Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

AUTOMATIC PARALLELIZATION OF
DISCRETE EVENT SIMULATION PROGRAMS

Jya-Jang Tsai
Richard M. Fujimoto

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

ABSTRACT

Developing parallel discrete event simulation code is
currently very time-consuming and requires a high
level of expertise. Few tools, if any, exist to aid con-
version of existing sequential simulation programs to
efficient parallel code. Traditional approaches to au-
tomatic parallelization, as used in many parallelizing
compilers, are not well-suited for this application be-
cause of the irregular, data dependent nature of dis-
crete event simulation computations.

In this paper, we present an approach for automati-
cally parallelizing sequential discrete event simulation
(DES) programs. A framework for parallel execution
is developed into which sequential DES languages are
mapped. Using a Time Warp like execution mecha-
nism, we demonstrate that it is possible to automat-
ically translate DES programs into equivalent paral-
lel programs. A case study of the SIMSCRIPT I1.5
language is conducted, and preliminary performance
data based on a prototype parallelizing SIMSCRIPT
compiler and run-time system are presented.

1 INTRODUCTION

Discrete event simulation (DES) has long been a
widely used technique for analyzing complex dynam-
ical systems such as communication networks, com-
puter systems, and combat scenarios, to mention a
few. These applications often require excessively long
execution times on sequential machines. As multi-
processor computers become more widespread, par-
allel execution of discrete event simulation programs
(PDES) offers great potential for significantly reduc-
ing model execution time.

However, developing parallel simulation software is
not only time-consuming but also requires much more
training and experience than developing sequential
software. Further, in many cases, it is difficult, if
not impossible, for users to abandon large sequential

697

simulation programs that they have been developing
and using for years. It is clear that there would be
enormous benefit if these sequential programs could
be readily translated into efficient parallel programs.

In this paper, we describe a method to automat-
tcally translate a sequential DES program into an
equivalent parallel version. In the following, we first
review related work. Our framework for automatic
parallelization that includes a common set of simula-
tion primitives is presented, followed by a description
of the approach used to parallelize these primitives.
A case study examination of the SIMSCRIPT I1.5
language 1s presented, and a prototype implementa-
tion is described. Finally, we describe preliminary
performance data illustrating the potential speedup
that is possible for these applications, and the actual
speedup that is realized on a Kendall Square Research
KSR-1 multiprocessor.

2 RELATED WORK

Much of the work in PDES has been concerned
with synchronizing the simulation computation, and
a number of protocols have been proposed [Fujimoto,
1990]. These approaches usually assume that the sim-
ulation program is written “from scratch” for parallel
execution, and do not consider the question of utiliz-
ing existing sequential simulation programs.

Optimistic synchronization protocols such as Time
Warp [Jefferson, 1985] have demonstrated good per-
formance in a variety of applications [Fujimoto, 1990].
Unlike so-called conservative protocols that avoid
synchronization errors, Time Warp detects out-of-
order event execution at run-time, and uses a rollback
mechanism to recover. Here, a Time Warp like exe-
cution mechanism that includes support for shared
state variables [Fujimoto, 1989] is used.

Some approaches have been proposed that allow
concurrent execution of sequential simulation pro-
grams. The replicated trials approach executes inde-

698 Tsai and Fujimoto

pendent copies of the simulation program on separate
processors. This is a suitable approach when collect-
ing data over a wide range of parameter settings, or
when long simulation runs are needed to reduce the
variance of output statistics. This is normally the
method of choice in those situations, although mem-
ory requirements may be large because N times the
memory of a sequential execution is required when
using N processors.

The functional specialization approach [Comfort,
1991, Paterra et al., 1990)] also does not require mod-
ifications to the sequential simulation program. Ded-
1cated processors are used to execute frequently used
functions such as random number generation and
event list manipulation. However, this approach only
offers a limited amount of speedup.

Much research has been completed concerning
techniques to identify data dependence relationships
between instructions in order to parallelize arbi-
trary sequential programs [Polychronopoulos, 1988,
Szymanski, 1991, Wolfe, 1988]. These techniques typ-
ically focus on concurrent execution of iterations of
DO-loops. This approach has difficulty in analyzing
DES programs, however, because dependence con-
straints are usually complex, and difficult to predict
at run-ltime, let alone compile-time. Nevertheless,
as demonstrated later, program restructuring tech-
niques can be fruitfully used in conjunction with the
approach proposed here.

Simscript| | GASP GPSS

o4

Standard framework

l

Parallel execution of
standard framework

Figure 1: Relationship between standard framework
and sequential simulation languages

3 A FRAMEWORK FOR DES

In our parallelization system, a common framework
1s first defined to which sequential discrete event sim-
ulation programs are mapped (see Figure 1). In our
framework a DES program maintains two sets - a
set of state variables S, and a set of unprocessed

events, E. The former is used to describe the sys-
tem state of the model, and the latter to specify
state changes that will occur in the simulated fu-
ture. During the execution of an event, one or more
of the following four operations may be performed
on the state variable set: (1) create a new variable
(ie., S = NS(S,v) = S U {v}, where v is a vari-
able), (2) read the contents of a variable (i.e., vy =
RS(Sy/vg,v), Sujv, means that S includes a variable
v whose value is vp), (3) modify the contents of a
variable (i.e., Su/v; = MS(Sy/v,,v)), and (4) delete

a variable (i.e., §' = DS(S,v) = S — {v}). Similarly,
three operations may be performed on the event set:
(1) add a new event (i.e., E' = SE(E,e) = E U {e}
where e is an event to be scheduled, represented by
a tuple containing the function to be executed, its
arguments, and the simulated time at which event is
to be executed), (2) delete or unschedule a previously
scheduled event (i.e., E' = DE(E,e) = E—{e} where
e is an event to be unscheduled), and (3) examine the
contents of the event set and return some value based
on the event set, for example, the number of pending
events (i.e., V = FE(FE) where V could be any value,
e.g., boolean, integer, or a set of events). The execu-
tion of a sequential DES program can be viewed as
a sequence of transitions from one < S, E > pair to
another.

These seven primitives (i.e., NS, RS, MS, DS,
SE, DE and EE) appear to be sufficient to model
a varlety of existing simulators written in simulation
languages, such as GASP, GPSS, and SIMSCRIPT
I1.5. Since higher level constructs (e.g., processes)
can be realized as abstractions that are built on
top of these primitives, these primitives are able to
encompass applications with different paradigms of
modeling, or world views [Kay, 1972, Kiviat, 1967,
Pritsker, 1974, Spriet and Vansteenkiste, 1982, Zei-
gler, 1976].

4 CONCURRENT EXECUTION OF THE
SIMULATION PRIMITIVES

Here, we assume the parallelized program executes
on a shared memory multiprocessor. The execution
mechanism is a simple generalization of the event list
mechanism used by sequential simulators. Specifi-
cally, each processor repeatedly removes the smallest
timestamped event from the event list, and then ex-
ecutes simulation code to process that event. The
simulation code is functionally similar to that of a
sequential simulator. The run-time system ensures
that the parallel execution achieves the same results
as the sequential execution.

Two critical issues must be addressed before the

Automatic parallelization of Discrete Event Simulation Programs 699

above approach to parallelization can provide the
same results as the sequential execution. First, two
concurrently executing events, each containing a dif-
ferent timestamp, may access a common state vari-
able. This is not allowed in most PDES protocols
(e.g., Time Warp). Consider two events, one with
timestamp 10 and the other with timestamp 20, that
both access a state variable X. Should X hold the
value that existed at simulated time 10, or the value
at time 207 To address this question, we use an
abstraction called Space Time Memory (STM) [Fu-
jimoto, 1989, Ghosh and Fujimoto, 1991] and a com-
putation model based on optimistic synchronization.

The second problem concerns the EE primitive that
accesses the event list. At any point in time, the event
list in the parallel execution will be substantially dif-
ferent from that of the sequential execution, and may
be distributed across several processors. Later, we
suggest a possible solution to this problem.

4.1 Space Time Memory

The optimistic execution mechanism processes events
containing different timestamps concurrently. Since
events with different timestamps may have different
views of the system state, it is imperative for each
event to get the view that existed at its timestamp.
Because our computation model uses a shared mem-
ory computing platform, STM is designed to address
the shared state problem by maintaining multiple ver-
sions of each state variable.

Conventional memory can be viewed as a one-
dimensional array of values, which can be addressed
by specifying a spatial address. STM, on the other
hand, is organized as a two-dimensional array (see
Figure 2), in which each memory location is addressed
by a row (spatial) as well as a column (temporal) co-
ordinate. An event with timestamp T will perform
reads and writes to the variable with T as the tem-
poral coordinate. The state variables used by the
simulator are mapped to a set of data objects, so the
spatial coordinate is an object number. In general,
each data object includes many state variables. A
row of memory locations in STM can be viewed as
a record of the history of object values across simu-
lated time. When an event modifies a shared variable
for the first time, STM creates a new copy, called a
version, for that variable, rather than overwrite the
previous contents. Any subsequent modifications to
the variable by this event are made to the newly cre-
ated version. By saving multiple versions of state
variables, STM can provide multiple views of system
state corresponding to different points in simulated
time. A snapshot of the system state at any point

of simulated time consists of the value of each state
variable at that simulated time.

space

address (data gbjects)

a version

simulated time

Conventional Memory Space Time Memory

Figure 2: Memory address: conventional memory vs.
space-time memory

STM provides the following operations which cor-
respond to the four state primitives (i.e., NS, RS,
MS, and DS) described earlier:

MakeObj(size): var_id allocates memory for data
objects(s). It allocates a new block of mem-
ory containing size bytes, and returns a handle
(var_id) for referencing this data object. It is an
implementation of the NS primitive.

ReadObj(var_id): version reads the contents of a
data object. It searches through the versions of
the object (var_id), and returns a pointer to the
most recent version with timestamp less than
that of the event invoking this primitive. It is an
implementation of the RS primitive.

WriteObj(varid, value) modifies a data object.
It creates a new version of the data object
(var_id) whose new contents will be value.
Events that have accessed versions of this ob-
Ject at higher points in simulated time than the
event invoking this primitive will be rolled back
and re-executed. It is an implementation of the
MS primitive.

EraseObj(var.id) reclaims the memory allocated
to a data object. It deallocates the memory
which is allocated to a data object(var_id) by
the operation MakeObj. To allow rollback, the
implementation of this function must ensure that
the actually deallocation of memory is not done
until the deallocating event is committed. That
15, when a data object is to be erased, it is in-
dicated with a mark. If the erase operation is
rolled back, the mark is cleared and the object

700 Tsai and Fujimoto

un-erased. It is an implementation of the DS
primitive.

Rolling back an event entails undoing any actions
that modify the state or event set of the simulation,
and may result in a cascade of rollbacks, as in Time
Warp.

During a simulation, STM maintains the following
information for each data object: (1) the simulated
time at which it was created, (2) the simulated time
at which the object was deleted, and (3) a list of
versions. Each version also records: (1) the creation
time, 1.e., the timestamp of the event that executed a
write to create this version, (2) the event that created
the version, and (3) a list of events that have read
this version. With this information, STM is able to
determine the set of events that need to be rolled back
on a write operation.

4.2 Event Set Operations

Optimistic parallel execution uses rollback to correct
erroneous computations. Thus the system must be
able to undo the operations on the event list. The
event list can be either centralized or distributed.
Rolling back the schedule operation (i.e., SE prim-
itive) is accomplished by using an anti-message like
mechanism (similar to Time Warp [Jefferson, 1985])
to annihilate the previously scheduled event(s) (de-
tails are described in [Fujimoto, 1989]).

To allow rollback, the retraction operation (i.e., DE
primitive) must not discard the retracted event from
the event list. Instead, it leaves the event in the
event list and marks it as retracted. Rolling back
a retraction operation need only remove the mark of
the previously retracted event [Lomow et al., 1991].
To enable rollback, each event carries the following
information concerning the operations it performed:
(1) events it scheduled, (2) events it retracted, (3)
variables it created, (4) versions it created, (5) ver-
sions it read, and (6) variables it deleted. Discarding
a version also implies that all of the events that read
or wrote any newer version of the state variable must
be rolled back.

In many simulation languages, an event may ex-
amine the event list (i.e., EE primitive). Because the
operations may depend on the outcome of this ex-
amination, it is necessary to detect changes in the
outcome caused by changes in the event list. One ap-
proach is to store a representation of the event list
in the STM. When an event examines the event list,
the information is recorded. Subsequent changes to
the event list at earlier points in simulated time will
necessitate a computation to determine if a rollback
is necessary. This approach is under investigation.

5 CASE STUDY: SIMSCRIPT IIL.5

We choose SIMSCRIPT I1.5 as the language for this
study for two reasons. First, SIMSCRIPT IL5 is a
widely used language, so automatic parallelization of
SIMSCRIPT I1.5 programs has some practical signif-
icance. Secondly, SIMSCRIPT IL.5 is a relatively old
programming language, and was not designed with
any consideration for parallel processing. This makes
it a challenging language for automatic parallelization
of existing sequential DES languages. Details of the
language are described in [CACI Products Company,
1989, Russell, 1989].

The structure of a SIMSCRIPT I1.5 program con-
sists of a declarative part and an executable part.
The declarative part, called the PREAMBLE, defines
all of the global variables, modeling elements such as
events and processes, and metrics of the system to be
measured. The executable part contains a mandatory
MAIN routine, a routine for each type of event and
process declared in PREAMBLE, and miscellaneous
supporting routines for function and procedure calls.

SIMSCRIPT 11.5 was designed to use a sequen-
tial execution mechanism. When an event/process is
scheduled, a data structure (called event/process no-
tice) representing the event/process is inserted into a
global event list. The notices in the global event list
are sorted by simulated time. One notice is removed
from the global list at a time, and the corresponding
event/process routine is executed. The difference be-
tween an event and a process is when an event finishes
its execution, its event notice is discarded. When
a process finishes its current execution, its notice is
saved for rescheduling.

Specific SIMSCRIPT IL.5 constructs and their im-
plementation in the parallelization system are de-
scribed below. Each construct starts with the de-
scription of its usage and operation in the sequential
execution, followed by a brief discussion of how it
is implemented in the parallelization system. In the
parallelization system, a SIMSCRIPT process is rep-
resented by a state object that is scheduled and un-
scheduled (retracted) from the list of pending events
to implement various behaviors, e.g., blocking or re-
suming execution of the process. State variable de-
fined in the process are stored within the process’s
event notice, and are checkpointed to allow rollback.

CREATE, for creating an event or a process. On
executing this statement, a notice is created (i.e.,
memory is allocated), but not inserted into the
event list. For example, the statement, CRE-
ATE A takeoff, allocates memory for a notice
representing a takeoff event/process. The par-
allel implementation of this construct allocates

Automatic parallelization of Discrete Event Simulation Programs 701

memory from STM (using MakeObj) for the
event/process notice.

DESTROY, for destroying an event or a process
notice. It is assumed that the event/process no-
tice is not currently in the event list. Because
the destroy may be rolled back, this operation is
implemented by marking the notice as destroyed
(using EraseObj), rather than immediately re-
claiming the memory. The memory is freed only
when the operation is committed.

SCHEDULE, for scheduling an event. For exam-
ple, the statement, SCHEDULE A takeoff NOW,
schedules an event called takeoff at the current
simulated time. This construct can be directly
mapped to the event scheduling primitive.

CANCEL, for canceling an event. For example, the
statement, CANCEL takeoff, cancels the takeoff
event. It can be directly mapped to the event
retraction primitive. As described in section 4.2,
the event is marked as cancelled, but still remains
in the event list.

ACTIVATE/REACTIVATE, for activating a
process, or reactivating a suspended process (see
SUSPEND below). For example, the state-
ment, ACTIVATE A customer IN 10 MINUTES,
will start a process called customer. The start-
ing time for this process is 10 minutes from the
current simulated time. To implement this op-
eration, a function called ProcActivate is de-
fined that creates a process notice (see CRE-
ATE), and schedules an event for the process
(see SCHEDULE).

WORK/WAIT, for a process to denote the pas-
sage of simulated time. For example, the state-
ment WAIT 10 MINUTES puts the event notice
for the currently executing process back into
the event list with a timestamp set to the cur-
rent simulation time plus 10 minutes. This
statement signals the end of the current event.
To implement this operation, a function Proc-
Work /ProcWait is defined in the paralleliza-
tion system. This function uses the scheduling
primitive to schedule an event and releases the
processor to another event.

INTERRUPT, for interrupting a process. For
example, the statement, INTERRUPT customer,
temporarily removes the process notice denoting
customer from the event list. The removed pro-
cess notice must be kept intact for resumption. A
process can be interrupted only if it is executing a

WORK /WAIT statement. When interrupted,
the amount of remaining waiting/working time
is saved. The parallelization system defines a
function called ProcInterrupt that uses the re-
traction primitive to retract the event for the
interrupted process, then records the remaining
waiting/working time.

RESUME, for resuming an interrupted process.
For example, the statement RESUME customer,
puts the customer notice back into the event
list. The parallelization system defines a func-
tion called ProcResume that uses the schedul-
ing primitive to schedule an event for the re-
sumed process. The scheduled event has its
timestamp set to that of the current time plus
the saved remaining waiting/working time of the
process when it was interrupted.

SUSPEND, for a process to suspend itself. This
statement signals the end of the current execu-
tion. It keeps the notice intact. A parallel im-
plementation causes the current event to release
the processor to another event.

6 THE PARALLELIZATION SYSTEM

The parallelization system consists of two parts. The
first 1s a compiler that takes a SIMSCRIPT IL.5 pro-
gram and produces an equivalent C program with
embedded calls to Space Time Memory and event
manipulation primitives. The second is a run-time
library of routines for optimistic parallel execution,
as described earlier.

A data structure called the maptable is defined to
provide a mechanism for mapping simulation state
variables into STM data objects. In the translated
program, a maptable entry is defined for each state
variable, and any access to it must go through the
maptable. Each entry of the maptable has two fields:
a pointer to a data object in STM, and an address
offset (in bytes) of that state variable within the data
object. Any access to a global variable must uses
the functions defined by STM and typecast to the
appropriate type. Similarly, event list operations and
process interactions are translated into function calls
to the run-time library.

The translated program (with embedded library
calls) is then compiled and linked with the run-time
library. This library provides a function for each SIM-

SCRIPT I1.5 simulation construct discussed in the
previous section.

702 Tsai and Fujimoto

7 PRELIMINARY RESULTS AND DIS-
CUSSION

A simulator of the parallel execution has been de-
veloped for verifying the approach and determining
the amount of parallelism available in the application.
Later, we describe initial performance measurements
of an operational parallel implementation executing
on a Kendall Square Research KSR-1 multiprocessor.
The current implementation of the simulator includes
features of STM and interactions between processes.

7.1 The Simulator

The simulator uses a light-weight threads package
called CTHREAD [Mukherjee, 1991]. A scheduler
is used to dispatch scheduled events to processors.
Scheduling is based on the smallest timestamp policy,
i.e., the globally smallest timestamped event is exe-
cuted next. Once an event is assigned to a processor,
it does not release the processor unless it finishes its
execution or is rolled back. Rollbacks are performed
immediately once a data dependency violation is de-
tected. An event attempting to read an STM version
which is being written by another event must wait
until the write operation is completed.

The execution time of a translated program is mea-
sured by counting the number of statements that are
executed. We assume that each statement of the
translated C program takes one unit of simulated time
to execute. The generation of the embedded code
to count the number of executed statements is auto-
mated. We present potential speedup results where
the overhead of rollbacks and STM accesses in the
parallel system and event list manipulation in the
sequential simulator are negligible. Thus, these re-
sults optimistically assume that parallel synchroniza-
tion overheads are comparable to priority queue over-
heads in the sequential simulator. Overheads in the
parallel implementation include traversal of STM to
locate a proper version of an object, logging access
information, clearing premature accesses and execu-
tion (i.e., rollbacks), and maintaining the event list.
These experiments give an indication of the amount
of parallelism that is available in the application.

Three SIMSCRIPT I1.5 benchmarks were used in
our initial experiments. The first example is an event-
oriented queuing network simulation. The second is
a process-oriented sharks world [Conklin et al., 1990]
simulation, and the third is a traffic control simu-
lation. The performance metric used is the poten-
tial speedup (P_SU), defined as the ratio of execution
time of the parallel implementation and the execution
time on a single processor (again, with overheads in

both assumed to be zero).

7.2 Example 1: 64 Node Hypercube Queuing
Network

The first example is a simulation of a closed queu-
ing network configured as a 64-node hypercube. This
benchmark bears some resemblance to simulations
of communication networks, and has been a widely
used benchmark in PDES research. In this example,
messages may be sent from one node to any adja-
cent node. This benchmark is programmed with only
events (i.e., no processes are used). Two events are
used to model each hop. One is for the departure,
and the other for the arrival at the adjacent node.
Messages at a node are processed in first-come-first-
serve order. An arrival event schedules a departure
event with timestamp increment corresponding to the
waiting time in the queue plus a service time. The
service time of each arrival is selected from an ex-
ponential distribution with a mean of 5 time units.
The simulated system is a closed network with zero-
delay transmission, so a departure event schedules an
arrival event with zero timestamp increment. Thus,
the application is not written to exploit “lookahead.”
There is a server at each node. Each node uses two
variables: the local clock, and the number of mes-
sages at the node. Both are mapped to STM data
objects.

Several runs are performed with message popula-
tions ranging from 64 to 256. When the parallelized
version runs on the simulator, the measured potential
speedup is significant. With 16 processors, the aver-
age potential speedup is about 15. The ratio of poten-
tial speedup and the number of processors decreases
slightly as the number of processors increase because
of interference between events at the same node, caus-
ing more rollbacks. However, even with 64 processors,
the potential speedup could still be as high as 46.55
when the message population is 256 (see Figure 3).
As shown in Figure 4, the percentage of all events ex-
ecuted that are committed (the efficiency) decreases
from 95.6% to 64.5% as the number of processors in-
creases from 16 to 64 when the message population
is 256. The decrease in the committed event rate is
more pronounced when the population is small.

7.3 Example 2: Shark’s World

This process-oriented simulation models the activi-
ties in an ocean containing two types of creatures:
fish and sharks [Conklin et al, 1990]. The ocean
1s divided into a two-dimensional matrix of sectors
with toroidal wrap around connections at the edges.
Sharks swim faster than fish, and can attack fish, but

Automatic parallelization of Discrete Event Simulation Programs 703

50.0
45.0
40.0
35.0
30.0
P_SU 25.0
20.0
15.0

message population
10.0 message gogﬂation
5.0 - message population
. message population

0.0 — 1 T T T T T
0 16 32 48 64

Number of Processors

pooe

i
- e d)
OOk
00

Figure 3: Queuing network: potential speedup
(P_SU) vs. number of processors
100.0
90.0]
80.0
70.0
60.0
Eff. (%) 50.0 -
40.0
200 3 messepopation = 84,
10'0 4 o message golp)u.latipn =192
: 0O message population = 256
0.0 T T T T T T 1

0 16 32 48 64

Number of Processors

Figure 4: Queuing network: efficiency vs. number of
processors

not each other. The benchmark was designed to cap-
ture behaviors found in combat simulation models.

In this simulator, each creature is modeled as a
process, and the location and status (alive, or dead)
of each creature as shared variables. A creature can
swim from one sector to any adjacent sector. When
a shark enters a sector, it will attack and kill all the
fish in that sector before it leaves. The speed and
direction are fixed for each creature. The speeds of
sharks are uniformly distributed between 50 and 100
units per second, and those of fish between 10 and
20. The direction of each creature is uniformly dis-
tributed between 0 and 360 degrees.

The size of the ocean is 3200 by 1600 units, and is
divided into a 8x4 matrix. The initial ratio of fish
to sharks is 6 to 1. The number of resident creatures
varies in each run, ranging from 56 to 224 creatures.
When the parallelized sharks world program was run
on the simulator, the potential speedup for 8 proces-
sors 1s as high as 7.45. However, for 32 processors,
the potential speedup is at most 16.93 with 224 crea-
tures (see Figure 5). This is because interactions be-
tween creatures will limit the amount of concurrent

execution. For example, when more processors are
used, more creature processes can be executed con-
currently. Since the sharks in the same sector may
attack the same fish, therefore, more interactions are
observed.

20.0
17.5 -
15.0 -
12.5 -
P_SU 10.0-

7.5

e creature population = 56
5.0 o creature population = 112
25 ©° creature population = 224

0.0 T T T | T l T]
0 8 16 24 32

Number of Processors

Figure 5: Sharks world: potential speedup(P_SU) vs.
number of processors

7.4 Example 3: Traffic Control Simulation

The traffic control simulation consists of a number
of intersections which are controlled by traffic lights.
To reach its destination, each car has to drive from
its starting point through a sequence of intersections.
When arriving at an intersection, a car will be en-
queued in the lane if other cars are present. It is
dequeued when it is its turn to cross the intersec-
tion. Three types of processes are used, a car pro-
cess, which models the itinerary of a car, a light con-
trol process, which changes the status of all lights,
and a generation process, which continuously gener-
ates a car process. In this benchmark, traffic lights
are modeled as shared states because each car must
read their status (i.e., color).

Two experiments with different problem sizes were
performed. The first has a street map consisting of
3x3 intersections, and the second 9x9 intersections.
As can be seen (Figure 6), the potential speedups in
both cases are very poor. This is because the sim-
ulation program was written with a centralized light
control process, that sequentializes the execution by
changing the status of every traffic light. Therefore,
the parallelism in the original application was only
slightly more than 2 — derived from the independence
between the car generation process, and the light con-
trol process.

A restructuring of the traffic benchmark was per-
formed to improve the parallelism. Rather than using
a single process to control the lights at all intersec-
tions, a separate process could be used for each in-
tersection. With this transformation, not every car

704 Tsai and Fujimoto

4.0

3.5 e size = 3x3
3.0 o size = 9x9
2.5

P.SU 20 i/

1.5

1.0

0.5

00 T T T T T T T 1

-
0 4 8 12 16

Number of Processors

Figure 6: Traffic control: potential speedup(P_SU)
vs. number of processors

process has to interact with the same light control
process as before. Therefore, the parallelism in the
program is proportional to the number of intersec-
tions (i.e., the number of light control processes). The
potential speedup is shown in Figure 7.

Although the above transformation was performed
manually in our experiments, it could be automated.
The optimization is similar to that commonly used
in parallelizing compilers for concurrent execution of
DO-loops.

16.0
12.0
P_.SU 8.0
- size = 3x3
4.0 o size = 9x9
0.0] T T T T T T T 1
0 4 8 12 16
Number of Processors
Figure 7: Traffic control (modified): potential

speedup(P_SU) vs. number of processors

7.5 Experiments on the KSR

To evaluate the performance that can be actually re-
alized in practice, an initial implementation of the
automatic parallelization system for SIMSCRIPT I1.5
programs has been developed. This system is now op-
erational on a Kendall Square Research KSR-1 mul-
tiprocessor, enabling evaluation of the affect of over-
heads on performance.

Figure 8 shows the measured speedup as the num-
ber of KSR processors is varied for the hypercube
simulation described earlier. Speedup is measured
relative to execution on a single KSR processor. The
message population is set at 256. To evaluate the
effect of overheads, speedup is shown for the origi-
nal parallelized program as well as the same program
with the computation granularity of each event in-
creased using a spin loop by 3 and 25 milliseconds.

For the original program, speedup reaches 3.5 with 8
processors, but additional processors provide no addi-
tional performance benefit; in fact, speedup declines
somewhat because the number of rollbacks increases
significantly, incurring additional overheads. For this
case, the measured efficiency decreases from 63% (8
PEs) to 39% (16 PEs). As the computation gran-
ularity of the simulations is increased, performance
improves. With 25 milliseconds added to each event,
approximately 70% of the potential speedup reported
in figure 3 is obtained. A challenge for the future is to
enable better performance for small granularity event
computations.

12579 ¢ no spin loop
o Granularity = 3.0 ms
10.0 { o Granularity = 25.0 m
7.5
P.SU
5.0 1
—
2.5
0.0 T T T T T T ™

0 4 8 12 16

Number of Processors

Figure 8: Queuing network: speedup (SU) vs. num-
ber of processors on KSR

8 CONCLUSION

In this paper, a system is proposed to adapt sequen-
tial discrete event simulation programs to a parallel
platform based on optimistic execution. A standard
framework including a set of simulation primitives is
defined. We then show how these primitives can be
parallelized with optimistic synchronization.

A prototype simulator was developed to implement
the proposed parallelizing system. The simulator in-
cludes a compiler that transforms SIMSCRIPT IL5
programs into equivalent C code with calls to a li-
brary that provide run-time support for optimistic
parallel execution. The system was demonstrated on
a SKR-1 multiprocessor to obtain good speedup for
at least one benchmark when computation granular-
ity is high (tens of milliseconds).

The potential speedup data derived from our exper-
iments show that for several applications, sufficient
parallelism is available to offer significant speedups.
Program transformations may be required to exploit
parallelism in certain circumstances. We observed
that techniques developed for parallelizing compilers
to unfold DO-loops can provide significant benefit in

Automatic parallelization of Discrete Event Simulation Programs 705

some situations.

[t is clear that much research remains before auto-
matic parallelization of DES programs can be consid-
ered a viable technology. The extent that the paral-
lelization process can be fully automated is unclear.
However, it is equally clear that new techniques to aid
the transition to utilization of parallel discrete event
simulation techniques are sorely lacking, and auto-
matic and semi-automatic parallelization techniques
offer some hope in fulfilling this need.

ACKNOWLEDGEMENTS

This research was support by NSF grant num-
ber CCR-8902362. Technical assistance from CACI
Products Co., and Ana Marjanski in particular, is
gratefully acknowledged.

REFERENCES

CACI Products Company. 1989. SIMSCRIPT IL.5
Reference Handbook.

Comfort, J. C. 1991. Environment Partitioned Dis-
tributed Simulation of Queueing Systems. In 1991
Winter Simulation Conference Proceedings, pages
584-592.

Conklin, D., J. Cleary, and B. Unger. 1990. The
Sharks World (A Study in Distributed Simulation
Design). Proceedings of the SCS Multiconference
on Distributed Simulation, 22(1):157-160.

Fyjimoto, R. M. 1989. The Virtual Time Machine.
International Symposium on Parallel Algorithms
and Architectures, pages 199-208, June.

Fujimoto, R. M. 1990. Parallel Discrete Event Sim-
ulation. Communications of the ACM, 33(10):31-
53.

Ghosh, K. and R. M. Fujimoto. 1991. Parallel dis-
crete event simulation using space-time memory. In
Proceedings of the 1991 International Conference
on Parallel Processing, volume 3, pages 201-208,
August.

Jefferson, D. R. 1985. Virtual Time. ACM Trans-
action on Programming Languages and Systems,
7(3):404-425, July.

Kay, I. M. 1972. An Over-the-shoulder Look at Dis-
crete Simulation Languagss. In AFIPS Conference
Proceedings 40, pages 791-798.

Kiviat, P. J. 1967. Development of Discrete Digital
Simulation Languages. Simulation, pages 65-70,
February.

Lomow, G., S. R. Das, and R. M. Fujimoto. 1991
Mechanisms for User Invoked Retraction of Events
in Time Warp. ACM Transactions on Modeling
and Computer Simulation, 1(3):219-243, July.

Mukherjee, B. 1991. A Portable and Reconfigurable
Threads Package. In Proceedings of Sun User
Group Technical Conference, pages 101-112, June.

Paterra, F., C. M. Overstreet, and K. Maly. 1990.
Distributed Simulation: No Special Tools Re-
quired. In Proceedings of 1990 Winter Simulation
Conference, pages 423-427.

Polychronopoulos, C. D. 1988. Parallel Programming
and Compilers. Kluwer Academic Publishers.

Pritsker, A. B. 1974. The GASP IV Simulation Lan-
guage. John Wiley & Sons.

Russell, E. C. 1989. Building Simulation Models with
SIMSCRIPT I11.5. CACI Products Company.

Spriet, J. A. and G. C. Vansteenkiste. 1982.
Computer-Aided Modelling and Simulation. Aca-
demic Press.

Szymanski, B. K., editor. 1991. Parallel Functional
Languages and Compilers. ACM Press.

Wolfe, M. 1988. Multiprocessor Synchronization for
Concurrent Loops. IEFE Software, January.

Zeigler, B. P. 1976. Theory of Modeling and Simula-
tion. Wiley-Interscience Publication.

AUTHOR BIOGRAPHIES

JYA-JANG TSAI is a PhD student at College of
Computing, Georgia Institute of Technology. His re-
search interests include automatic parallelization of
discrete event simulations and performance evalua-
tion.

RICHARD M. FUJIMOTO is an Associate Pro-
fessor in the College of Computing at the Georgia
Institute of Technology. He is an area editor for
the ACM’s Transactions on Modeling and Computer
Stmulation. His current research interests include
computer architecture and parallel simulation.

