Proceedings of the 1993 Winter Simulation Conference.
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

PROCESS MOBILITY IN DISTRIBUTED-MEMORY SIMULATION SYSTEMS

Janche Sang
Edward Mascarenhas
Vernon Rego
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

ABSTRACT

Our focus is on the novel use of a process-oriented method-
ology in distributed-memory simulation systems. To the
best of our knowledge, the few existing systems which
adopt a process-view strictly use message-passing to effect
process-interaction in distributed-memory settings. As a
result, these systems avoid scenarios in which processes
access passive but shared components. This can restrict
the manner in which a system is modelled and hinder the
phase of distributed model construction. In this paper, we
propose an approach which utilizes mobile processes in
distributed-memory simulation systems. Mobile processes
can move around the system at will, with easy access to re-
mote system components. The approach basically entails
the migration of a requesting process with its timestamp to
the remote site hosting the requested passive object. Ma-
jor advantages of this approach include one-time transmis-
sion, fixed communication topology, and increased locality
of reference. Early results based on lightweight processes
show that the mobile process paradigm can be as efficient
as the message-passing paradigm.

1 INTRODUCTION

Any given dynamic system generally lends itself to more
than a single modelling view. For example, in a queue-
ing network, each job can be modelled as a dynamic pro-
cess and each server as a passive object. The function of
each customer process is to access a server object for ser-
vice, possibly requiring it to enqueue itself in some waiting
queue until the server object is free to provide this service.
Alternatively, each server can be modelled as a process,
and each customer as an object. The function of the server
process is to provide service to each static customer object,
enqucueing customer objects other than the one currently
being served in a waiting queue.

In a process-oriented simulation system[Franta 1977,
active components are modelled by processes, while pas-
sive components are modelled by (possibly predefined)

722

data objects. As explained in the cxample above, deciding
what role a passive or active system component plays in a
model depends solely on the modelling view. This role can
change if the view changes, but such a change will usually
entail nontrivial code modification in a simulator.

It is worth emphasizing that neither of the two mod-
elling views described above is clearly preferable to the
other. However, it is our experience that the mapping
of active system processes to mobile simulation processes
can potentially enhance an entire modcling effort, from
model design and validation, to code debugging and main-
tenance. Examples of such processes include the move-
ment of sharks and fish over the domain of the ocean, mov-
ing automobiles on a problem domain involving streets and
traffic lights, moving military tanks over a rugged combat
domain, etc.

As discussed in ([Franta 1977], the two simula-
tion views described above can be realized through
a mutual exclusion mechanism and queueing mech-
anism, respectively. Most sequential simula-
tion systems (e.g., SIMULA [Birtwistle,etal. 1979],
CSIM (Schwetman 1986]) provide uscrs with a mech-
anism supporting at least one of these views. We
are unaware of any existing parallel/distributed simula-
tion system (e.g., Maisie [Bagrodia and Liao 1990}, Mod-
Sim [West and Mullarney 1988]) which flexibly supports
both views. We believe that these systems effect pro-
cess synchronization through message-passing (a queucing
mechanism). As a result, a user must initially distribute
cooperating processes across processors in order to obtain
speedup.

Our approach is to distribute passive objects across pro-
cessors, guaranteeing all processes easy access to these ob-
jects. Naturally, a problem arises when a process executing
0N Some processor requires access to an object that is not lo-
cated on the same processor. For example, a customer pro-
cess hosted by processor A may require access to aresource
or facility object situated on processor B. There are two so-
lutions to this problem. One solutionrequires implementa-

Process Mobility in Distributed-Memory Simulation Systems 723

tion of the Distributed Shared Memory(DSM) [Libes 1985,
Stumm and Zhou 1990] paradigm: the request is trans-
fered to the site on which the passive object is located.
The other solution requires process migration: move the
requesting process, with its timestamp, to the site on which
the passive object is located.

We will show that the DSM approach requires send-
reply round-trip message transmissions in order to keep
shared object state consistent. In addition, the DSM ap-
proach complicates the communication topology, increas-
ing the number of interprocessor links and effectively re-
ducing potential parallelism. One-time transmission, fixed
communication topology and increased locality of consec-
utive accesses makes the Mobile Process approach very
attractive.

In this paper we discuss design and implementation
issues as they relate to Process Mobility and DSM. We
do this using a parallel version of the S? experimental
simulation system [Sang, et al. 1993b], which is based on
a lightweight process library. For completeness and for
the sake of comparison, we have also implemented the
message-passing mechanism. Our results show that mo-
bile processes are effective, performing as efficiently as the
message-passing mechanism, but with slightly higher over-
head. Considering the benefits of using mobile processes,
this will give analysts a powerful alternative framework
for simulator construction.

In order to remove any ambiguity in the definition of the
problem that we attack here, we must first distinguish our
use of the term Process from the commonly-used notion of
aLogical Process (usually abbreviated as LP) in distributed
simulation terminology. The latter term signifies a process
with its own local simulation clock and its own input and
output communication channels for interaction with other
LPs [Chandy and Misra 1979]. Thus, each LP may consist
of one or more Processes and one or more passive objects.
Some attention has been given to the problem of migrat-
ing LPs across processors for performance enhancement
related to load balancing [Glazer and Tropper 1993].

The remainder of the paper is organized as follows. In
Section 2 we bricfly describe the organization of the se-
quential St simulation system. Scction 3 details design
rationale and implementation issues relating to the parallel
St system. Early performance measurements are given in
Section 4. We compare the performance of simulations
using process migration for remote object access to dis-
tributed shared memory techniques for the same remote
object access. In addition, we also experiment with pro-
cess migration and messaging passing on two queueing
examples. A brief conclusion is presented in Section 6.

Probabllity &
Functlons | expon | gEImeanI
LER]

| request I FCFS
Resource release
LCFS

Manager

] ..
Process Message Passing
Coordinatlon

Scheduler
Process

Priority Queue

[

Figure 1: The modules in Si

2 THE S: SIMULATION SYSTEM

S, a system for Simulating process fnteractions, is a
process-oriented discrete-event simulation system. It was
designed as a research testbed for investigating methods
which support simulations efficiently [Sang, et al. 1993a].
Itenhances the capabilities of the C programming language
through a set of primitives which provide a quasi-parallel
programming environment. The S? system consists of four
major modules: a process management module, a process
coordination module, a resource management module, and
a statistics module. Figure 1 depicts the layout of modules
and examples of functions provided within each.

The process creation task in 87 is achieved through
an invocation of the function si_create(func, attr, nargs,
argl, - -, argn). This function returns the process identi-
fier. In the process management module, another important
function in 8t is the delay() function. When an executing
process decidces to suspend itself for ¢ units of simulated
time, it invokes function delay(t). This function inserts
the invoking process’s reactivation record, containing its
reactivation instant clock + t, into the simulation event
calendar. Since the invoking process must now undergo
suspension, the process scheduler must sclect as the next
proccss to execute that process in the event calendar whose
reactivation time is smallest.

The &! system provides two distinct coordination
mechanisms to support synchronization between pro-
cesses. One mechanism is through user-declared cvents,
effected by calling wait_event() and set_event() primitives.
A process is suspendcd if it invokes function wait_event(e)

724 Sang, Mascarenhas, and Rego

because it is forced to wait until event e occurs. Event e
is said to occur when some other process invokes func-
tion set_event(e). At this point, all processes waiting for
event e are reactivated simultaneously. In S?, an event
e is declared to be of type Event and initialized by the
create_event() function.

The other mechanism for process synchronization is
through message-passing. Messages can be sent and re-
ceived with the aid of functions si_send() and si_receive(),
respectively. The function send(tid,msg) deposits message
msg in the mailbox of process tid. If a process awaits the ar-
rival of a message, si_send() enables the process to access
the message and consequently be reactivated. The reverse
function si_receive(&msg) allows a process to obtain the
message from its mailbox. If no message is available, the
invoking process is suspended until a message arrives. For
simplicity, the size of a message is limited to one word
(i.e., the size of an integer or pointer). Note that messages
are processed in a FIFO (first-in first-out) order, realizing
the queueing mechanism mentioned in Section 1.

Processes are used to model active components of a
system. In contrast, facilities are objects used to model
passive system components with mutually exclusive ac-
cess. In other words, processes are dynamic entities which
can request access to static facility entities, use these fa-
cilities for a time period, and eventually release them to
proceed with different activities. S? supports two basic
functions for facility access: the request(f) and release(f)
functions. The facility object is declared to be of type Fa-
cility and initialized by an init_facility() function. When
a facility f is occupied, other requesting processes must
wait in a queue associated with facility f. When facility
f is released, a suspended (and enqueued) process is given
permission to resume, with access to f.

To illustrate some of the features of the St system, we
present a simple example describing a tandem queue. An
N-stage tandem queue is a queucing system consisting of
N qucues in series. A job completing service at server i,
1 <2 £ N —1,will proceed to server 7 + 1 and exit the
system upon completing service at the last server. In the
example shown in Figure 2, 10* jobs are made to traverse
a system with five queues in tandem. Process gen_job()
generates a sequence of jobs. It uses the expon() function
to compute interarrival times, and the delay() primitive
to space arrival events out in simulated time. Functions
request(f) and release(f) maintain a FIFO ordering in giving
jobs access to facilities.

In an alternate view, each station can be modelled by a
process, and jobs can be modelled with the aid of "mes-
sages”. Figure 3 shows S? code implementing this view.
Each process uses the function si_send() and si_recv() to
set up a pipline for processing jobs.

#include <si.h>
#define NMAX 10000 /* no. of simulated jobs */
#define IM 5.0 /* mean job interarrival time */
#define SM 4.0 /* mean job service time */
#define N 5 /* no. of nodes in the tandem queue */
Facility f{N]; /* passive components */
Event done;
si0)
{inti;
for(i=0;i<N;i++) init_facility(&f]i]);
si_create(gen_cust, NULL,0);
wait_event(&done);
- - - output statistical results - - -

gen_job()
{intk;
for(k=0; ; k++) {
delay(expon(IM));
si_create(job,NULL,1,k);
}
}
job(k)
{inti;
for(i=0; i< N; i++) {
request(f[i]);
delay(expon(SM)); /* being served */
release(fTi});

if(k==NMAX) set_event(&done);

Figure 2: A Tandem Queueing Model

xthread_t sid[N];
si()

{inti;

for(i=0;i<N;i++) sid[i]=si_create(server, NULL,1,1);

si_create(gen_job,NULL,0);
wait_event(&done);
- - - output statistical results - - -

}
gen_job()
{ - usesisend(sid{0],msg) to generate jobs.
}
server(k)
{inti, msg;
for(i=0; ; i++) {
sirecv(&msg); /* a job arrives */
delay(expon(SM)); /* serving */
si_send(sid[k+1],msg);
if(k==N-1 && i==NMAX) set_event(&done);
}
}

Figure 3: A Tandem Queueing Model: an alternate view

Process Mobility in Distributed-Memory Simulation Systems 725

3 The PARALLEL S: SYSTEM

3.1 The Distributed Multi-Threaded Environ-
ment

The Parallel S? system employs the Xthreads li-
brary [Sang, et al. 1993c] as its kernel. Xthreads is a sim-
ple and efficient thread library which has been developed
and ported to the nCUBE2 and iPSC/860 hardware mul-
tiprocessors. This library supports logical concurrency
within each node and true parallelism across nodes in
distributed-memory multiprocessors. That is, an Xthreads
program consists of a set of processes, cooperating and
communicating through the interprocessor network. Pro-
cesses begin with the same program image and initialize
the Xthreads environment. Multiple threads of control
sharing a single address space exist within a process.

The Xthreads library supports the notion of thread
migration[Sang and Rego 1993]. That is, a thread’s con-
text and stack can be transported from one processor to
another in a way that allows it to resume execution on
the latter at a point of suspension on the former. De-
scription of a similar multi-threaded system can be found
in [Chase, et al. 1989].

3.2 Design Rationale

In our distributed model, an LP is a UNIX-like heavy-
weight process. Each LP has its own local simulated clock
and an event calendar. Since an LP contains within it-
self a set of processes and shared objects, its event cal-
endar is made to store reactivation records for its pro-
cesses. Further, each LP is associated with input and
output communication channels for interaction with other
LPs. Various distributed (simulation) algorithms can be
used to synchronize LPs. We adopt a conservative algo-
rithm with null messages [Chandy and Misra 1979]. How-
ever, because S?’s modular design philosophy unambigu-
ously defines interfaces to the system’s functional compo-
nents, almost effortless experimentation with other algo-
rithms [Chandy and Misra 1981, Jefferson 1985] is possi-
ble. The only requirement is the simple need to match
interfaces.

In contrast to the traditional distributed computing
model which distributes processes across processors, our
model distributes shared objects across processors. With
the provision of a global-addressing scheme, processes
may be totally oblivious of where the objects they access
are located. Therefore, an analyst may use sequential de-
scriptions of models to obtain parallel simulation models.

Both the process-migration methodology and the dis-
tributed shared memory methodology may make use of
the global-addressing scheme mentioned above. We will
discuss the ideas behind both approaches and the advan-
tages and disadvantages of each.

custQ) /* Processor 0 ¢/ custQ /* Processor 1%/
({
: :
request(&l); e o request(&fTl]); continue
delay(servtime); migrated to delay(servtime); execution
release(&f[1]); release(&fl]);
° .
M L3
. *

;% fi

Figure 4: Migrating a process to the remote site

Communication Channel

The Mobile Process approach

The Mobile Process methodology we investigate pro-
vides a global-addressing mechanism for process migra-
tion. Through this mechanism, a process with an access
request to a (passive) shared object can migrate to the site
hosting this object. Besides information containing the
state of the process, the current value of the local simula-
tion clock (i.e., timestamp) must also be sent along with the
migrating process. A remote host which accepts a migrant
process will allow the process to resume execution when
its local simulation clock reaches the timestamp value of
the process. The migrant process then accesses the passive
object locally and continucs execution transparently, as if
on its original host.

Note that if a conservative algorithm is used, it is not
possible for a host with simulation clock 7' to receive a
migrant with timestamp less than 7. With a conservative
algorithm, each host may execute a next event e from
its list of candidate events only after it is guaranteed that
it will not receive an event with timestamp smaller than
the timestamp of event e from any other host. This is
accomplished through the use of a lookahead mechanism.
A host receiving a migrant process from another host will
not allow its local clock to pass this lookahead value.

One of the advantages of the Mobile Process approach
is the need for only a one-time transmission of a message.
Once migration to a new host is complete, a process main-
tains no relationship with its original host. Its reactivation
record will now be part of the new host’s event calendar.
Another significant advantage is that process migration
allows the original communication topology of the prob-

726 Sang, Mascarenhas, and Rego

lem to remain unchanged. For example, in using Mobile
Processes to model a tandem queue, the communication
topology remains a chain with directed links as shown in
Figure 5(a).

Enforcing locality of access through process migration
makes the two advantages described above even more sig-
nificant. Consider, for example, the situation where a pro-
cess on some host attempts to make consecutive access re-
quests to an object on some remote host. Such a situation
can be seen in Figure 4, where we assume that customer
CO0 makes a series of access requests to facilities F5, - - -,
F9 located on a remote host after it leaves facility F4. Mi-
grating customer CO to the remote host will reduce the
cost of communication since the series of access requests
will now be made locally instead of remotely.

A disadvantage of the Mobile Process approach is that
there may sometimes be a large amount of state that needs
to be moved. This will increase the cost of process migra-
tion. Fortunately, it is possible to control the amount of
state and stack sizes by refraining from the use of a large
number of local variables and access to shared variables
in highly nested function calls. It is also possible to de-
velop more sophisticated schemes to optimize or reduce
the amount of state that must be moved from one host to
another.

The DSM approach

An alternate strategy for the support of global-
addressing involves techniques used in the implementation
of a shared memory facility on a distributed memory envi-
ronment. One such technique is to forward a request, along
with its timestamp, to the appropriate remote host. At first
glance, this approach would appear to be more efficient
than process migration simply because the of low message
transmission costs. However, a closer examination reveals
that efficiency depends on more than just a comparison of
transmission COSts.

Consider the situation in which a process makes a re-
quest to a facility located on a remote host. Once a mes-
sage containing this request is sent to the remote host, the
requesting process must block pending receipt of an ac-
knowledgement. Consequently, round-trip message pass-
ing is required. In addition, the sending host must add the
receiving host’s id to its input channel list. Otherwise, the
sending host would have no way of receiving an acknowl-
edgement. Without the need for an acknowledgement, a
violation of causality would ensue following the continued
execution of a process that does not block after sending
an access request. Thus, the method requires that links
which would otherwise be uni-directional now be made
bi-directional. Also, because the communication topology
may change, processes cannot be migrated once created.

To make a simple comparison with the Mobile Process

(b)

0=0=C=0

(¢)
Figure 5: The Communication Topology

approach, we use the same tandem queue model. Assume
that processes (i.e., customers) are created on processor PO,
and shared objects (i.e. servers) are distributed across pro-
cessors PO, - - -, P3. Since all processes will access these
shared objects, all of the processors P1, P2, P3 will have
to communicate with processor PO (see Figure 5 (b)). If
we scatter the processes to be created among the four pro-
cessors, the communication topology becomes a complete
graph (see Figure 5 (¢)).

3.3 Extensions to the User Interface

One of our objectives in the design of the parallel St sys-
tem was to retain as much of the simple user interface
as possible. With the provision of a global-addressing
environment, user interface modification is limited to the
distribution of shared objects. To assign objects to pro-
cessors, we extended the user interface by providing more
information via function parameters. For example, the
facility initialization procedure was modified to look like
init_facility(&f,pno) where pno is the host at which the
facility fresides.

Note that initialization statements should be executed
globally, by all processors. In this way, each host knows
where a particular facility is located so a process may be
migrated to this facility when necessary. The following
example shows how facilities are distributed evenly among
Processors.

for(i=0; i<num_facility; i++)
init_facility(&f,i* num_nodes/num_facility);

Process Mobility in Distributed-Memory Simulation Systems 727

request(f)

if (facility f is non-local)
migrate the calling process to the site where f is
located;
/* now f is local to the requesting process. */
perform operations as in the sequential version;

release(f)

-- - modified in the same way as in request(f)

}

Figure 6: The modified functions request() and release()
using process migration

3.4 Modifications to System Functions

Some functions, such as request(f) and release(f), were
modified to allow for remote facility access. Figure 6
shows the pseudo-code required for handling a facility.
The function request(f) first determines whether facility f
is located on the local host (i.e., the one on which the ac-
cess request is made) or located on a different host. If fis
local, then action is taken in accordance with the sequential
version of §?. Otherwise, the process making the access
request is migrated to the remote host. Observe that when
the migrant process resumes execution on its new host, it
resumes execution immediately following the if statement.
That is, it attempts to ascertain the status of the facility.
If the facility is occupied, process execution must be sus-
pended. The process is made to wait in a queue at the
facility until the facility is free to respond to its request.

A different implementation, using DSM approach, is
illustrated in Figure 7. In the function request(f), a re-
quest message is sent if the facility fis determined to be
non-local. The sending process then awaits an acknowl-
edgement. Note that the LP hosting the sender can switch
control to another process if and only if such a switch does
not alter simulation logic. A server process fac_server()
on each processor hosting a facility fundertakes the task of
accepting and processing request messages. On receiving
such a request, each server responds with an ACK once the
request is satisfied successfully. If the facility is occupied
when a request arrives, the server enqueues the request in
a queue at the facility.

4 PERFORMANCE MEASUREMENTS

The parallel S¢ system has been implemented successfully
on the nCUBE2 hypercube. A port to the iPSC860 hyper-
cube is under way. Both machines are distributed-memory
multiprocessors which utilize a hypercube communication
topology.

request(f)

if (facility f is non-local) {
send a request message to the site where f is
located;
wait for receipt of a successful
acknowledgement. /* context switch */
}
else
perform operations as in the sequential version;

}

release(f)

if (facility f is non-local)
send a release message to the site where ' is
located;
else
perform operations as in the sequential version
except that an ACK is sent if the next process
in queue is remote;

}

fac_server()
{
for(;;) {
wait for a message msg;
switch(type of msg) {
REQUEST:
if (facility f is free) {
flag f as occupied;
send a successful ACK back;
}
else
insert requesting process’s pid at tail
of queue.
break;
RELEASE:
if (wailing queue for facility [is not empty)
{
remove process pid from head of
queue;
if process pid is local
insert reactivation record of pid
in calendar.
else
send a successful ACK to pid.

else
flag resource f as free;

}

Figure 7: Modifications to request() and relcase() using
DSM approach

728 Sang, Mascarenhas, and Rego

[Stack Size (inbytes) | 16 | 64 | 256 | 1024 |
[Migration Cost | 253 | 288 | 399 | 835 |

Table 1: Process Migration Cost (in microseconds)

[Message Size (inbytes) [16 | 64 [256 | 1024 |
[215 | 242 | 353 | 793 |

| Transmission Cost

Table 2: Message Transmission Cost (in microseconds)

We have conducted three experiments to evaluate the
performance of the mobile process approach. First, we
examined overheads related to process migration. Second,
we used a simple tandem queue benchmark to compare the
performance of mobile processes to DSM. Observe that
both approaches give an analyst the same modelling view
of the system, through a virtual shared memory mecha-
nism. In a final experiment, we compared the performance
of mobile processes to message-passing. As mentioned
earlier, these two approaches give an analyst different mod-
elling views of the system.

To preclude the possibility of a deadlock arising with a
null message algorithm, we utilized service-time distribu-
tions that are shifted exponential.

4.1 Process Migration Latency

To evaluate the performance of the process migration prim-
itive, we measured the time taken by a lightweight process
to travel around a ring of processors. Table 1 shows the
average time taken by a process to migrate from one pro-
cessor to the next in the ring. Also included, for the purpose
of comparison, are the corresponding overheads for mes-
sage transmission (see Table 2). Using ¢ .,mm (n) to denote
total transmission time from one node to the next, and » to
denote the message length (in bytes),

teomm(n) = Ustartup + tsena * (1)

where t,:4r1up 1S the time to establish a connection, and
tsena is the amount of time required for the transfer of a
single byte of data. As can be derived from Equation 1
using the data given in Table 2, the startup time ¢,;artup
is roughly 200 p-seconds. With an efficient implcmen-
tation of lightweight process migration, cost of migration
will only grow linearly with stack size. The cost of this
migration is only slightly higher (by about 40 p-seconds)
than the cost of message transmission.

4.2 Mobile Processes vs. DSM: Empirical Re-
sults

We used the tandem queue model described earlier as a
simple benchmark, to compare the performance of mobile
processes to DSM. Recall that both approaches give an
analyst a uniform modelling view, where passive system
components arc modelled as shared objects. Therefore, a
single program can be used to implement the benchmark,
with the only modification required being the specification
of a communication topology.

For a single remote request operation, we can evaluate
these two approaches in terms of message transmission
cost. As described earlier, a successful request operation
in the DSM approach requires two-way messages, each
containing the type of the message, a facility address, and
the timestamp. Each such message requires precisely 12-
bytes. Let treq_msg and t,ep_msy denote the cost of send
and reply messages, respectively. The cost of message
transmission with DSM is given by

tpspm = treq_msg + trep_rnsg
= tcomm(12)+tcomm(12)
= 2x*toartup + 24 * tgena (from Equation 1)

We also measured the length of messages constitut-
ing migrated information, obtaining roughly 40 bytes per
migration. The transmission cost with mobile processes
works out to be

tpy = tmigration_in/o

= tcomm (40)
= tstartup + 40 * tsend

Because the value of t;:arrup is 200 and tenq is less
than 1, it is easy to see that

tpsar > tpar.

Furthermore, any performance difference between these
two approaches is accentuated when locality is taken into
account. With m, (m > 1), consecutive accesses to the
same remote site, the DSM approach requires a transmis-
sion cost of m * t psas. In the same situation, the mobile
process approach would incur a cost of only ¢ p5;. The lat-
ter cost is incurred solcly by a single transmission, because
after the first access request, all accesses are made locally.

Table 3 presents comparative timings for the benchmark
run. Not surprisingly, the DSM approach performs poorly
in comparison to the mobile process approach. In addition
to the cost of the request operation and the non-local ac-
cesses, the bidirectional links and added communication

Process Mobility in Distributed-Memory Simulation Systems

[Processors [1] 2] 4] 8]
Process Mobility 249 1 118 | 59| 31
Dist. Shared Mem. | 249 | 325 | 423 | 567

Table 3: PM vs. DSM running the Tandem Queue Bench-
mark (in microseconds)

channels (for LP synchronization) reduce potential paral-
lelism.

43 Mobile Processes vs. Message-Passing: Em-
pirical Results

From the results shown in the previous subsection, we
conclude that process migration is a very effective means
for realizing a shared object (or say, mutual exclusion)
mechanism. This is clear when migration is compared
to distributed shared memory based techniques. In this
subsection, we present results obtained by employing the
same benchmark, in order to compare the two different
views of realizing distributed simulations.

Figure 8 shows execution times (in seconds) obtained
by executing two different programs (see Figure 2 and
Figure 3 in Section 2) by scaling up the number of proces-
sors. With the support of lightweight process migration, it
is not surprising to see that the Mobile Process approach
performs almost as efficiently as the Message Passing ap-
proach. This is because both approaches generate the same
number of message transfers.

With the Message Passing approach, each job arrival
message requires the transfer of at least 12-bytes of in-
formation (including process id, message type, timestamp,
etc.). With mobile processes, as described in the pre-
vious subsection, the arrival of a job corresponds to the
migration of 40-bytes of information. The cost difference
(40 — 12) * t4¢nq is not significant in comparison to mes-
sage startup cost at time ¢,¢qr+up. Another reason for the
slightly larger execution times with mobile processes is the
overhead of process creation, unavoidable in open queue-
ing network simulations.

In a final experiment, we increased the number of
servers from 64 to 256 in the tandem queue model. The
intention was to increase the load on each processor. As a
consequence, granularity of computation is increased, re-
sulting in better speedup for both approaches. This result
is shown in Figure 9.

5§ CONCLUSIONS

The novel Mobile Process approach that we propose, for
dealing with remote object access in distributed simulation,
has proven quite successful. The advantages of one-time

Exec. Time

250.0

200.0

150.0

100.0

50.0

0.0

729

_E

Ty

\\X‘\\\“\

Message Passing

Process Migration

R

OrOrrr

N

)
a
ol
)

32 64

Figure 8: Process Mobility vs. Message-Passing

Speedup

65.00
60.00
55.00
50.00
45.00
40.00

35.00

25.00
2000
1500
10.00

5.00

0.00

 Pros Mo 56
/| Ma P sy
v
|
77
/.
/A=
yd
0.00 20.00 40.00 60.00 Proceasons

Figure 9: Speedup

730 Sang, Mascarenhas, and Rego

transmission, fixed communication topology and increased
data locality make the approach more effective than meth-
ods based on distributed shared memory. Through mo-
bile processes, the parallelization of process-oriented sim-
ulations on distributed-memory systems becomes feasible.
Our experiments show that enhancing process-based mod-
els with a migration capability leads to simulations that are
as efficient as the standard message-passing techniques in
distributed simulation. Further, such models possess all
the advantages of sequential process-oriented simulations.

ACKNOWLEDGEMENTS

This research was supported in part by NATO-
CRG900108, NSF CCR-9102331, ONR-9310233, and
ARO-93G0045.

REFERENCES

R. L. Bagrodia and W.-T. Liao (1990). Maisie: A lan-
guage and optimizing environment for distributed
simulation. In Proceedings of SCS Multiconference
on Distributed Simulation, 1990.

G. Birtwistle, O. Dahl, B. Myrhaug, and K. Nygaard
(1979). Simula Begin. Van Nostrand Reinhold, New
York, 1979.

K. M. Chandy and J. Misra (1979). Distributed simulation:
A case study in design and verification of distributed
programs. IEEE Trans. on Software Engineering,
5(5):440-452,May 1979.

K. M. Chandy and J. Misra (1981). Asynchronous dis-
tributed simulation via a sequence of parallel com-
putations. Comm. ACM, 24:198-206, April 1981.

J.S.Chase, F.G. Amador, E. D. Lazowska, H. M. Levy, and
R.J. Littlefield (1989). The Amber System: Parallel
Programming on a Network of Multiprocessors. In
Symposium on Operating System Principles, pages
147-158, 1989.

W. R. Franta (1977). The Process View of Simulation.
North-Holland, Amsterdam, 1977.

D. W. Glazer and C. Tropper (1993). On Process Migration
and Load Blancing in Time Warp. IEEE Trans.
on Parallel and Distributed Systems, 4(3):318-327,
1993.

D. Jefferson (1985). Virtual time. ACM Trans. on Pro-
gramming Languages and Systems, 7:404-425, July
1985.

D. Libes (1985). User-Level Shared Variables. In Pro-
ceedings of the Summer USENIX Conference, 1985.

J. Sang, K. Chung, and V. Rego (1993a). Computational
schemes for efficient simulation of service disci-
plines. In Proceedings of 26th Annual Simulation
Symposium, March 1993.

J.Sang, K. Chung, and V. Rego (1993b). Design and imple-
mentation of a simulation library using lightweight
processes. In Proceedings of the Summer USENIX
Conference, June 1993.

J. Sang, F. Knop, V. Rego, J. K. Lee, and C.-T. King
(1993c). The Xthreads Library: Design, Imple-
mentation, and Applications. In Proceedings of the
COMPSAC, 1993.

J. Sang and V. Rego (1993). Efficient Implementation
of Threads Migration. Technical report, Computer
Sciences Department, Purdue University, 1993.

H. D. Schwetman (1986). CSIM: A C-based process-
oriented simulation language. In Proceedings of the
1986 Winter Simulation Conference, pages 387-396,
1986.

M. Stumm and S. Zhou (1990). Algorithms Implement-
ing Distributed Shared Memory. IEEE Computer,
23:54-64, May 1990.

J. West and A. Mullarney (1988). ModSim: a language
for distributed simulation. In Proceedings of SCS
Multiconference on Distributed Simulation, 1988.

