and applying integration by
parts (see Chou (1993)), the expected number of
events with relative event times < z, i.e., the number
of events in [t4,14 + 2], is

E[Conm(z)] = /O " Gonm (@) F(2)de %
1 [ ,
= 1- II_F ; [F(z) — F*(z)]dz

Remark: If the average size of the pending event set is
m events at the beginning of the Insert operation, the
expected number of events with relative event times
< z becomes

m
m — —

[ F@-FEa )

We now consider the distribution of pending event
set size. At any time t the number of type-1 and
type-2 events in the event set is equal to the number
of type-1 and type-2 events that the system was ini-
tialized with (2N). Since all events are independent,
we can employ the Markov chain shown below, where
each state corresponds to a different number of type-3
events in the event set.

N N
2N+n 1 2N+n

2N+n 2N+n+1

2|2

Given that p, is the probability of n type-3 events
in the event set at the beginning of a generalized hold
operation, that is, p, < 1, forall » = 0,1,2,... and
Pn = 0 for n < 0, and given that the summation of all
Pn is 1 and the right side of equation (9) represents
flows into state n, we can balance the flows into and
out of each state to obtain the following recurrence
relations:

n+ N _ n+1
2N+n' " 2N+n+1

Pnt1 + 2

N
N+n-— 1Pn—1

(9)
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These recurrence relations provide us with a way
to compute the steady state distribution of the size
of the event set. Applying z-transforms (see Chou
(1993)), allows us to compute the expected size and
the variance in the expected size of the event set:

1 2
m=3N+§ and 0'2:N+§ (10)

Furthermore, the distribution of the number of type-3

events is
_ nN"~1 4 2N"
Pn = 3eNn! (11)

Note that all of the results in equations (10) and (11)
are independent of the scheduling distribution F(x).

4 EMPIRICAL EVIDENCE

An Encore Multimax model 320, with fourteen NS-
32532 processors and one level of cache memory was
used as a testbed. For our first experiment, we im-
plemented the generalized hold model using a linked-
list data structure for the event set. With N = 100
initial type-1, type-2 and type-3 events, we ran the
generalized hold model with N H, = 10,000 general-
ized hold operations to reach the steady state. After
every 1000 generalized hold operations, we collected
a data sample by recording the relative times of ev-
ery pending event. One hundred such samples were
collected (30000 samples of relative event times were
collected. These empirical observations were a near-
perfect match to the predictions from equation (11).

For our second experiment, we ran the generalized
hold model with N = 25, NH, = 10,000 and an ex-
ponential scheduling distribution with mean 4. We
recorded the size of the event set after each gener-
alized hold operation and collected 100,000 samples.
The distribution of these sample values was again an
almost perfect match to the distribution predicted by
equation (11).

Finally, we applied our generalized hold model to
the pending event set implementations used in the
empirical comparisons done by Jones (1986); these
were the binomial queue, implicit heap, leftist tree,
linked list, pagoda, Henriksen’s implementation, skew
heaps, splay tree and two-list implementation. In ad-
dition, we measured the performance of the calen-
dar queue implementation proposed by Brown (1988).
For each implementation, we measured the average
time per generalized hold operation as a function of
the initial size of the event set, and compared this
with the time per conventional hold operation.

For most queue implementations, the our general-
ized hold model gave results that were indistinguish-
able from the results obtained using the conventional
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Figure 1: Binomial Queue
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Figure 2: Calendar Queue

hold model. The exceptions were in the cases of bi-
nomial queues and calendar queues, as shown in Fig-
ures 1 and 2. Under the test load provided by our
generalized hold model, the binomial queue exhibits
a run-time per generalized hold operation that varies
smoothly as a function of event set size. We believe
that this is more likely to be a useful prediction of per-
formance in realistic applications than the erratic be-

havior of the binomial queue under the conventional
hold model.

In the case of the calendar queue, our measure-
ments taken under the generalized hold model also
show more averaged behavior than from the conven-
tional hold model, but they are also systematically
higher. We believe that this increase in the measured
cost over the conventional hold model reflects the cost
of the changes in queue size caused by our general-
ized hold model, and we believe that this cost will be
typical of the costs incurred in real applications.
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5 A CONCURRENT HOLD MODEL

As was the case with Ayani (1987) the motivation
behind our work has been to develop a test model
suitable for measuring the performance of pending
event set implementations on multiprocessors. This
has been motivated by our development of the concur-
rent simulation algorithm proposed by Jones (1986)
and most fully explored by Chou (1993). Here, we
will only briefly discuss key aspects of our concurrent
hold model.

The initialization phase of our concurrent hold
model is essentially the same as for the sequential
version of our generalized hold model. We allocate
space for a pending event set and fill it with N
events from each of the three event classes, with ran-
dom times selected according to the analytically de-
termined steady state distribution of relative times.
This avoids the need for a transient phase. In ad-
dition to this, we spawn P — 1 processes so that we
have a total of P processes competing for access to
the pending event set.

Pseudocode for the steady state phase of one pro-
cess is shown below. All P processes execute this code
in parallel. The idea is that each process is to perform
NH, generalized hold operations. As described by
Jones, et al. (1989), we recognize that access to the
shared event set will involve critical sections, so we
pre-compute all random numbers prior to each gen-
eralized hold operation, using an independent random
number stream for each of the P processes.

steady-state phase:
repeat N H, times

— computation phase

as needed, deallocate e,
compute random dt; and dt,,
allocate event records e; and e;.

— generalized hold operation

Get-Nezi(e)

case e.type of

type-1: — insert a new event
e;.type = type-1
e;.time = e.time + dt,
Insert(e;)

type-2: — insert two new events
e;.type = type-2
e).time = e.time + dt,
es.type = type-3
e;.time = e.time + di,
Set-Insert(ey, e3)

type-3: — insert no new event

end case

end loop

oP=1
1.5- [}
Bs 14 P =2
o ' =3
0.5 e L
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1 10 100
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Figure 3: Concurrent Hold Model Data

We used a linked-list implementation of the concur-
rent pending event set with this generalized concur-
rent hold model; the details of this implementation
have been documented by Chou (1993) and outlined
by Jones, et al. (1989). Empirical results are plotted
in Figure 3, where the number of processors P was
varied from 1 to 8 for each of the initial pending event
set sizes.

6 CONCLUSION

We have described an extension to the conventional
hold model that we call the generalized hold model.
Our generalized hold mode possesses several inter-
esting mathematical properties that make it useful
in studying the behavior of implementations of the
pending event set used in traditional sequential sim-
ulators. In addition, we also described a generalized
concurrent hold model that permits us to study the
behavior of concurrent pending event set implemen-
tations.

It is important to note that our measurements have
shown that the conventional hold model is quite ro-
bust. Nonetheless, there are some data structures for
which the conventional hold model does not provide
accurate performance predictions. It is only through
the use of tools like our generalized hold model that
one can discover this.

It should be straightforward to generalize on our
work so that differing initial numbers of type-1 and
type-2 events can be used to adjust the variance in the
pending event set size. (The initial number of type-
2 and type-3 events should always remain equal!)
Additional work is needed to develop better imple-
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mentations of the concurrent pending event set, and
we would like to see theoretical analysis of the per-
formance of algorithms for the concurrent pending
event set done under our concurrent generalized hold
model.
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