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ABSTRACT

Optimistic paralle]l discrete-event simulation cngines require a
rollback mechanism to restore the state of a simulation object
to an earlier time if its events are accidentally processed out of
time order. Traditional approaches save the entire state of an
object before its next event is processed so that its original
state can be restorcd. However, this approach can very quickly
use up all of a processor's available memory. In addition, the
overhead for copying large amounts of memory can be quite
high. Incremental state saving helps to overcome these

problems by saving only the changes that an event makes to an
object.

This paper describcs some reversible incremental state saving
techniques (i.e., the Delta Exchange Method and the Rollback
Queue Mechanism) that are used by the object-oriented C++
SPEEDES (Synchronous Parallel Environment for Emulation and
Discrete-Event Simulation) operating system. The nced for
reversible incremcntal state saving is emphasized by a brief
discussion on lazy cancellation techniques which require roli-
forward as well as rollback support.

1. INTRODUCTION

The most challenging goal in the field of parallel discrete-cvent
simulation is to provide general mechanisms for correct event
processing (i.e., processing time-tagged events for simulated
objects in their ascending time order) while simultaneously
achieving high parallel performance (i.e., speedup). Ensuring
correctness is difficult in a parallel simulation where objects are
distributed among multiple processors because each processor
tends to advance at ils own rate. Because of this characteristic, it
is possible for an event on a slow node to schedule an event for
an object on a fast node in the object's past (sce Figure 1).

There are two schools of thought on how to solve this problem.
Various conservative approaches (Chandy 79, Fujimoto 90)
ensure that events are only processed if it is known that no
earlier event will be scheduled for that object. Another, and yet
very different, approach for solving this problem is to process
events optimistically (Jefferson 85, Fujimoto 90) without
concern for time accidents (i.e., events that are processed out of
order). However, when a time accident occurs, that simulation
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object, and others that might have been affected from events
that were crroncously generated, are rolled back.
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Figure 1: The problem of synchronizing parallel discrete-event
simulations. Therc arc two basic approaches: Conservative approaches
never allow events to be processed if an earlier event for that object
might be scheduled. Optimistic approaches process events without
regard for synchronization, but then roll the simulation back to the time
when events were processed out of order to fix the simulation error.

Optimistic parallel discrete-event simulation algorithms, such
as those supported by SPEEDES (e.g., Breathing Time Buckets,
Time Warp, Breathing Time Warp, COOP, and potentially
others), demand such a rollback capability (Steinman 92a).
Further, when lazy cancellation (Fujimoto 90, Reiher 90) is
used, events must also be able to roll forward as well as
backward. SPEEDES uses some new reversible techniques for
incremental state saving that support both the rollback and roll-

forward rcquirements. The rest of this paper describes how
SPEEDES accomplishes this.

2. MEASUREMENTS

All of the rollback techniques that are mentioned in this paper
were carcfully measured and are reported in Tables 1 through 5.
The measurements were taken on a Silicon Graphics IRIS-4D
machine, which has proven to be very reliable for providing
repcatable measurements.

The IRIS-4D is a shared-memory machine with four processors
(only onc processor was used for these measurements), each
rated at about 20 million instructions per second (Mips). The
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optimization option in the C++, Version 2.1 compiler was
enabled.

3. EVENTS AS OBJECTS

SPEEDES (Steinman 92a) is a highly object-oriented C++
environment (Stroustrup 86). It differs from other simulation
environments in that its events are fully encapsulated objects,
separate from the simulation objects (see Figure 2). Because the
internal data structures of the simulation objects are hidden from
events, modifying the state of a simulation object is only
accomplished through method calls. In other words, the object-
oriented technique of data encapsulation is built into the
philosophy of SPEEDES. There are other bencfits for events
being C++ objects. They will be discussed shortly.

In SPEEDES, an event is attached to one simulation object. This
means that each cvent has a pointer to its specific simulation
object. As an event is processed, it may modify the state
variables of the simulation object, but only in a reversible
manner using either the Delta Exchange mechanism, and/or the
Rollback Queue mechanism (these mechanisms will be
elaborated on later in this paper).

Messages (which represent future events that have becen
scheduled in the course of processing an event) are saved in the
event object and rcleased to other nodes according to the
synchronization strategy. The Multi-Router object routes
messages to their destination nodes where, upon arrival, they
create and initialize event objects. Antimessages (in the case of
Time Warp) are stored in the event object if messages are sent
with a risk of the cvent's being rolled back.
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I'igure 2: Events as objects.

One might think that separating events from their objects is a
foolhardy thing to do. However, upon closer inspection,
making this separation is very desirable in large, complicated
simulations for the following reasons:

1. Simulation objccts can be developed indcpendently from
the SPEEDES simulation environment if event code is
separated from the simulation objects. This separation
promotes portability and reusability. Scientists can
develop their simulation object models without any
knowledge of the SPEEDES operating system.

2. Simulation objects are encapsulated entities that do not
know about other simulation objects. By eliminating event
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code from simulation objects, complexity of inheritance
chains (assuming that the same event code works with
different top-level objects by using virtual functions) for
simulation objects is reduced. This promotes independence
of the simulation objects from one another, which in the
long run reduces the complexity of large simulations.

Events are independent from other events because they are
fully encapsulated. When an event schedules another event,
the scheduling event does not require knowledge of the
methods for the scheduled event, nor does it share any of its
variables. Because of the independence of events, multiple
simulation developers can work in the same environment
without interfering with, or being affected by, each other's
codes.

Events being separate from simulation objects promotes a
high-level capability for object abstraction. Events do not
have to know about the top layer of a simulation object's
inheritance chain. Virtual functions provided by base
classes of the simulation object can be used by events in a
very generic way. Similarly, events can be built on top of
lower base-class events through inheritance. This again
simplifies and promotes reusability of software.

Events being separate from simulation objects keeps the
size of the simulation object manageable. It would defeat
the purpose of encapsulation — one of the most important
object-oriented programming techniques — to dump all of
the event code into the various simulation objects. Event
code is typically very different from the body of code in the
simulation object. Since they are fundamentally two
different entities, they should be separated.

Events contain (in a base class hidden from the application
developer) important rollback information. Because
rollbacks occur on an event-by-event basis, events, as
objects, are the logical place to store this information. In
addition, events, as objects, contain their own data
structures, which are ideal for supporting rollbacks using
the Delta Exchange mechanism, a very efficient way of
handling incremental state saving. The Delta Exchange
method is discussed in the next section of this paper.

Events can store important input information in their
internal data structures to support sophisticated
optimization techniques such as lazy cancellation, which
will be discussed later.

Event routines are accessed by the SPEEDES operating
system through virtual function calls. Using these calls
makes the user interface for "plugging” event code into the
simulation very elegant. The user simply informs SPEEDES
of all the event objects in the simulation.

Special features can be embedded in events. For example,
the user may enable lazy cancellation for specific events
(hopefully, the ones most likely to benefit from lazy
cancellation) while using aggressive cancellation as the
default for the rest.

Future development and new ideas can be easily supported
in an environment that separates events as objects from the
simulation objects. There is more room for growth because
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events as objccts are more powerful than events as method
calls in a simulation object. For example, events can be
processed in multiple stages that are supported as virtual
function calls for the event object. This kind of processing
may be very dilficult or unwieldy to support if events are
not objects.

4. THE DELTA EXCHANGE METHOD

One of the most cfficient ways to handle incremental state
saving in parallel discrete-event simulations is the Delta
Exchange mechanism. This functionality can be supported by
using special-purpose hardware (Fujimoto 92), or very
elficiently in SPEEDES through software (Steinman 92a). The
SPEEDES approach is that when an event wants to change the
state of a variable in the simulation object, it does so by
exchanging this variable with a similar variable that is stored in
the data structure of the event (see Figure 3).

Event Simulation Object
Variables Variables
intv1; intvi;
Methods Methods

/...... Process Event Phase 1 /...... Exchange v1

void C_EVENT:phase() { void C_OBJECT::exchange_v1(int &v) {
vi=1; EXCHANGE(v1,v);

) )

/l...... Delta Exchange
void C_EVENT::exchange() {
object->exchange_vi(v1);

)

IYigure 3: The Delta Exchange.

State changes of this type can easily be accomplished by
dividing event proccssing into two steps. The first step docs the
basic event processing (Phase 1 in SPEEDES) while the second
step (Delta Exchange) exchanges the new state values with the
old state values. After the Delta Exchange mecthod is called, the
simulation object has the new state values, and the event has the
old values. If the Delta Exchange method is called again, those
variables will be restored, and the simulation object will return
lo its original state.

To make the Delta Exchange easier for the user, an inline
function named EXCHANGE has been defined that is overloaded
in SPEEDES. This [unction accepts various types of arguments
(possibly of differcnt types). By using function overloading in
C++, EXCHANGE knows how to exchange the values of
different types of arguments. For example, in Figure 3, the
EXCHANGE function is simple (accepting two integer variables
as arguments) and looks like this:

void EXCHANGE(int &il, int &i2) {
int temp;
temp = il;
il =i2;
i2 = temp;

}

As another example, EXCHANGE, accepting two double
precision arguments, looks like this:

void EXCHANGE(double &dI, double &d2) {
double temp;

temp = dlI;
dl =d2;
d2 = temp,

}

A final note conceming the Delta Exchange mechanism: One
might complain that this procedure for exchanging values
places too much of a burden on the simulation developer. Those
who complain about the burdens of object-oriented
programming techniques such as data encapsulation typically
say the same thing. However, in reality, there is no more work
required by the user for the Delta Exchange method than there is
in cncapsulating an object's data. As object-oriented
programming techniques begin to dominate the world of
software development, criticisms of the Delta Exchange method
should fall by the wayside.

Table 1 shows the extra overhead required when using the Delta
Exchange method for changing the value of an integer variable
contained within an object. When running conservatively, the
code in the EXCHANGE routine was redefined to be just one line
of code, il = i2 (see the example above). In these conditions,
there was no measured difference in overhead for storing an
integer value. The second column shows the timing for normal
optimistic processing. The third column shows the overhead for
performing a rollback. The fourth column shows the extra
memory overhead for performing the Delta Exchange.

Table 1: Encapsulated assignments and Delta Exchange.

Conserv. | Optimistic | Rollback Memory
Assign 0.123 ps 0.123 ps 0.0 ps 0 bytes
Exchange | 0.123 ps 0.265 s 0.265 ps 4 bytes

5. THE ROLLBACK QUEUE

There are times when the simple Delta Exchange mechanism
doesn't support what one really wants to do. Some examples of
this are dynamic memory allocations, adding or removing an
item from a dynamic data structure (such as a list or a tree)
contained within an object, memory copies, and methods inside
the simulation object (that are called by events) that change
values of its internal state variables. Another mechanism is
needed to incrementally save the state of the object as it is
modified by the processing of an event. This is accomplished
by using the Rollback Queue in SPEEDES.

The Rollback Queue saves the changes that occur when an event
modifies the state of its simulation object. Because events are
rolled back on an event-by-event basis, this queue is
encapsulated through a hidden base class in the event object.
However, before each event is processed, SPEEDES makes this
Rollback Qucue available to the simulation object as well,
providing a way (although not recommended for reasons of
efficiency) for the simulation object to alter its state in its own
methods.

When an cvent does something to change the state of its
simulation object, a rollback item is pushed onto the top of the
Rollback Queue. Specific rollback items (which are C++
objects) inherit from the base class Rollback Item object.
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... Rollback Item base class
... Inherits from C_ITEM so that
/... C_RB_ITEMS can be put into a C_QUEUE object

class C_RB_ITEM : public C_ITEM {

private:

protected.:
void *ptr;

public:
void set_ptr(void *p) {ptr = p;} I/ set the pointer
virtual void store(int v) {;} /1 virtual store variable
virtual void store(float v) {,} /] virtual store variable
virtual void store(double v) {;} I/ virtual store variable
virtual void store(void *v) {;} I/ virtual store variable
virtual void cleanup() {;} /1 virtual cleanup
virtual void rollback() {;} /1 virtual rollback

/I pointer to altered state variable

}

The base-class Rollback Item defines three virtual functions:
store, rollback, and cleanup. Through the use of these virtual
functions, storing values, rolling back an event, or cleaning up
the rollback queuc is very easy. Adding ncw types of rollback
items into the SPEEDES environment becomes very easy with
this approach.

Rolling back an cvent is accomplished by popping rollback
items out of the Rollback Queue, and then calling their rollback
virtual function to undo whatever was done. In the code given
below, the rollback items are then stored in reverse order in
another list called greverse. This is to provide the roll-forward
capability needed for lazy cancellation.

After an event is successfully processed (c.g., at garbage
collection time in Time Warp), its rollback information must be
cleaned up. This is accomplished by popping the rollback items
out of the Rollback Queue, and then calling its cleanup virtual
function. It should be noted that some of the rollback items do
not require any work for cleanup. For these cases, the base-class
virtual cleanup function is called, but does no processing.

Shown below is sample code for rolling back and cleaning up
the Rollback Queuc for an event:

H...... rolling back the Rollback Queue

int rollback() {
C _RB _ITEM *a;
C QUEUE greverse;
while (Rollback_Queue->length()) {
a=(C_RB ITLM *)Rollback_Queue->pop_top();

a->roliback( )
qreverse.push_top(a), I/ save for lazy cancellation

*Rollback_Queue = qreverse;
return Rollback _Queue->length(); I/ return n rollbacks

/... clean up the Rollback Queue

void cleanup() {
C RB_ITEM *a;
while (Rollback_Queue->length()) {

a = (C_RB_ITEM *)Rollback_Queue->pop_top();
a->clea—nap( ),
delete(a),
J
J

6. SIMPLE ASSIGNMENTS

One of the impressive features of C++ is its ability to overload
operators. SPEEDES provides a new assignment operator for
simple variable assignments. Instead of using the equal sign
("=") for assignments, SPEEDES supports a new operator,
"RB=", for changing state variables inside simulation objects
while providing rollback capability.

This new assignment operator (through various techniques
employed, which are not described in this paper) automatically
crecates a new rollback item, saves assignment information, and
then pushes it onto the top of the Rollback Queue. When
running sequentially (or when running conservative protocols),
the "RB" symbol can be defined as null so that "RB=" reverts
back to the simple "=" assignment operator, thus removing all
of the rollback overhead.

... Rollback Item for integer assignments

class C_RB_ITEM _INT : public C RB_ITEM {
private:
int oldvalue; /! old value saved here
protected.:
public:
void set_oldvalue(int v) {oldvalue = v,}
virtual void store(int v) {*(int *) ptr = v,}
virtual void store(float v) {*(int *) ptr = (int)v,}
virtual void store(double v) {*(int *) ptr = (int)v;}
virtual void rollback() {
int temp;
temp = oldvalue;
*oldvalue = *(int *)ptr;
*(int *)ptr = temp;

J

Figure 4 shows how a simple assignment might be made in
processing an event (compare this with Figure 3).

Event Simulation Object
Methods Variables
/...... Process Event Phase 1 intvi1;
void C_EVENT::Phase1() {
object->set_vi(1); Methods
} /...... set vi using Rollback Queue
void C_OBJECT::set_v1(int &v) {

viRB=v;
}

Figure 4: Simple assignments using the Rollback Queue with the
overloaded "RB=" assignment operator.

There is much more overhead using this method of altering the
state of the simulation object compared to the Delta Exchange
method. Using the Rollback Queue requires creating a rollback
item, storing the address of the state variable to be modified in
the rollback item, saving the old state value in the rollback
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item, storing the new value in the simulation object's state
variable, and then pushing the rollback item onto the top of the
Rollback Queue. This amount of overhead is considerably larger
than that required for using the simple EXCHANGE code.

Further, the memory consumption when making assignments
using the Rollback Queue is much larger than when using the
Delta Exchange mechanism. Therefore, it is strongly
recommended to choose the Delta Exchange approach whenever
possible. Table 2 compares the overhcad between "=" vs.
"RB=".

Table 2: Assignments using "=" and "RB=".

Conserv. Optimistic | Rollback Memory
= 0.002 us 0.002 ps 0.0 ps 0 bytes
RB= 0.002 us 8.39 us 2.15 ps 20 bytes

7. DYNAMIC MEMORY ALLOCATIONS

One very important requirement for an optimistic simulation
environment is to allow the user to dynamically create or
destroy memory. Performing this function in an incremental
state-saving mechanism is simple. If an event creates memory,
then upon rollback, this memory must be deleted. Similarly, if
an event deletes memory, then upon rollback, the memory
should be freed again (this means that, in reality, the memory is
actually only delcted during cleanup). This is all easily
accommodated by the Rollback Queue.

/... Rollback Item for dynamic memory

class C_RB_ITEM_MEMORY : public C_RB_ITEM {
private:
int flag;
protected:
public:
void set_flag(int f) {flag = [}
virtual void cleanup() {
if (!flag) delete ptr;

virtual void rollback() {

/1 flag for creation/deletion

if (flag) {
flag = 0;

Jelsef
flag = 1;

}

Figure 5 shows how an event might delete a C++ object stored in
a simulation object, and then create a new one and save it in the
simulation object. This example combines both the Delta

Exchange Mechanism and the Rollback Queuc in the same
event.
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Event Simulation Object
Variables Variables

C_08J ‘obj; C_0BJ *obj;

Methods Methods

/l...... Process Event Phase 1 /...... get obj

void C_EVENT::Phase1() {
obj = object->get_obj();
RB_delete(obj); }
obj = RB_new(new C_OBJ());

} /l....... exchange obj

void C_OBJECT::exchange_obj(C_OBJ *80) {
EXCHANGE(OBJ,0);

C_OBJ *C_OBJECT::get_obj() {
return obj;

/l...... Delta Exchange
void C_EVENT::exchange() { }
object->exchange_obj(obj);

}

Figure 5: Dynamic memory.

In the next example, representative code is shown for RB_new
and RB_delete. In actuality, SPEEDES optimizes the
performance of all dynamic memory allocations by using free
lists. When free lists are used, memory blocks are never deleted.
Rather, these memory blocks are saved in a list to be reused later
when the memory is needed again. Using free lists accelerates
memory allocation and also reduces the problem of memory
fragmentation. How SPEEDES supports free lists is not
discussed in this paper.

... allocate dynamic memory

void RB_new(void *obj) {
C RB_ITEM_MEMORY *a;
a = new C_RB_ITEM_MEMORY();
a->set_ptr(obj);
a->set_flag(1);
Rollback_Queue->push_top(a);

/... delete dynamic memory

void RB_delete(void *obj) {
C _RB_ITEM_MEMORY *a;
a=newC _RB ITEM _MEMORY();
a->set_ptr(obj);
a->set_flag(0);
Rollback_Queue->push_top(a);

J

Table 3 shows the overhead for dynamic memory allocations.
The measurements were taken by creating, and then destroying,
the same object 1,000,000 times. The timings given here are
for the combined new and delete (or RB_new and RB_delete)
operations. The memory overhead, however, is for a single
RB_new or a single RB_delete operation.

Table 3: Dynamic memory allocations.

Conserv. Optimistic | Rollback Memory
new
delete 6.42 s 6.42 us 0.0 ps 0 bytes
RB_new
RB_delete | 7.84 ps 18.83 us 5.87 ps 20 bytes
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8. MEMORY COPIES

Some simulation applications may require events to copy
blocks of memory into the state of the simulation object. This
is easily accomplished in SPEEDES through the Rollback
Queue. A rollback item for memory copying is defined as
follows:

... Rollback Item for dynamic memory

class C_RB_ITEM_MEMCPY : public C_RB_ITEM {

private:

char *oldvalue /1 old value of buffer

int size; /1 size of the memory copy
protected:
public:

void set_oldvalue(char *ov) {oldvalue = ov;}
void set_size(int s) {size = s,}
virtual void cleanup() {
delete oldvalue;
J

virtual void rollback() {
char *temp;
temp = new char(size];
memcpy(lemp,ptr,size);
memcpy(ptr,oldvalue,size),
memcpy(oldvalue,temp,size);
delete temp;

1
The SPEEDES function RB_memcpy provides this service.
H...... memory copy using Rollback Queue

void RB_memcpy(char *pl, char *p2, int size) {
C RB_ITEM_MLMCPY *a;
char *oldvalue;
a=newC_RB ITEM MEMCPY();
a->set_ptr(pl);
a->set_size(size);
oldvalue = new charf(size];
memcpy(oldvalue,pl,size);
a->set_oldvalue(oldvalue);
Rollback_Queue->push_top(a);
memcpy(pl,p2,size);

J

Table 4 describes the overhead for performing memory copies.

Table 4: Memory copies of 1000 bytes.

Conserv. Optimistic | Rollback Memory
memcpy | 46.7 ps 46.7 ps 0.0 ps 0 bytes
RB
memcpy | 47.7 us 108.5 ps 150.2 ps 1024 bytes

9. THE EXCHANGE QUEUE

So far, this paper has described how SPEEDES currently
supports incremental state saving for various types of
operations. Simple assignments are supported by using either
the Delta Exchange mechanism or the "RB=" operator. Dynamic

memory allocation is supported through the RB_new and
RB_delete functions. Memory copies are supported through the
RB_memcpy function. In this section, management of dynamic
data structures such as lists or trees contained within simulation
objects is described. Here, a very useful data structure supported
by SPEEDES, called the Exchange Queue, is discussed. The
results can be generalized for other dynamic data structures. This
section completes the list of incremental state-saving
techniques that are currently supported by the SPEEDES
operating system.

As part of its state, a simulation object may contain a list of
items. This list may grow (or shrink) as events add (or remove)
items to (from) the list. The Exchange Queue uses reversible
operations that make rollback easy. For example, rolling back
an event that inserts an item into the Exchange Queue requires
removing that item from the Exchange Queue to restore the
state. Similarly, rolling back an event that removes an item
from the Exchange Queue requires reinserting that item into the
Exchange Queue. For the example below, it is assumed that the
Exchange Queue is a doubly linked list that holds to the first-in,
first-out (FIFO) property.

H...... Rollback Item for the Exchange Queue

class C_RB_ITEM_XQUEUE : public C_ RB_ITEM {

private:
C XQUEUE *xq /I pointer to Exchange Queue
int flag; !l flag for insertion or removal
int top flag; /I flag for top or bot

protected:

public:

void set_xq(C_XQUEUE *x) {xq = x,}
void set_flag(int f) {flag = f;}
void set_top_flag(int f) {top flag = f;}
virtual void rollback() {
if (flag) {
xq->remove((C_XQ ITEM *)ptr);
flag = 0;
Jelse{
if (1op_flag) {
xq->push_top((C_XQ ITEM *)ptr);
Jelse{
xq->push_bol((C_XQ ITEM *)ptr);

flag = 1;
/

}

To make the Exchange Queue easier to use, the "+=" operator
was overloaded to mean — add an item to the Exchange Queue,
and the "—=" operator was overloaded to mean — remove an
item from the Exchange Quecue. Figure 6 shows how an event in
SPEEDES might remove an item that is specified by an integer
ID from an Exchange Queue, delete it, and then add a new item to
it. Note that in Figure 6, the FIFO requirement was bypassed. In
this example, the order of the items in the Exchange Queue does
not matter since items are removed based on their ID. The
overloaded operators for "+=" and "-=" are shown in the code
below:
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Event Simulation Object
Variables Variables

intid; C_XQUEUE xqueue;
Methods Methods

/I...... Process Event Phase 1 /l...... get xqueue

void C_EVENT::Phase1() {
C_XQUEUE *xqueus;
C_XQ_ITEM ‘item1; }
C_XQ_ITEM ‘*iterm2;

C_XQUEUE *C_OBJECT::get_xqueue() {
return &xqueue

/I...... get the Exchange Queue
xqueue = object->get_xqueue();

/I...... remove the item with this id
item1 = xqueue->find(id);
*xqueue -= item1;

/... delete item1
RB_delste(item1);

Il...... create a new item
item2 = RB_new(new C_OBJ());

/l...... add this new item to xqueue
‘xqueue += item2;
}

Figure 6: Exchange Qucue.
/l...... add an item to the Exchange Queue

void operator += (C_XQUEUE &xq, C_XQ ITEM *it) {
C_RB_ITEM _XQUEUE *a;
a=newC_RB_ITEM XQUEUE(),
a->set_xq(&xq);
a->set_ptr(it);
a->set_flag(l),
a->set_top_flag(0);
Rollback_Queue->push_top(a);
xq.push_bot(it);

Il...... remove an item from the Exchange Queue

void operator -= (C_XQUEUE &xq, C_XQ_ITEM *it) {
C_RB_ITEM XQUEUE *a;
a=newC_RB _ITEM XQUEUE(),
a->set_xq(&xq);
a->set_ptr(it);
a->set_flag(0),
a->set_top flag(1l);
Rollback_Queue->push_top(a);
xq.remove(it);

}

Table 5 describes the overhead for adding and removing items
from the exchange queue. These measurements were taken by
adding and removing the same object from the exchange queue
1,000,000 times. The exchange queue, ignoring the object that
was added and removed, was otherwise empty. The timing
measurements represent the combined operations while the
memory overhead rcpresents overhead for a single operation.

Table 5: Adding and removing items from the xqueue.

Conserv. | Optimistic | Rollback Memory
add
remove 1.29 us 1.29 ps 0.0 ps 0 bytes
4=
= 2.5 ps 14.06 ps 8.49 us 28 bytes

10. ROLLBACK AND LAZY CANCELLATION

This section on Lazy Cancellation may seem out of place to
some rcaders. However, it is not, because of the following three
reasons.

First of all, one of the important benefits derived by events
being C++ objects is that lazy cancellation can very efficiently
be supported. This reinforces the notion that events as objects
provides a powerful way to build parallel discrete-event
simulations. If one accepts the benefits of events being objects,
then it bccomes easier to embrace the Delta Exchange
mcechanism which requires events to be objects.

Secondly, by understanding the utility of Lazy Cancellation, the
reader will appreciate why incremental state saving techniques
require roll-forward as well as rollback capabilities.

Thirdly, by going through the Lazy Cancellation mechanisms
described in this section, the reader will get a practical set of
examples showing how rollback and roll-forward systems work.
Questions accumulated by the reader may be answered in this
section through the examples provided.

How SPEEDES handles lazy cancellation is rather interesting
and unique. It has been well known in the simulation community
that accidentally processing events for a simulation object in
the wrong order might not matter (Jefferson 85, Reiher 90,
Fujimoto 90). It may turn out that when a rolled-back event is
reprocessed, it gets the same answer. In other words, the event
makes the same state changes to the simulation object while
also generating the same events. This allows for the possibility
that a simulation will beat the critical path (Wieland 91). The
critical path determines the minimum time for a conservative
discrete-event simulation to be completed (ignoring all
overhead other than event processing). It is not possible for
conservative simulations to beat the critical path because they
require events to be processed in their correct time order.

For events that are rolled back and yet have this interesting
property, it would be wasteful to send antimessages (if Time
Warp is used) only to later generate the same messages all over
again. Also, it would be wasteful to reprocess the event if it
makes the same changes to the state of its simulation object. It
would be better to roll the state of the simulation object forward
using the state changes made by the event the first time it was
processed. This, then, requires all of the incremental state-
saving techniques to be reversible.

Conventional lazy-cancellation approaches for determining if
reprocessing a rolled-back event will get the same answer
require saving the entire state of the simulation object and then
making a byte-for-byte memory comparison with its previous
state (i.e., when the event was first processed) with the new
state. If the results are identical, then, obviously, processing
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the event again will give the same answer. This approach is not
feasible in an incremental state-saving environment.

Another lazy-canccllation trick that is used to avoid sending
unnecessary antimessages is to compare (after reprocessing the
event), byte-for-byte, the newly generated messages with the
old ones (from the first time the event was processed). If they
are identical, the new messages do not have to be sent.
However, if they are not identical, antimessages to cancel the
old messages must be sent along with the new messages that
have just been gencrated.

SPEEDES does not use either of these conventional methods
because they require too much overhead. Instead, SPEEDES uses
an object-oriented approach that very quickly accomplishes
nearly the same thing (lazy-cancellation) without the overhead.
(Sometimes, this technique is also called Lazy Re-evaluation.)

Because events are objects in SPEEDES, the inputs from the
simulation object that are required for processing an event can
be saved in the data structures of the event object. Before
reprocessing the event (after it has been rolled back), a virtual
function called Check_Lazy is called. This virtual function,
which is supplied by the user, compares the previous inputs
from the simulation object still stored in the event object with
the new values in the simulation object. If they are the same or
if it is determined that the event would still get the same answer,
then this virtual function returns a 1. Otherwise, it returns a 0.

If the Check_Lazy virtual function returns a 1, the event is
rolled forward. Otherwise, antimessages are sent, and the event
is reprocessed.

Before looking at sample code that describes this approach, one
must first understand that events are processed in SPEEDES by
calling two virtual functions supplied by each event object.
These virtual functions are Phase I and Exchange. Processing an
event in SPEEDES then looks something like this:

event->init_Rollback Queue();
event->Phasel (),
event->exchange();
event->send_messages();

Rolling back a single event (ignoring antimessages, elc.) is
done in the reverse order of processing an event. In SPEEDES, it
looks something like this:

event->exchange();
event->init_Rollback Queue();
Rollback_Queue->rollback(),
if (event->get lazy flag()) {
event->send_antimessages();
Jelsef
event->set_lazy processed(),
J

After an event has been rolled back, SPEEDES checks a flag
stored in the event object that tells if the event is participating
in lazy cancellation. This allows events to participate on a
selective basis in lazy cancellation. When it is time to process
that event again, SPEEDES checks if the event would have
gotten the same answer.

Steinman

An example of how the user may participate in lazy cancellation
in SPEEDES is given in Figure 7.

Event Simulation Object
Variables Variables
int input1; intinput1;
double input2; double input2;
double output; double output;
Methods Methods
/I...... Process Event Phase 1 /l...... get input1
void C_EVENT::Phase1() { int C_OBJECT::get_input1() {
/l...... get inputs return input1;
inputi = object->get_input1(); }
input2 = object->get_input2();
J...... process stuff H...... getinput2 )
outpzl = inputl + 2.0 * input2; dz;:’r: ?n;’(:th‘:ECT::gel_lnqu() {
! }
/l...... Delta Exchange
void C_EVENT::exchange() { /l...... axchange output
object->exchange_output(output) void C_OBJECT::exchange_output(double o)
} EXCHANGE (output, 0);
/l...... Check Lazy )

int C_EVENT::check_lazy() (
if (input1 I= object->get_input1())
return O;
if (input2 |= object->get_input2())
return Q;
return 1;

}

Figure 7: Lazy cancellation.

Sample code for how SPEEDES reprocesses a lazy event that has
been rolled back is given below.

/... Roll-forward or reprocess an event

if (event->get_lazy processed() {
if (event->check_lazy() {
event->init_Rollback Queue();
Rollback_Queue->rollback();
event->exchange(),

Jelse(
evenl->send_antimessages();
event->init_Rollback_Queue(),
event->cleanup _Rollback Queue();
event->Phasel(), /I Reprocess event
evenl->exchange();
event->send_messages();

/I Roll forward

J
}

11. A PROPER PERSPECTIVE

So far, various methods for incremental state-saving have been
described, each with its measured performance. The natural
question is, "In a practical sense, how efficient is this approach
for parallel simulations?"

First of all, to understand this question, one must first have a
feel for the other areas of overhead in a parallel discrete-event
simulation. Consider, for example, the task of managing the
list of pending future events. Figure 8 shows timings for various
event-list data structures (Steinman 92b). The SPEEDES TREE
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(actually used in conjunction with the SPEEDES Quecue in a
hybrid data structure within SPEEDES) easily outperforms the
Splay Tree (which is typically thought of as being the most
efficient general-purpose data structure for handling the future-
event list).

Figure 8 shows that a simulation consisting of about 1,000
objects with 10 events per object, has about 70 pus of overhead
for managing the event list (these measurements were also taken
on the Silicon Graphics IRIS-4D machine to be consistent with
the other measurements).

Flat Distribution

Linked List
A Binary Tree
...... wheeer Splay Tree
ot~ SPEEDES Queve
SPEEOES Tree

CPU Time Per Event (ms)

10 100 1000 10000 100000

Number of Events

Figure 8: Event-list management overhead for events generated by a
flat distribution.

There are other sources of overhead involved in parallel discrete-
event simulations. Additional overhead is associated with
message sending, memory allocation, event initialization,
global synchronization, error checking and handling, etc. The
overhead of these things will not be discussed here. However, it
has been observed in low-grained sequential simulations
running under SPEEDES that event times rarely get below 200
Ks per event (Steinman 93). With this in mind, low-grained
events that do very little work in their event processing
probably do not rcquire very much incremental state-saving
either. The few extra microseconds spent supporting
incremental state saving are not significant, especially when
the Delta Exchange is predominantly used.

One last thing to consider is the overhead for saving the full
state of a simulation object (the way normal Time Warp systems
work). Table 4 shows the overhead for copying large chunks of
memory. For a 10,000-byte object, it would take 477 us to save
the entire state of the object in addition to requiring 10,000
bytes of memory. This does not consider dynamic data structures
within the simulation object's state. Full state saving would be
very inefficient if the object's next event required only a simple
variable assignment that could have been supported with a Delta
Exchange (using only four bytes of memory, and taking only
0.142 ps of additional overhead).

12. SUMMARY

Methods for supporting incremental state saving in SPEEDES,
(an object-oriented C++ parallel discrete-event simulation
environment) were discussed. The SPEEDES operating system is
unique in that it separates events from simulation objects. Ten
important reasons were given why events should be fully
encapsulated C++ objects, separate from the simulation objects.

The Delta Exchange mechanism easily, and very efficiently,
allows for incremental state-saving while at the same time
holding true to the object-oriented principles of data
encapsulation. The Delta Exchange mechanism requires no more
work than the standard methods of data encapsulation. It also
requires the least amount of overhead for providing reversible
incremental state-saving information.

The Rollback Queue can accommodate various types of state-
changing requirements such as dynamic memory allocation,
memory copies, methods in the simulation object that change
the state of its internal data, and dynamic data structures such as
the Exchange Queue.

Lazy cancellation may be performed in a very efficient manner
that saves the event-processing inputs from the simulation
object in the event object, and then later before reprocessing
the event, checks with the simulation object to see if these
values have changed (or would produce a different result). This
approach is much more efficient than making byte-for-byte
comparisons of the old state of the simulation object with its
new state (as most other approaches do). It is also more
flexible. It must be remembered that supporting lazy
cancellation requires reversible incremental state-saving
techniques. Developers of parallel discrete-event-simulation
engines who are unaware of this fact may find that their designs
fall short of the state-of-the-art.

Putting everything into perspective, the additional overhead for
incremental state saving is small for typical parallel discrete-
event simulations. This overhead is normally much smaller than
the full state-saving techniques that save the entire state of a
simulation object before processing each event. If the
techniques for incremental state saving do provide low
overhead, as claimed, the need for special-purpose rollback
hardware is reduced.
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