Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

SIMULATION OF QUEUING SYSTEMS ON A HIGHLY
PARALLEL COMPUTER SYSTEM

Isis D. Rosello
School of Computer Science
Florida International University
Miami, Florida 33199

ABSTRACT

The purpose of this research was to implement the
simulation of specific queuing systems on the Encore
Multimax computer system. The environment partition-
ing approach to distributed simulation was used to
implement parallel simulations of three benchmark
queuing models to show performance improvement. The
execution times obtained for the queuing systems were
better with environment partitioning than without.
However, this only occurred when the objects to
implement the simulation were tightly coupled and were
not hiding a lot of information. Object oriented
techniques were not completely applicable because the
time spent in message passing between processors was
large compared to the time spent in a processor’s local
computation. While speedups of up to 2.0 were
obtained, this is far smaller than prior simulation studies
have suggested are possible for a computer with faster
inter-processor communication. Thus, the Multimax was
not a suitable machine for distributed simulation
employing object oriented design and environment
partitioning.

1. INTRODUCTION

There are two primary approaches to distributing
discrete event simulation tasks over the set of available
processors. In the first approach, model partitioning,
the model is divided into components or subsystems,
which are then assigned to physical processors, and
Environment Partitioning, in which those CPU-
intensive functions required to support the simulation
are identified and assigned to processors ancillary to the
main simulation processor. The tasks requiring the most
computer time in many simulations, especially in
queuing systems, are priority queue processing, statisti-
cal accumulation, and random number generation. These
objects required to perform the simulation are identified,
constructed, and then assigned to independent proc-
€ssors.

Model partitioning can be successful in applications
that permit partitioning with a high level of computa-

713

John Craig Comfort
School of Computer Science
Florida International University
Miami, Florida 33199
e-mail Comfort @ SERVAX Bitnet

tional granularity (the ratio of time spent in a
processor’s local computation to the time spent in
message passing between processors). Simulations of
queuing systems have low granularity since they
perform little computation per system state change.
Since environment partitioning is appropriate for
systems of low computational granularity, this approach
can be used for the simulation of queuing systems.

1.1. Object Oriented Programming and Simulation

Object oriented programming is a promising strategy for
obtaining both model flexibility and ease-of-use in
simulation software. The object-oriented paradigm is a
design and programming discipline that focuses on the
objects (distinguishable components of the system) that
make up the system rather than on the overall function
of the system. The modeling task consists of creating,
manipulating, and destroying objects using established
methods to emulate the operation of the real system.

Object-oriented programming techniques can be
used to develop the queuing system simulation software.
Environment partitioning is easily expressed, since
identifying computation intensive is fully supported by
the object-oriented paradigm.

1.1.1. Principal Objects in Queuing Systems.

As mentioned earlier, the tasks requiring the most
computer time in queuing systems are priority queue
processing, statistical accumulation, and random number
generation. The objects performing these tasks and their
activation points, are:

714 Rosello and Comfort

PRIORITY QUEUE PROCESSOR

(instances: event set, wait queue, idle queue)

Inttialize

Schedule(identitier, priority)
Create a notice containing the identifi er and its
specified priority. Schedule this notice in order
of increasing priority.

Next (identifier, priority)
Extract the notice with lowest priority from the
queue.

Terminate

RANDOM NUMBER GENERATOR

(instances: inter-arrival times, service times)

Lnitialize (Bpe, seed, mean)
Accept the type of the streams to be gener ated
(negative exponential, uniform, or constant), its
initial seed, and its expect ed mean, then initiate
the process.

Generate (value)
Return the next value in the specified stream.

Terminate

STATISTICAL ACCUMULATOR

Initialize
Set all entity times of creation and times of
change to zero. Set all the facility times of
creation and time of last change to zero.

Accrue (entity, state, time)
Accumulate the sums and sums of squares
necessary to compute first and second order
time and utilization statistics.

Aggregate (accumulated statistics)
Using the raw statistical information accu
mulated by Accrue, compute the aggregated
second order time and utilization statis tics,
then transmit them to the requesting process.

Reset
Reset the accumulators for time and utiliza tion
statistics.

Terminate

2. STATEMENT OF THE PROBLEM

Programs to simulate discrete systems tend to consume a
lot of computer time. It seems reasonablc to attempt to
execute these programs on super computers, or on
distributed multi-processor systems. The published
results of these attempts have been disappointing,
especially for an important subclass of DES models
involving queuing systems. It is not even known how
much performance improvement is possible in the
simulation of a general queuing system. Hence, by
implementing the simulation of specific queuing sys-
tems, performance improvement, if any, can be shown.

This study consisted in employing environment parti-
tioning and the object oriented strategy to implement the
simulation of the three queuing systems (MMc, CRS,
and CQn) defined below.

Use of MMc, a single level multi-server queue
(Figure 1) allowed the investigation of a system under
different object loadings. The relative object loadings
were varied by varying the size of the event set. This
model was included in the study because it is typical of
the queues that appear in real simulations.

() s
AN

Figure 1. A c Server Queue (MMc)

CRS, a five node central server model (Figure 2) is
a highly simplified model of a computer system
containing a CPU and two I/O devices. This model was
included in the study because it has been extensively
analyzed and simulated. This model was originally
introduced by D. A Reed. The presence of the fork and
merge nodes is an artifact of the specification language
he used. Since the fork and merge nodes require zero
service time, they were eliminated from the implemen-
tation.

CQn, closed circular queuing network containing n
queues (Figurc 3) was included in the study because it
should permit easy model scalability. It should be
possible to maintain a relatively constant efficiency by
employing k*n processors as n increases.

The results of the implementation of the queuing
systems simulations were compared to the results
obtained by Comfort [Comfort 1991] where these
queuing models were only simulated, not implemented.
Since the implementation of the target queuing models
was not studied before, only experimentation could
show if improvements could be obtained.

3. THE APPROACH

The computer system for running the distributed
simulation was the Encore Multimax running the
UMAX 5 operating system, which is based on UNIX
System V (release 2.4.1). The Multimax has 80 Mbytes

Simulation of Queuing Systems on a Highly Parallel Computer System 715

C_—> /O 1
(CPU

<
e

Figure 2. The CRS Queuing System

—
—

Q)

Figure 3. An n Station Circular Queuing Network
(CQm)

of memory shared by 8 NS32532 processors. Each
processor, running at 8 MIPS, has sufficient memory to
contain the objects assigned to it. One of these
processors, the master, contained the controlling simula-
tion program. The other processors, called the ancillae,
contained instances of objects (priority queue process-
ing, random number generator, statistics) needed in the
simulation.

The processors are linked via a high speed bus
providing communication between the master and the
ancillae. Only the master processor initiated commu-
nication. Since the priority queue processing, statistical
accumulator, and random number generator behaved
somewhat independently, there is the potential for
parallel execution. The speed of simula tion was
accelerated by exploiting such parallelism. The Multi-
max, a highly parallel computer system, was used to
implement the programs developed.

The implementation language chosen is C++, an
object oriented language that was used to implement the
queuing models. The C++ language was chosen for the

implementation because it has fast ex - ition times and
is highly portable. C++ code is preprucessed to give C
object code, which can then be linked and executed like
ordinary C programs. The C++ compiler used was
AT&T C++ 2.1.

3.1. Object/Instance Partitioning

The simulation objects were assigned to the ancillae in
various ways. An obvious way was to assign the
controlling simulation program to the master and each
object to one ancilla. The gang scheduling operations
supplied by the operating system were used for the
processes assignments to processors. A gang is a set of
processes where the number of processes that can enter
the gang is limited by the number of CPUs within the
gang. Since the Multimax has only seven processors
available for processor scheduling operations, a maxi-
mum of seven processes could be assigned to
independent processors. The processes were per-
manently assigned to a specific processor within the
gang. A process was assigned to the gang if the gang
was valid; otherwise, it ran on any processor available.
The current operating system did not allow assigning
more than onc process to a specific CPU. This decreased
the number of experiments which could be performed.
Different assignments of object instances to processors
were tested in order to experiment with environment
partitioning, concurrency, and the Multimax.

The main objective of this research is to evaluate
the performance of programs simulating the queuing
models CRS, CQn, and MMc using the Multimax. The
actual implementation of the queuing models is what
makes this study unique. In previous work, these
queuing models have only been simulated, where the
simulation supporting objects were simulated instead of
implemented. In this study, parametric information about
each supporting object was produced. This information
included the object execution times (execution time
required by each critical function performed by the
queuing program), invocation time (time required for
calljreturn), and the interface time (time required to
transfer information to/from the ancillary). The genera-
ted parametric information was a dominant factor in the
implementation of the supporting objects because it gave
insight about the simulation objects running on the
Multimax.

In order to determine the effectiveness (or lack
thereof) of a particular partitioning scheme, two
measures were used: speedup and relative efficiency.
Speedup is defined as the ratio of the original
(uniprocessor) run time divided by the multiprocessor
run time. Relative efficiency is the speedup divided by
the number of processors. For example, if the original

716 Rosello and Comfort

simulation required 10 seconds to run one block, a two
processor system required 6 seconds, and a three
processor system required 5, the speedup would be 1.67
and 2.00 respectively, while the efficiencies would be
0.84 and 0.67.

The main steps for this study were:

1) Producing parametric information about each simula-

tion supporting object:
In order to compute execution time, separate
programs were written to invoke the critical
functions of each queuing model. Confidence
intervals for the execution time were computed,
after removing the effects of the controlling
software. Estimates about invocation time were
obtained by writing other programs that per
formed the critical operations repeatedly. Inter-
face time was computed by writing separate
programs to time inter-processor information
passing.

2) Implementing the simulation of the queuing systems:
Programs specific to each queuing system were
written using the simulation support objects.
The queuing system programs were run using
parameters such as number of servers, seeds for
the random number generators, number of
blocks, block length, ctc. Actual run times were
ob served for each queuing model.

3) Experimenting with assignments of processes to

Processors:
Different assignments of simulation supporting
object instances to processors were made to
determine the best run times that could be
obtained for the queuing models. Then the total
speedup was computed to demonstrate if the
Multimax was suitable for distributed simula
tion.

4. RESULTS
4.1. Parametric Information

Separate programs were written to call repeatedly
procedures and functions with a different number of
parameters to measure their invocation time. The
procedures and functions had the same number of
parameters as the RNG, PRQ, and STAT’s critical
functions. The critical functions were GetRandom,
Schedule, and Change, respectively. Therefore, the
invocation time for the critical functions could be
computed and not counted in their execution time. After
calling the critical functions template 10,000 times for
ten batches, the invocation time was consistently 2.5
microseconds.

1 000

TIME IN MICROSECONDS

100 T T T

R

PACKET SIZE, BYTES -

Figure 4. Transmission Time per Byte/ No Response
Required

Separate programs were written to compute the time
required to transfer information to/from the ancilla. A
program was created to time the transmission of bytes
between two processes, each assigned to a different
processor. Figure 4 illustrates the time in microseconds
that was spent in transmitting bytes from the sending
process to the receiving process. The mean transmission
time obtained was approximately 0.93 microseconds per
byte.

Another program was run to time the transmission
of bytes but a response was sent from the receiving
process to the sending process. This behavior was
needed when the sending process’ functionality depen-
ded on the received response. Figure 5 illustrates how
time increased depending on the number of bytes
transmitted. In this case, the mean transmission time was
2.35 microseconds per byte. Obviously, a large
overhead was introduced when an answer was required

1 0000

1 000—]

TIME IN MICROSECONDS

100

| | | |
0
- 0 8
-
-
PACKET SIZE, BYTES -

Figure S. Transmission Time per Byte/ Response
Required

Simulation of Queuing Systems on a Highly Parallel Computer System ni

from the receiving process. The transmission of a small
number of bytes was not considered worthwhile because
of the slow message passing mechanism.

The size of interface time was a dominant factor in
the implementation of the objects used for thesimulation,
since it will be present in all communication between
processes residing on different processors. It was not
worthwhile to transmit small number of bytes, because
the interface was too expensive. This was definitely a
very important factor in the design of the simulation
supporting objects.

Each program used to compute execution times for
the simulation objects ran on one processor. The objects
were not created by a particular process running on a
different processor. There was no need for communica-
tion between processes, since environment partitioning
was not implemented.

A program was written to compute the execution
time for the critical function GetRandom of the
Random Number Generator (RNG). It took 82
microseconds to compute a random number when using
a negative exponential distribution. Thirty microseconds
were spent when the stream to be generated was
uniform.

For the Statistical Accumulator (STAT), it took 80
microseconds to perform the critical function Change
used to change from and old to a new state in the
simulation.

Finally, for the Priority Queue (PRQ), it took 10
microseconds to perform the critical function Schedule
used to create a notice containing the identifier and its
specified priority.

The execution times were much smaller than the
interface times. Clearly, careful design of the simulation
support objects was necessary to obtain advantages from
using environment partitioning in implementing the

4.2. The Simulation Support Objects

In the following, the term Simulation Support Object
will be used to name objects whose only purpose is the
facilitation of communication between a program
running on one processor and an object residing on
another. These pairs of objects, as shown schematically
in Figure 6, will serve as the software interface between
these communicating entities. To ease the task of the
programmer using this system, the supporting objects
will have exactly the samc interface (calling sequence,
etc.) that the original objects employed. If the support
objects perform actions no more sophisticated than
message passing, they arc called trivial.

4.2.1. Random Number Generator
As described above the controlling program created the

controling

program
local process remote process
One processor one processor

Figure 6. Interface between the Controlling Program
and a Remote Object

local support RNG object which had the same interface
as the actual RNG object. On another processor was
created the remote support object, which waited for
messages from the local support object, and called the
RNG to get random numbers. The remote process
passed the obtained random number to the local process,
to be returned to the main program. The system call
Fork was used to create the waiting process. Communi-
cation between the support objects was through
messages, using the UMAX message operations msgrcv
and msgsnd to receive and send messages, respectively.

A test program was written to compute the
execution time for the critical function GetRandom. The
main program created the local RNG object (instead of
the actual RNG object) to explore the effects of
environment partitioning. The controlling program was
assigned to a processor, and the RNG to another. It did
not matter to which processors the processes were
assigned, since all the processors were identical. The
execution time increased significantly (from 82 to 1140
microseconds) when the stream type was negative
exponential, and from 30 to 1170 when the stream type
was uniform. This behavior verified that much time was
spent in inter-process communication. Thercfore, it was
not efficient to receive a random number from the
remote support RNG, since every time the GetRandom
method from the local process was called, as the time to
transfer the random number was much greater than the
time to compute it.

A change was necessary to get random number
generation to be at least as fast as when environment
partitioning was not implemented. The local supporting
RNG was modified to keep a batch of random numbers.
This object only communicated with the remote support
RNG to receive a new batch of numbers when its
current batch was empty. Instead of the waiting process
having only one value ready to return when it received a

718 Rosello and Comfort

message from the local support RNG, it had an entire
batch of numbers ready. The interface time per random
number was greatly minimized. Since a batch of
numbers was transmitted instead of one at a time, less
communication was needed between the local and
remote support RNG's. Some parallelism was exploited
because, while the trivial object was storing the numbers
and returning them to the controlling program, the
waiting process was obtaining the next batch of numbers
to be sent.

Experimentation was necessary to determine the
optimal batch size for number transmission. By keeping
40 random numbers in the local object, the execution
time per number generated was minimized from 1140 to
100 microseconds for negative exponential, and from
1170 to 44 for uniform. There was not an advantage in
using environment partitioning because the interface
time was larger than the execution time. The interface
time could not be minimized any more, because a
random number must be returned to the controlling
program.

4.2.2. Statistical Accumulator

A similar operation was performed using thc STAT
object. Since the inter-process communication was slow
compared with the execution time for the Change
operation, the design did not include a one to one
communication between the supporting processes for
every statistical operation. The local object did not send
a message to perform a statistical operation to the
waiting process for every method called, rather, it saved
a pumber of calls with their corresponding incoming
parameters. When a set number of calls was reached, it
sent the saved calls to the remote process. This approach
could be implemented because none of the statistical
operations returned a value. While the remote process
was forwarding the requested operations on the STAT
object, the local process had returned control to its
super-ordinate, to allow it continue executing. The
STAT object, like the RNG object, could be assigned to
a different processor or it could run in the same CPU as
the controlling simulation program.

The number of calls to be saved in the local STAT
was modifiable. Experimentation when running the
queuing models was used to determine the optimal
number of calls to be transmitted. In contrast with the
RNG, the intcrface time could be minimized, since the
statistical operations did not return any value. The
controlling program requested the statistics values after
executing each simulation block. The only value that
was needed to run the simulation was the state in which
the statistics object was in. Therefore, the local STAT
needed to keep track of the state value to avoid extra
communication with the remote support STAT. This

knowledge about the STAT information and functiona-
lity was violating the information hiding and loosely
coupling principles of the object oriented paradigm.
However, it was absolutely necessary to minimize the
run times for the queuing models.

4.2.3. Priority Queue Processor

Similarly, the Priority Queue Processor was dealt with.
There was not a one to one communication between the
local and remote processes for every operation, because
the inter-process communication was expensive. The
local PRQ support was the most complicated of the
supporting simulation objects. The controlling program
necded to know the next clement that was scheduled
with the lower time for the simulation. This required to
return the entry identification and time of the scheduled
element. However, unlike in the local RNG, the local
PRQ could not keep a batch of entities ready to return,
because it did not know what entries would be
scheduled. The local PRQ therefore needed to know
information about the PRQ to minimize inter-process
communication. The strategy here was to keep part of
the queue in the local PRQ and the other part of the
queue in the PRQ object. A number of elements with
the least scheduling time was kept in the local object.
This minimized interface time because the local support
PRQ returned the next element to be processed from its
queue so long as its queue was not empty. Otherwise,
the next element was obtained from the remote support
PRQ.

Different queue sizes needed to be tested to
determine how many elements should be kept in the
local object. The interface time could be minimized, but
how much depended on the queuing models that
dictated the elements to be scheduled. Even though the
local object kept a part of the queue, it could not
schedule the elements independently from the PRQ;
otherwise, the queuing discipline was not maintained. In
some special cases, the local object needed to get the
next clement from the waiting process to determine in
which queue the new element would be scheduled. By
running the queuing models, it could be determined if
this design was worthwhile.

4.3. Results for the Queuing Modcls

The implementation of the simulation of these queuing
models consisted in the creation of the supporting
simulation objects to test the environment partitioning
approach on the Multimax. Many experiments were
performed to test different object assignments to
processors, and to determine some of the factors that
could make the queuing models run faster. One of the
primary goals of this research was to determine how

Simulation of Queuing Systems on a Highly Parallel Computer System 719

many calls to the STAT object must be saved in the
local STAT to minimize inter-processor communication
time. To determine the batch size, the elapsed times for
each simulation block were compared with the elapsed
times obtained when running the simulation where no
environment partitioning (regular program) was used.
After several tests, where the simulation program
created the local STAT object instead of the STAT
object, it was found that the optimal number of calls to
be saved was 50. If fewer than or more than 50 calls
were transferred at a time, either too much time was
spent in too many transfers, or too many bytes were
transferred at a time, slowing down the transferring
process. Another primary test was required to determine
how large the queue would be in the local PRQ object.
The queue size was changed for each run to determine
the optimal size of 20. By keeping 20 entities in the
local PRQ’s queue, elapsed times as small as the regular
program (no environment partitioning was employed)
were obtained. No significantly advantage was obtained
by creating the supporting objects for the PRQ.

4.3.1. Results for the MMc Queuing Simulation

The simulation queuing model program created two
random number generator objects, one priority queue to
be the event set, and one statistics accumulator object.

The first part of the study consisted of running the
simulation program on one processor. No environment
partitioning was employed. One of the test cases used 5
servers, an inter-arrival time of 10 (all times used are
negatively exponentially distributed), and a service time
of 35. Twenty blocks, each of length 1000 were run.

The elapsed time to execute a simulation block was
0.06 seconds. This time was the reference value to
determine any speedup when environment partitioning
was employed.

The second part of the study included creating
support objects to determine the differences in the
elapsed times. Each object was assigned to a different
processor. There was a maximum of five processors
needed and there were seven available. Therefore, the
object assignment experiments were straightforward.

Figure 7 illustrates the speedups and processor
efficiencies obtained from a selection of the experiments
performed. Many other experiments were run, but the
results shown are representative. The numbers presented
are derived from the average execution time to run one
block of the simulation.

The maximum speedup and the highest processor
efficiency was obtained in Experiment B. Better elapsed
times were obtained by creating the supporting STAT
object. However, the local RNG and PRQ did not make
any difference in the execution times.

A =] [}

A =] (=
main + 2“RNG —— 3 CPU's

o

Al

B: moin + 2*RNG + STAT —— 4 CPU's

C: rmainm + 2*RNG's + STAT +~ PRQ —— 5 CPU's

Figure 7. S;;eedups and Processor Efficiencies for

Selected MMc Experiments
2.0+ 1.0
1.0 0.5

o o
A B C A e C
A Mol + 4*RNG +~ STAT —— 68 CPU's
B: rmain + 4*"RNG —— S CPU's
C: main +~ STAT —— 2 CPU's

Figure 8. Speedups and Processor Efficiencies for
Selected CRS Experiments

4.3.2. Results for the CR5 Queuing Simulation

The implementation of the simulation of this queuing
model consisted in the creation of the trivial supporting
objects STAT and RNG. The trivial PRQ object was not
created since the event size was not large. Environment
partitioning was thereforc not worth implementing for
the PRQ object, because the queue was small. In the
local STAT object, fifty calls were saved to minimize
inter-process communication. Many experiments were
performed to test different object assignments and
determine the factors that made the simulation run
faster.

The first part of the study involved running the
simulation program on one processor with no environ-
ment partitioning. One of the test cases used 10 clients,
a service time of 10 for the central (CPU) server, and

720 Rosello and Comfort

service times of 30 for the other (I/O) servers. Twenty
blocks, each of length 1000 were run.

The elapsed time to execute a simulation block was
0.06 seconds. This time was the reference value to
determine any speedup when environment partitioning
was used.

The second part of the study included the creation
of four remote random number generators and one
remote statistics accumulator. The other objects such as
PRQ did not exploit environment partitioning. Each
remote object was assigned to a different processor.
There was a maximum of six processors needed in the
simulation. Since there were seven CPUs available, the
object assignments to processors was simple.

Figure 8 illustrates the speedups and processor
efficiencies obtained from a selection of the experiments
performed. Many other experiments were run, but the
results shown are representative. The times are the
average execution time to run one block of the
simulation.

By just creating the supporting STAT object, better
elapsed times were obtained. No advantage was shown
when the supporting RNG object was created.

Experiment C obtained the best results for a block
length of 1000. A substantial speedup was obtained by
just creating the trivial STAT object as shown in Figure
8. There was no advantage in creating the trivial RNG
object. The same behavior was obtained when running
this queuing model with other input cases. Environment
partitioning was applicable to one of the supporting
objects when running the CRS queuing model.

4.3.3. Results for the CQn Queuing Simulation

Environment partitioning was applied to this queuing
model by creating n number of supporting RNGs and
one STAT supporting object. Fifty calls were saved in
the local STAT object to minimize the time spent in
inter-process communication between the local STAT
and the remote support STAT. Many experiments were
executed to test different object assignments and
determine any speedup.

The first part of the study involved running the
simulation program on one processor without environ-
ment partitioning. The elapsed time to execute each
block of the simulation was used to determine any
speedup with environment partitioning. The elapsed time
to execute a simulation block was 0.04 seconds.

The second part of the study included the creation
of the remote STAT and RNGs. The number of remote
RNG objects created depended on the number of
servers. Each remote object was assigned to a different
processor when up to seven objects were created.

One of the test cases used 3 servers, 40 clients, an
service time of 30 for all servers. Twenty blocks, each

2.0 1.0

— —
1.0— 0.5 —

- —
o o

A =] C A =] C

A mMmain + 3*RNG + STAT —— S CPRPU’'s
B: maoin + 3%RNG —— 4 CPU’'s
C: rmain +~ STAT —— 2 CPU's

Figure 9. Speedups and Processor Efficiencies for
Selected CQn Experiments

of length 1000, were run.

The largest speedup was obtained when creating the
remote objects RNGs and STAT. In contrast with the
other queuing models, the best speedup was not
obtained by just creating the local STAT object. Some
advantage was shown by creating the local RNG
objects.

5. CONCLUSION

Speedups for the queuing systems MMc, CR5, and CQn
were obtained when environment partitioning was
applied. However, the speedups were not so significant
as the ones reported by Comfort [Comfort 1991]. He
estimated the performance of a distributed computed
system performing the simulation of the queuing models
instead of the implementation. The computer system he
used consisted of n plus 1 8086 processors running at
9.54 MHz., and 640K of memory. He obtained a
speedup of 6 for the MMc, 7.33 for the CRS, and 10.9
for the CQn. The speedups obtained when the queuing
models were implemented on the Multimax were 1.5 for
the MMc, 1.76 for the CRS, and 2.0 for the CQn.

Environment Partitioned Simulation provided a
means of reducing the run time of queuing simulation
programs. Speedups were obtained in the implementa-
tion of the simulation of the queuing models. However,
the simulation supporting objects had knowledge of
other objects’ information and objective to minimize
inter-processor communication. Because the interface
was slow and the processors were very fast, the design
of the objects to implement the simulation could not
employ object oriented principles such as information
hiding. No speedups would have been reported when
implementing the queuing models simulation if all the
object oriented principles were employed. The Multimax
was not a suitable machine to exploit environment
partitioning simulation.

Simulation of Queuing Systems on a Highly Parallel Computer System

Future studies include running the implementation
of the queuing models simulation in other parallel
machines and simulating the queuing models by
incrementing the number of processors to determine the
system behavior under different circumstances.

REFERENCES

Comfort, J. C., ‘Environment Partitioned Distributed
Simulation of Queuing Systems’ ; Proceedings of the
1991 Winter Simulation Conference, Dec. 1991, pp.
584-92

AUTHOR BIOGRAPHIES

ISIS D. ROSELLO received her M.S. in Computer
Science from Florida International University in 1993.
She is presently a Senior Software Engineer at Coulter
Corporation, in Miami.

JOHN CRAIG COMFORT is a Professor of Computer
Science at Florida International University. His major
research interest is parallel and distributed simulation.
He has served in many capacities in the WSC, most
recently as Program Chair, and in the Annual Simulation
Symposium, most recently as President.

721

