Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

AN EXTERNAL STATE MANAGEMENT SYSTEM
F

OR
OPTIMISTIC PARALLEL SIMULATION

Brian W. Unger

Computer Science Department
University of Calgary
2500 University Drive NW.
Calgary, Alberta T2N 1N4
CANADA
email: unger@cpsc.ucalgary.ca

ABSTRACT

This paper presents an overview of an external state
management system that has been designed and
developed as part of Jade's implementation of Time
Warp. The saving of state information can be a serious
overhead for optimistic synchronization mechanisms.
This can become particularly relevant on the critical path
of a parallel simulation. One optimization possible when
processes have large states is to limit state saving to
those parts that change at a given event. A backtrail of
state changes is maintained instead of making full state
copies to support rollback. An approach to this
optimization, called demand state saving (DSS) has been
implemented within Jade's external state management
system (ESM). ESM enables building custom state
managers, such as DSS, for different types of state
information. These state managers reside outside of the
Time Warp executive making it easier to develop and
utilize alternative state management schemes. Both ESM
and DSS are described in this paper. A rough analysis
that compares DSS with copy state saving suggests that
in the worst case, DSS will be superior when the fraction
of state modified at an event is less than 20% of the total
state.

Keywords: Discrete-Event Simulation, Parallel
Simulation, Time Warp, Optimistic Synchronization,
Rollback, State Saving.

1 INTRODUCTION

Optimistic synchronization mechanisms such as Time
Warp [Jefferson 85] have been shown to produce
substantial execution speed-up due to parallelism
[Baezner 92, 89], [Fujimoto 92, 90], [Unger 90, 89, 88].

John G. Cleary

750

Alan Covington
Darrin West

Computer Science Department
Waikato University
2500 University Dr. NW.
Calgary, Alberta
NEW ZEALAND
email; jcleary@sol.cs.waikato.ac.nz

Jade Simulations International
1422 Kensington Road NW.
Calgary, Alberta T2N 3P9
CANADA
alan@jade.ab.ca west@jade.ab.ca

However, there are significant overheads associated with
the implementation of optimistic methods that can
prevent achieving these performance benefits.

One obstacle to achieving speed-up with optimistic
methods is the execution time and memory overhead
associated with state saving. Optimistic methods assume
that a simulation is decomposed into a number of
concurrently executing processes. Since optimism
requires the ability to roll back the simulation to a
previous time, the state of a process must periodically be
saved. If process states are large this can incur both a
substantial execution overhead penalty to copy process
state and a memory usage penalty to repeatedly save
these large states.

Copy state saving can incur a particularly onerous
overhead because it is performed for every process, even
for processes that never rollback. That is, processes on
the critical path of a computation typically incur state
saving overhead for every event.

Several optimizations are possible that reduce state
saving overhead [Baezner 89], [Jefferson 91,90],
[Fujimoto 92, 90, 89], [Lomow 88], [West 88]. For
example, a process that is furthest behind in virtual time,
i.e., the current process on the critical path, does not need
to have its state saved since it can never rollback.
Another possible optimization is to save only that part
of a process state that has changed during some time
period. Such an incremental state saving scheme has
been described in [Fujimoto 92). A version of this
optimization is embodied in Jade's demand state saving
(DSS) manager.

Simulations that involve processes with large states
can benefit from DSS. The basic idea is to use a
backtrace of state changes instead of a state copy. Upon
rollback, this method requires scanning through this
backtrace to re-compute the state that must be restored.

An External State Management System for Optimistic Parallel Simulation 751

Thus, there will be a tradeoff between computation time
to re-compute a state versus the execution time needed to
re-copy that state.

This paper is organized as follows. First, an overview
of the Jade TimeWarp execution model is presented in
section 2. Then the external state management (ESM)
system and one particular state manager that implements
demand state saving (DSS) is presented in 3. Section 4
presents a rough DSS performance analysis. Finally, a
summary and suggestions for future work are presented
in section 5.

2 A TIME WARP EXECUTION MODEL

The Jade parallel simulation development environment is
designed to enable the use of scalable processor and
memory resources [Baezner 93]. Arbitrarily large
simulations are possible on arbitrarily large
multiprocessor computer systems, as well as, on networks
of Unix workstations. Multiprocessor platforms
supported include both shared memory and distributed
memory MIMD architectures.

Jade’s environment is based on Sim++ and Time Warp.
Sim++ is a C++ class library and set of functions for
creating discrete-event simulations. TimeWarp (with no
intervening space) refers to Jade's implementation of the
Time Warp mechanism invented by Jefferson and
Sowizral. Throughout this paper, TimeWarp refers to
Jade’s implementation which incorporates a number of
extensions to the original mechanism described in
[Jefferson 85]. These include Cancelback [Jefferson 91,
90], Activate [Cleary 91] and DSS, the latter described
in this paper.

Sim++ is a general purpose model development library
which through extension enables the environment to be
tailored to specific application domains. This includes
reusable model components and libraries, graphical user
interfaces, and tools for experiment preparation, execution
control, results analysis, and playback.

Here parallel simulation refers to the execution of a
discrete-event simulation on a multiprocessor computer
system. The goals of parallel simulation are to reduce
the execution time of simulations and to allow larger and
more complex systems to be simulated. One challenge in
achieving these goals is to preserve the causal
relationships present in a simulation without relying on
global knowledge and centralized control. The causality
constraint can be defined as follows:

If the execution of an event A causes or
affects the execution of an event B, then the
execution of A and B must be scheduled in real
time so that A is completed before B starts.

Violation of this constraint is referred to as a causality
error. A paradigm for parallel simulation can be based on
a synchronization methodology called Virtual Time
[Jefferson 85]. A Virtual Time is a real number that is
used to partially order a distributed computation. Two
parts of a distributed computation that are unrelated can
be executed in any order, regardless of their Virtual Time
labels. However, if one part with an earlier Virtual Time
causes or affects the other then the one with the earlier
Virtual Time must be executed before the other.

Virtual Time simulations are composed of
independently executing processes that communicate and
synchronize their actions by sending and receiving
timestamped messages. Each process has a Local Virtual
Time (LVT). When a message is sent its send time is
the value of the source processes' LVT and its receive
time, which is greater than or equal to its send time, is
the Virtual Time when the destination process must
receive that message. Although typically associated with
Time Warp, the Virtual Time paradigm is sufficiently
general that it encompasses a number of approaches to
parallel simulation including both conservative and
optimistic. synchronization mechanisms.

Optimistic systems execute events even when there is a
possibility that doing so will violate the causality
constraint. As a result, optimistic systems require the
ability to detect and correct causality errors when they
occur. Optimism trades the cost of causality error
detection and correction for not having to perform
deadlock avoidance or deadlock detection and recovery
(as required in conservative systems).

A Time Warp implementation of Virtual Time permits
the LVT of each process to advance independently of the
LVTs maintained by other processes. As long as a
process is able to receive its messages in order of
increasing receive time, its execution proceeds normally.
A conflict occurs when a message arrives at a process
with a receive time less than the processes' LVT. Such a
message is referred to as a straggler and its arrival
indicates that causality may have been violated. The
erroneous computation resulting from a causality error
may have produced an erroneous process state, as well as,
erroneously sent messages based on that state.

Erroneous computations are eliminated using process
rollback and message cancellation. In rollback, the
process is restored to a state prior to the straggler's
receive time and messages which were sent after that time
may be canceled. After rollback, the process resumes
executing, re-receiving the same messages as before, as
well as, receiving the straggler. Erroneously sent
messages are canceled by sending anti-messages, see
[Jefferson 85] for a complete description. Although
rollback may involve multiple processes, global
synchronization is not required.

752 Unger et al.

To support rollback and message cancellation, three
data structures are associated with each process: an input
queue, an output queue, and a state queue. The input
queue consists of messages sent to a process and
includes both the messages the process has received as
well as those it has not. The messages received by a
process remain in the input queue in case the process
rolls back and must re-receive those messages.

The output queue contains of copies of messages sent
by a process. The messages in the output queue are
referred to as anti-messages and are used to cancel
erroneously sent messages. The state queue consists of
copies of the state of the process that are periodically
saved. Typically, a process state is saved prior to the
execution of each event. When a straggler message is
received the process is restored to the most recently
saved state that precedes the causality error.

Depending on the number and size of messages, anti-
messages, and states saved, the memory available on a
parallel processor could easily be exhausted in simply
maintaining the input, output, and state queues of Time
Warp processes. The amount of such historical
information required by Time Warp to support rollback
and message cancellation can be limited through the
computation of global virtual time (GVT) and the
recovery of memory used for messages and states older
than GVT, again see [Jefferson 85].

3 External State Management (ESM)

The ESM system provides an interface to the TimeWarp
executive that enables keeping language and application
specific state saving functions outside of the executive.
The structure of ESM is illustrated in Figure 1. The
ESM encapsulates a set of state managers (SMs), each
tailored for different kinds of data, and for different
access patterns to that data. These SMs can be accessed
automatically by compiler generated code, or directly by
the model developer, through the SM interface.

State managers (SMs) track state changes executed by
model code. Any number of special purpose SMs can be
associated with a given process. The SM interface can
be tailored to the application and can support different
programming languages. The TimeWarp executive
accesses SM functions through the ESM system.

The ESM interface to TimeWarp is defined by the
following functions. TimeWarp makes upcalls to these
ESM functions which then call the corresponding
functions implemented in the appropriate SMs.

set_rollback_point is called at times that the
executive determines is appropriate; usually before
optimistically advancing time. The ESM calls the same

function within each SM which records information
necessary to perform a rollback to this point in the
computation (should a rollback subsequently become
necessary). This record could be an entire snapshot of
the state of the process or just a pointer into a backtrace
trail,

do_rollback is called to return a process to the state it
was in at a previous time where set_rollback_point was
called. This could be implemented by unwinding a
backtrace, by doing a complete state restore, a State
pointer swap or other special purpose technique that
leaves the process in a state identical to its state when
set_rollback_point was called.

fossil_collect is called when GVT advances and old
state memory can be reclaimed. All state memory
consumed prior to the most recent set_rollback_point
that is less than, or equal to, GVT can be reclaimed.

size routines are used by the Cancelback mechanism
to anticipate memory usage. The amount of memory
which would be consumed if set_rollback point were
called is returned. Cancelback uses this to determine
how much memory must be reclaimed before re-trying
certain failed memory allocation attempts. It is also
possible to back out of a partially completed
set_rollback point if memory is exhausted.

termination is called once as the executive terminates.
This allows statistics information to be dumped as well
as any other special termination processing such as
output buffer flushing or file closing.

Mode! Code

SM Interface

State Managers

ESM System

TimeWarp

Figure 1 The Structure of ESM

An External State Management System for Optimistic Parallel Simulation 753

These routines make downcalls from the SMs to low
level memory allocators in the executive. If memory
allocation fails, they must be able to recover gracefully as
any allocation inside the executive does. The automatic
retrying that is done at the model level for model
allocations is not supported. This allocation routine is
used because the set_rollback_point routine is called
from executive code.

Two SMs have been implemented, two versions of a
demand state saver (DSS). The first is a general purpose
DSS which manages an arbitrarily long block of memory.
The second is an efficient four byte DSS which manages
aligned four byte values. Both of these SMs save the
backtrace of memory snapshots into a stream buffer that
is used to unwind the state changes on rollback.

With either of these DSS SMs, only the changed
portion is saved, and upon rollback, only the changed
portions are restored. In a sparsely changed data
structure, such as a terrain data base, this will result in
substantial space and time saving over copy state saving
which snapshots the entire state.

SMs export a specific user interface to the model, or
application, level. This may be a memory snapshot
routine called before each change of a block of state, or a
registration routine which marks all modified blocks of
state for use in automatic state saving at a
set_rollback point call. These routines may cause the
back trace trail to expand and allocation to occur. A
special model level allocation routine is used which only
fails when there is no memory in a non-transient sense.
This allocation routine is used because the snapshot
routine is called from model code, where deterministic
computation is required. Failure due to a transient lack
of memory would destroy determinism.

Other possible SMs include: an optimistic /O system
with read and write routines which seek backwards and
truncate a file on rollback; and a data structure
maintenance system that works in a forward and reverse
sense. The latter could include data bases, prolog
interpreters, in memory hash tables, trees or heaps. The
exact memory contents do not have to be restored on
rollback, only the abstract state of the data structure. For
example, a tree could wind up being balanced differently
after an optimistic advance and rollback, but it would
have exactly the same nodes and be in exactly the same
order.

A process model of computation could be built above
an event based executive, allowing special stack saving
and restoration to occur. Model level allocation and de-
allocation on rollback can be handled. Special SMs can
be developed to aid in debugging. These can check the
consistency and accuracy of other SMs to aid in their
development.

The design and application of different SMs is driven

by execution speed and memory usage. Copy state
saving will be better for volatiie states whereas demand
state saving is better for sparsely modified and relatively
stable states. Constant or temporary memory should not
be state saved at all. In many cases a compiler can
generate calls to appropriate SM functions, possibly
guided by programmer source code annotations.

4 PERFORMANCE ANALYSIS OF DSS

Assume that TimeWarp goes through repetitive cycles
where there is an advance of x events followed by a
rollback of r events. Also assume that a fraction f of
locations in an array a[-] are actually modified in each
event and that each element of a[*] can be read or written
in one memory cycle.

It is then possible to compute the time taken by a DSS
SM implemented with backtracing. Here we will
compute the fraction f when the backtrace technique is
faster. Note that if f is small enough the DSS technique
can be arbitrarily faster than copy state saving.

First we will estimate the number of memory
operations for one cycle with copy state saving. In the
forward direction we will have f stores into a[+] each
with one read to compute the index i, one read to retrieve
the value to be stored, and one write to a[i]. If a[<] has
n elements then one cycle will involve 3fxn operations
in the forward direction.

State saving at each event will require a read and write
for each element of a[+] or 2xn operations. The rollback
will require 2n operations for a total of: 3fxn+2xn+2n =
n(3fx+2x+2) operations.

For DSS the original write will take at least three
operations as above. The next element will need to be
read and stored, the limit (of the current block allocated
for the backtrace) will need to be read, the original value
in af+] read and two stores will be required to save the
array value and index for a total of nine operations, i.e.,
9fxn. The rollback cost will be 3 operations for each
entry rolled over giving approximately 3rfn operations.
This gives 9fxn+3rfn=nf(9x+3r).

Thus for DSS to be faster we need:
nf(9x+3r) < n(3fx+2x42)

or

f < (2x+2)/(6x+3r)

For a given x, f will be minimized when r is as large
as possible. Sincer<xletr = x. Then

f < (2x+2)/9x

754 Unger et al.

This expression is minimized when x is large giving
f<2/9

Thus in the worst case the DSS SM is faster if no
more than 22% of the array is modified during a cycle.
The best case occurs when x=1 and r=0 where f < 2/3.
Break-even occurs at f = 30% for the following pairs
(r,x): (2,2), (3,4), (3,8), (6,16) (12,32).

5 SUMMARY AND CONCLUSIONS

An external state management (ESM) system was
described which can encapsulate a number of different
state managers (SMs). Then an SM called demand state
saving (DSS) was outlined and two versions of this
mechanism were sketched. A rough analysis suggests
that DSS will always be faster than copy state saving
when less than 22% of the state is modified between
events. DSS may be faster in some cases even when
67% of the state is modified. For simulations that
involve large states this situation may be typical.

Richard Fujimoto has suggested that the longer
computation required upon rollback for incremental state
saving schemes may cause erroneous computations to get
farther ahead than with copy state saving [Fujimoto 92].
This may be avoided by aggressive cancellation.
However, the gains due to lazy cancellation would be
lost. Experimentation is required to assess the value of
ESM and DSS.

A number of optimizations are possible with ESM.
Part of the state could be copy saved and part could be
backtraced depending on the frequency with which it is
referenced. Other optimizations are possible with shared
memory implementations of Time Warp.

ACKNOWLEDGMENTS

The authors thank Jade's people for their efforts in
developing the TimeWarp parallel simulation
development environment. The authors also thank
Chuck Rohs for his efforts in the implementation of
ESM and DSS.

REFERENCES

Baezner, D., Lomow, G. and Unger, B. W. (1993) "A
Parallel Simulation Environment based on TimeWarp",
International Journal in Computer Simulation, in
press.

Baezner, D., Rohs, C. and Jones, H. (1992) "U.S.Army
MODSIM on Jade's TimeWarp", Proceedings of the
1992 Winter Simulation Conference, 665-671,
December.

Fujimoto, R M., Tsai, J.J. and Gopalakrishnan, G. (1992)
"Design and Evaluation of the Rollback Chip: Special
Purpose Hardware for Time Warp", IEEE Transactions
on Computers, 41(1), 68-82, January.

Li, X., Cleary, J. and Unger, B.W. (1992) "Virtual Time
and Virtual Space", International Journal of Parallel
Programming, in press.

Madisetti V., Nicol, D. and Fujimoto, R.M., eds., (1991)
" Advances in Parallel and Distributed Simulation
(PADS)", Simulation Series 23(1), SCS, January.

Cleary, J., Lomow, G. and West, D. (1991) Patent
Application filed by Jade Simulations for Activate,
San Francisco, July.

Jefferson, D. and West, D. (1991) Patent Application
filed by Jade Simulations for Cancelback, San
Francisco, January.

Jefferson, D.R. (1990) "Virtual Time II : The
Cancelback Protocol for Storage Management in
TimeWarp", Proc. of the 9th Annual ACM Symposium
on Principles of Distributed Computing, 75-90,
August.

Fujimoto, R.M. (1990) "Parallel Discrete Event
Simulation", Communications of the ACM, 33(10),
30-53, October.

Unger, B.W., Cleary, J., Dewar, A. and Xiao, Z. (1990)
"A Multi-Lingual Optimistic Distributed Simulator”,
Transactions of the Society for Computer Simulation,
7 (2) 121-152, June.

Baezner, D,, Cleary, J., Lomow, G., and Unger, B. (1989)
"Algorithmic Optimizations of Simulations on Time
Warp", SCS Conf. on Distributed Simulation,
Simulation Series, 21(2) 73-78, Tampa, March.

Fujimoto, R.M. (1989) "The Virtual Time Machine",
International Symposium on Parallel Algorithms and
Architectures, 199-208, June.

Unger, B.W. and Fujimoto, R.M,, eds., (1989)
"Distributed Simulation", Simulation Series 21(2),
The Society for Computer Simulation, March.

Cleary, J., Unger, B.W. and Li, X. (1988) "A
Distributed And-Parallel Backtracking Algorithm
Using Virtual Time", Proc. of the SCS Conference on
Distributed Simulation, Simulation Series, 19(3) 177-
182, San Diego, February.

An External State Management System for Optimistic Parallel Simulation 755

Li, X., Unger, B.W,, Cleary, J., Lomow, G. & West, D.
(1988) "Communicating Sequential Prolog", Proc. of
the SCS Conference on Distributed Simulation,
Simulation Series, 19(3) 166-170, San Diego,
February.

Unger, B.W. and Jefferson, D.R., eds., (1988)
"Distributed Simulation”, Simulation Series 19(3),
The Society for Computer Simulation, February.

West, D. (1988) "Optimizing Time Warp : Lazy
Rollback and Lazy Reevaluation" MSc Thesis,
Computer Science Department, University of Calgary.

Lomow, G. (1988) “The Process View of Distributed
Simulation,” PhD Thesis, Computer Science
Department, University of Calgary.

Jefferson, D.R. (1985) "Virtual Time", ACM
Transactions on Programming Languages and
Systems, 7(3), 404-425, July.

AUTHOR BIOGRAPHIES

Brian W. Unger is a Professor of Computer Science at
the University of Calgary and was the founding
president of Jade Simulations International Corporation.
His research interests include massively parallel discrete
event simulation and the parallel simulation of
telecommunications networks based on optimistic
synchronization mechanisms. Dr. Unger has published
over 60 papers, edited four conference proceedings and
was the principal investigator of a $1.2 million research
project on distributed software development
environments. Dr. Unger received his Ph.D. in Computer
Science from the University of California at San Diego
in 1972,

John G. Cleary was the founding Chief Scientist of
Jade Simulations and is currently an Associate Professor
of Computer Science at Waikato University in New
Zealand. Dr. Cleary's interests include the application of
optimistic synchronization methods to parallel electronic
circuit simulation, telecom network simulation and
parallel logic programming. He is currently
implementing a parallel Prolog called Starlog for use in
distributed simulation using the TimeWarp mechanism.
He received his Ph.D. from the University of Canterbury
in 1980.

Alan Covington is a member of Jade's research and
development staff. Mr. Covington has an MSc. in
Computer Science and five years of experience with Time
Warp and nine years of experience in parallel software
and operating system kernel design. He is currently

working on Time Warp optimizations for telecom
applications.

Darrin West is a member of Jade's research and
development staff. Mr. West has an MSc. in Computer
Science and six years of experience in the design and
implementation of Virtual Time & Time Warp executives.
His master's thesis [West 88] examined lazy re-
evaluation optimizations to Time Warp. Mr. West is
currently working on reflected memory optimizations for
Time Warp.

