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ABSTRACT

The performance impact of event simultaneity and
barrier synchronization on globally-clocked, discrete-
event simulations is quantified using both a perfor-
mance model and empirical results. We investigate
the use of both conservative and optimistic lookahead
to improve event simultaneity. The use of conserva-
tive lookahead is shown to be clearly beneficial, sig-
nificantly improving overall simulation performance.
Optimistic lookahead, however, is more problematic.
Empirical results show that the overhead needed to
support optimistic lookahead defeats the performance
gains due to increased simultaneity.

1 INTRODUCTION

Most recent work on parallel, discrete-event simula-
tion has concentrated on time synchronization pro-
tocols for asynchronous distributed simulation algo-
rithms (Fujimoto 1990, Jefferson 1985, Misra 1986).
However, there are classes of problems for which
the conceptually simpler synchronous simulation al-
gorithm has adequate performance, eliminating the
need to use the more complex asynchronous proto-
cols. In addition, the performance of synchronous
simulations is more predictable, avoiding the some-
times erratic behavior of other techniques (Chamber-
lain and Franklin 1991). (Lin and Lazowska(1991)
coined the term “S phenomenon” to describe the ob-
servation that speedup curves for an optimistic asyn-
chronous algorithm often have several local minima
and maxima. This observation was made over a large
set of different simulation applications (Jefferson et
al. 1987, Wieland et al. 1989, Ebling et al. 1989, Hon-
talas et al. 1989)). This paper explores the perfor-
mance impact of event simultaneity and barrier syn-
chronization on synchronous simulation algorithms
and investigates the use of both conservative and op-
timistic lookahead to improve simulator performance.
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In globally-clocked distributed simulation algo-
rithms, each processor is constrained to process
events at the same point in simulated time. Upon
completion of the event processing for the current
simulated time, the processors reach a barrier syn-
chronization, where they determine the next point
in simulated time at which there are events to pro-
cess. This iteration (processing of events followed by
barrier synchronization) is repeated throughout the
course of the simulation.

The global clock algorithm has the advantage of
being straightforward to understand, implement, and
debug; however, the algorithm can reduce the amount
of parallelism that is exploited by the simulator. This
occurs because the global clock forces the serialization
of events with distinct timestamps, even if there is
no causal relationship between the events. Due to
this constraint, processors that have completed their
work for the current simulated time must remain idle,
contributing to load imbalance. ‘

This paper explores the performance impact of
modifications to the global clock algorithm that di-
minish both the cost of barrier synchronization op-
erations and the load imbalance effects of the strict
global clock algorithm. The algorithm modifications
retain the iterative nature of the original global clock
algorithm, but relax the constraint that only events
with timestamp equal to the current simulated time
be processed during the same iteration. This class of
algorithms is described as synchronous algorithms by
Fujimoto (1990).

The execution of events timestamped later than
the current simulated time is referred to as look-
ahead. Lookahead comes in two forms: conserva-
tive and optimistic. In conservative lookahead, an
event is executed only if it can be shown to not
violate the causality of the simulation (i.e., if it is
safe). Previous work by Nicol (1988) and Fujimoto
(1989) has explored the use of conservative lookahead
in the context of locally-clocked algorithms, show-
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ing clear performance benefits when lookahead is ex-
ploited. Lubachevsky (1988) uses this technique in
his “bounded lag” algorithm. Optimistic lookahead
is a form of speculative computation. Events are exe-
cuted assuming it is safe to do so. If some later event
(with an earlier timestamp) invalidates the actions
associated with a previously executed event, the sim-
ulator rolls back its state information and executes
the two events in the proper (time-ordered) sequence.
Mehl (1991) proposed this technique in the context
of a conservative asynchronous algorithm but did not
report on its performance. Here, we are interested in
understanding and quantifying the performance im-
pact of both conservative and optimistic lookahead
on synchronous algorithms.

The paper is organized as follows. The next section
presents a model of synchronous simulation algorithm
performance on an MIMD hypercube machine. The
following section uses the both the model and simu-
lation execution experiments to quantify the impact
of event simultaneity on simulator performance (We
describe two events as simultaneous if they are both
executed in the same iteration). This includes the ef-
fects of both load imbalance and barrier synchroniza-
tion operations. Section 4 describes the performance
impact of using conservative lookahead, and Section
5 presents the performance impact of optimistic look-
ahead. The final section presents conclusions and di-
rections for future work. Event simultaneity is the
key to adequate performance with synchronous simu-
lators. As is the case with asynchronous algorithms,
conservative lookahead is quite effective at improv-
ing the simultaneity of simulation events, thereby im-
proving simulator performance. The benefits of op-
timistic lookahead are less clear, with the implemen-
tation overhead defeating the performance gains in
empirical measurements.

2 MODEL DEVELOPMENT

In this section, a performance model is presented to
quantify the effects of various parameters. This al-
lows us to understand the relative importance of the
model components and attempt to improve perfor-
mance. The model is similar to others developed
for synchronous iterative computations (Dubois and
Briggs 1982, Madala and Sinclair 1991). In a syn-
chronous simulator, each processor is executing the
same program with local data pertaining to a por-
tion of the system. One can model the runtime of the
simulation over B busy ticks (simulation time points
when there is an event) on P processors (Peterson

1992, Peterson and Chamberlain 1993) as:
RP = B[tcpu + tecomm + tsync + touerhead]

In this equation, t.,, is the time spent processing
events for the most heavily loaded processor. Simi-
larly, tcomm is the time spent processing event mes-
sages. The t,yn. term corresponds to the amount of
time required to perform a barrier synchronization us-
ing a complete exchange algorithm. Finally, the simu-
lator has overhead that is incurred each iteration for
calculating the next simulation time, cleaning data
structures, and for initializing variables. The time
spent on these activities is represented by toyerhead-

Each iteration, a barrier synchronization is per-
formed using the complete exchange algorithm
(Chamberlain and Franklin 1990). The runtime of
the complete exchange algorithm is logarithmic with
respect to the number of processors in the hypercube.
Assuming that the time to synchronize two neighbors
is tcz, the time for synchronizing each iteration can
be expressed as:

tsync = tCI 10g2 P

We next consider the role of event processing. In
the serial case, the time spent processing events can
be expressed as the product of the number of events
and the average time spent processing an event. Us-
ing the same reasoning, the time spent processing
events in the parallel case is equal to the time spent
processing events divided by the number of proces-
sors, assuming that all nodes have an equal portion
of the events to process. Unfortunately, this assump-
tion is not true in general because some processors
will have more events to process than others. Hence,
a factor 3 is defined as the ratio of the number of
events at the most heavily loaded processor to the
number at a processor with an average load. This re-
sults in the time spent processing events for the most
heavily loaded processor:

BEt,
tcpu = _.P_

E is the mean number of events that are processed
each iteration. Each event takes t. time to be pro-
cessed. P is the number of processors, and (3 is the
imbalance factor. Note that the ideal value of 3 is
1 which corresponds to a perfectly balanced system.
As the load imbalance worsens, 3 increases.

The cost for communications is the amount of time
spent processing event messages and ensuring that all
messages have been received through the use of ac-
knowledgments. Each event message that is received
1s processed by inserting an event into the local event
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queue for the appropriate simulation time. The re-
ception of these messages is followed by sending an
acknowledgment message to the processor where the
event message originated. The amount of time re-
quired to process an individual message is denoted
by tproem. The final acknowledgment sent will then
take tns, to arrive at its destination. The order in
which these actions are completed indicates that the
time spent with communications can be expressed as:

tcomm = Mtprocm + tmsg

Each iteration, one of the processors receives the
largest number of event messages. The number of
messages that arrive at this processor is denoted by
M.

Table 1 shows the parameters of the model and
their definitions. More information is available on the
development and verification of the model (Peterson
1992, Peterson and Chamberlain 1993). The next
section explores the impact of event simultaneity on
simulator performance. These results are explained
in terms of the runtime expressions above.

Table 1: Parameters for Performance Model

Rp runtime with P processors
p number of processors
B number of busy simulation time points
3 load imbalance factor
E number of events per iteration
M max # event msgs at proc per iteration
le time to process an event
torocm time to process an event message
tmsg time to send a message
toverhead time to complete overhead tasks
tex time to perform pairwise exchange
T simulation time resolution

3 SIMULTANEITY

The performance of synchronous parallel simulation
is greatly impacted by the amount of work that must
be performed by each processor in an iteration. In or-
der for a parallel simulator to have significant speedup
over a serial simulator, the amount of parallelism that
can be exploited must be large enough that the time
spent processing events dominates the overhead (mes-
sage processing time, barrier synchronization, etc.).
Increasing the amount of work that can be performed

in parallel will reduce the impact of the system over-
head.

There are a number of factors that can impact the
ratio of event processing to overhead, including event
simultaneity and number of required barrier synchro-
nizations. As the number of events to be processed
each iteration increases, the event processing to over-
head ratio also increases. Here, we are increasing
the event simultaneity, or number of simultaneous
events processed each iteration. In the model, this
corresponds to an increase in E, the mean number of
events per iteration. Clearly this is a function of the
time synchronization algorithm. Using a strict global
clock algorithm, the events at each iteration are lim-
ited to those events equal in simulated time. But if
this strict interpretation of global clocking is relaxed,
additional events can be simulated within the same
iteration, thereby increasing the event simultaneity.

The second factor is the number of required barrier
synchronizations. If the number of required synchro-
nizations is decreased, the event processing to over-
head ratio is helped. This is modeled by a decrease
in the value of B. Again, the strict global clock algo-
rithm provides little flexibility in affecting this value,
but synchronous algorithms that exploit lookahead
can decrease the number of iterations required to per-
form the same target simulation.

To quantify the performance impact of both event
simultaneity and required iterations, we consider a
simulation with varying time resolution. The target
simulation is a queueing network simulation with 256
queues per processor (the problem size is scaled with
the number of processors), each server has an expo-
nentially distributed service discipline with mean 10
and minimum service time of 1, and the network has
a bidirectional ring topology. When the simulation
is executed using different time resolutions, the total
number of events to process (BE) is constant. How-
ever, at a finer time resolution the events per itera-
tion, E, goes down and the number of iterations B
goes up. Both of these factors contribute to the finer
time resolution having a performance penalty.

For the simulated queueing network, E can be ex-
pressed in terms of the average utilization of each
server, U, the number of servers in the queueing net-
work, Q, the mean service time at a server, S, and
the time resolution factor, r (Peterson 1992).

rUQ
S

The queueing network above was simulated at time
resolutions (r) of both 1 and 0.1 on an nCUBE/7. At
r =1, E = 350 and B = 10,000 when run on 16
processors. When r = 0.1, E = 35 and B = 100,000,

E =
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a significant decrease in events per iteration and cor-
responding increase in number of iterations. Figure 1
shows the resulting parallel runtimes for the two dif-
ferent time resolutions. Clearly the simultaneity has
a significant impact on the simulation runtime, with
the fine time resolution not performing nearly as well
as the coarse time resolution simulation.
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Figure 1: Simulation Runtime

The decreased performance at the fine time resolu-
tion corresponds to the increased value of B [tcomm +
tsync + toverhead | in the performance model. Given
the strong performance impact of event simultane-
ity (quantified by E) and number of synchroniza-
tions (quantified by B), time synchronization algo-
rithms that can increase E and decrease B (holding
the product BE constant) can potentially improve
overall simulator performance. This is the goal of
lookahead techniques. The next two sections explore
the performance of conservative and optimistic look-
ahead algorithms.

4 CONSERVATIVE LOOKAHEAD

The purpose for a time synchronization algorithm is
to ensure the causality of the system so that events
are processed in the proper order. In the queueing
networks simulated, the queues follow a First-Come-
First-Served (FCFS) discipline and there are no pre-
emptions. In addition, there is a single job class with
each job requiring a non-zero service time. Because
of these properties, it is possible to process certain
events that occur at a later point in simulated time
while ensuring that causality is maintained.

While a job is being serviced at a station, the
server will remain busy until the job is completed.

The time of any job completion is required to be at
least the minimum service time after the current sim-
ulated time (the events correspond to the arrival of
a job at a station at a given simulated time). Hence,
there can be no incoming event messages with times-
tamp less than the minimum service time beyond the
current simulated time. This implies that all events,
scheduled in the period from the current time un-
til the minimum service time into the future can be
processed while guaranteeing that causality is main-
tained. For example, if the minimum service time of
the simulation is one and the time resolution is one,
the processors are restricted to processing events for
the current simulation time or one time step into the
future. Note that jobs cannot be differentiated, so
that the order of job arrivals at the same simulated
time is not important.

This property of parallel simulation (the ability to
process future events while maintaining causality) is
referred to in the literature as conservative lookahead
(Fujimoto 1990). Nicol (1988) has described a num-
ber of methods for determining lookahead in queueing
network simulations. These methods include mini-
mum service times and precomputed service times,
among others. Fujimoto (1989) has explored the per-
formance impact of conservative lookahead on locally-
clocked time synchronization algorithms, characteriz-
ing the relationship in terms of a “lookahead ratio.”
We are interested in characterizing the performance
improvement due to conservative lookahead in syn-
chronous simulation. Lubachevsky (1988) described
his “bounded lag” algorithm for synchronous simula-
tion, this is essentially a form of conservative look-
ahead.

Given the potential to process events in the future,
it is straightforward to exploit additional parallelism
by processing such events. Conservative lookahead
results in the ability to process more events each it-
eration (increasing E), thus potentially reducing the
number of barrier synchronizations that must be per-
formed (decreasing B). Note that the total number of
events to be processed will not change, but more can
be processed each iteration. This increases the event
processing to overhead ratio, resulting in improved
performance.

The amount of lookahead to be exploited places
bounds on the performance improvement to be ex-
pected. With a lookahead of L, the number of syn-
chronizations can be decreased by a factor of at most
(L +1). For example, when simulating a queueing
network with minimum service time and time resolu-
tion of 1, the lookahead is 1, implying the maximum
decrease in the number of iterations is a factor of
two. This occurs when all the events for the next time



710 Peterson and Chamberlain

point can be processed with the current time point for
all iterations. With a larger minimum service time (or
finer time resolution), more events could be processed
each iteration, potentially decreasing the number of
required iterations further.

While the number of iterations is reduced by us-
ing conservative lookahead, E, the number of events
processed each iteration, increases. This reduces the
impact of overhead on the simulator performance.
Hence, the simulator is more efficient, resulting in
better speedups. To quantify the performance of
conservative lookahead, empirical data was collected.
Two simulations of a torus network (256 stations
per processor) were executed, one using conservative
lookahead and the other using the strict global clock
algorithm. Here, the minimum service time equals
the time resolution (r = 1). As can be seen in Fig-
ure 2, the conservative lookahead algorithm performs
better than the global clock algorithm. As expected,
the number of iterations required using conservative
lookahead is slightly more than half the global clock
algorithm, B = 5145 for conservative lookahead ver-
sus B = 10,000 for the global clock algorithm. In
addition, the number of events processed each iter-
ation was nearly doubled, E = 675 for conservative
lookahead versus E = 347 for the global clock al-
gorithm. Because the simulator is already very suc-
cessful in exploiting the potential parallelism of the
system using the global clock algorithm, the use of
conservative lookahead does not produce a dramatic
improvement in performance. Speedup does improve,
however, from 9.5 to 11.0 at 16 processors.

10

Conservalive Lookahead

Global Clock

Processors
Figure 2: Conservative Lookahead Speedup, r = 1

If the time resolution is increased to 0.1, the event
simultaneity decreases and the required number of

iterations increases, resulting in a serious degrada-
tion in the performance of the global clock algorithm.
By using conservative lookahead, this effect can be
greatly diminished. In Figure 3, the torus network
simulation is repeated with a time resolution r = 0.1.
The performance of the simulator using conservative
lookahead is vastly superior to the global clock algo-
rithm, with the speedup of the conservative lookahead
case actually exceeding the speedup with a resolution
of 1. The simultaneity using conservative lookahead,
E = 371 is much greater than using global clock,
E = 35. Also, the number of iterations with con-
servative lookahead, B = 9344, is significantly lower
than with the global clock algorithm, B = 100, 000.

Conservative Lookahead,

Figure 3: Conservative Lookahead Speedup, r = 0.1

Clearly, the conservative lookahead algorithm can
have a significant positive impact on the runtime of
synchronous simulations. One contributing factor to
this performance improvement is the lack of signif-
icant additional overhead needed to implement the
conservative lookahead decision. Deciding whether
or not an event can be safely executed is not appre-
ciably more time consuming than in the global clock
case. The next section explores the performance of
optimistic lookahead.

5 OPTIMISTIC LOOKAHEAD

In the conservative lookahead algorithm, the amount
of lookahead is restricted to events that can be shown
to not violate causality. This restriction limits the
number of events that can be processed each itera-
tion. In this section, we attempt to further increase
the event simultaneity through the use of optimistic
lookahead.
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In order to allow the processors to proceed rel-
atively unhindered while maintaining causality, we
utilize the technique known as speculative comput-
ing (Burton 1985). In speculative computing, work
is completed before it is known that it is needed or
correct. If the work is not needed, it is discarded. By
performing speculative computations when the pro-
cessor would otherwise be idle, there is the potential
to improve the performance of the simulator (Mehl
1991). We refer to this technique as optimistic look-
ahead.

Each iteration, there is a barrier synchronization.
Until the last processor reaches the barrier synchro-
nization, the other processors must remain idle. In-
stead of sitting idle, optimistic lookahead allows the
processors to execute future events. We define a static
window size that is used to restrict the amount of
optimistic lookahead that is performed. No proces-
sor can process events timestamped greater than the
window length beyond the current simulation time.
In order to prevent violations of causality, optimistic
lookahead computations are not accepted until it can
be ensured that they are correct. The results of op-
timistic lookahead are saved until their correctness
can be guaranteed, at which time they are accepted
and take effect. If an event is processed that invali-
dates the optimistic lookahead computations, the op-
timistic lookahead results are corrected to compen-
sate for the earlier event.

Each iteration, the optimistic lookahead results
computed in earlier iterations are checked to see if
they can be accepted. If so, the statistics are up-
dated as needed and the job sent to the appropriate
output upon service completion (this may require an
event message). The simulation algorithm using opti-
mistic lookahead cannot have a violation of causality
because the optimistic lookahead computations are
not accepted until they can be guaranteed to be cor-
rect.

The performance of the optimistic lookahead algo-
rithm is investigated via the queueing network simu-
lation of a torus network with 1024 stations per pro-
cessor. The results of these experiments are shown in
Figure 4. Note that the window size is five for these
simulations.

As one can see, the performance of the optimistic
lookahead simulation is not very good. The amount
of time spent on optimistic event computations is
larger than the time spent processing events at the
current simulation time. Because each speculatively
processed event requires one or more tests to see if it
can be accepted, the execution time per speculative
event is larger (i.e., t. has grown). Measurements in-
dicate that the majority of the events are processed
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Figure 4: Optimistic Lookahead Speedup

during the optimistic lookahead processing phases.
The additional overhead in supporting the optimistic
protocol overwhelms any performance gains for this
implementation.

6 CONCLUSIONS

The use of synchronous algorithms for simulation is
attractive because of the relative ease in understand-
ing, implementing, debugging, and verifying correct
operation. Developing a performance model enables
us to identify and reason about the contributors to
the execution time of the algorithm. Using both the
model and empirical results, we find that both event
simultaneity and the number of required barrier syn-
chronizations have a strong impact on performance.

Increasing event simultaneity and decreasing syn-
chronizations both have positive performance impli-
cations. Lookahead techniques, both conservative
and optimistic, attempt to exploit this fact by exe-
cuting future events within an iteration, increasing
simultaneity and decreasing the number of required
synchronizations.

In order to gather empirical performance data,
queueing networks were simulated using both conser-
vative and optimistic lookahead techniques. Conser-
vative lookahead showed clear performance improve-
ment, especially for simulations with a fine resolution
time clock. Optimistic lookahead, however, was more
problematic. The increased overhead associated with
implementing the event evaluations defeated the per-
formance benefits due to increased simultaneity and
decreased synchronization.

The empirical results presented here are limited
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to the simulation of FCFS queueing networks. The
model has also been used in the context of logic
simulation (Chamberlain and Franklin 1990) using a
global clock time synchronization algorithm. Future
work relates the application of the model to more gen-
eral discrete-event simulation problems, and the use
of the model to predict performance across a wider
range of applications (can the concept of lookahead be
generalized to the class of synchronous, iterative al-
gorithms). We also plan to investigate whether alter-
native implementations of the optimistic lookahead
technique will provide better performance.
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