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ABSTRACT

Parallel discrete event simulation offers significant
speedup over the traditional sequential event list al-
gorithm. A number of conservative and optimistic
algorithms have been proposed and studied for par-
allel simulation. We examine the problem of trans-
parent execution of a simulation model using conser-
vative algorithms, and present experimental results
on the performance of these transparent implemen-
tations. The conservative algorithms implemented
and compared include the null message algorithm,
the conditional-event algorithm, and a new algorithm
which is a combination of these. We describe how dy-
namic topology can be supported by conservative al-
gorithms. Language constructs to express lookahead
are discussed. Finally, performance measurements on
a variety of benchmarks are presented, along with a
study of the relationship between model characteris-
tics like lookahead, communication topology and the
performance of conservative algorithms.

1 INTRODUCTION

Distributed(or parallel) simulation refers to the exe-
cution of a (discrete event) simulation program on
paralle] computers. A potential for a significant
speedup has led to the design of several algorithms
for distributed simulation, which are broadly classi-
fied into two categories - optimistic and conservative.
Performance of these algorithms has been studied on
various benchmarks. A survey of most of the existing
simulation protocols and their performance studies on
various benchmarks appears in Fujimoto (1990).
Bagrodia and Liao (1992a) describes a distributed
simulation language called Maisie which attempts to
separate the development and representation of the
simulation model from the specific simulation algo-
rithm which is used to execute it. It also provides
constructs using which the user might optimize the
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execution of the model under a particular simula-
tion algorithm. Efficient sequential and parallel opti-
mistic implementations of Maisie have been described
in Bagrodia and Liao (1992a), Bagrodia and Liao
(1992b). In this paper, we examine the problem of
transparent implementation of a conservative algo-
rithm in a simulation language. We use Maisie as a
specific example to present our ideas. We show how
special constructs can be added to the language to
improve the performance under a conservative pro-
tocol. We also present a performance study of the
implementation using various queuing networks and
synthetic benchmarks.
The contributions of this paper are as follows:

e Performance studies of conservative algorithms
have primarily used a hardcoding of the simula-
tion protocol into the application, for example,
Fujimoto (1987), Nicol (1988), Chandy and Sher-
man (1989). We show how a simulation model
described in an algorithm independent simula-
tion language can be executed using various con-
servative methods.

o We describe conservative implementations using
three different algorithms— null message algo-
rithm (Misra 1986), conditional-event algorithm
(Chandy and Sherman 1989), and a new con-
servative algorithm that combines the preced-
ing approaches. Although, the performance of
null message algorithm is generally better than
that of conditional-event algorithm, the latter
has the nice property of not requiring lookahead
for progress(under the assumption that events
with the same timestamp can be processed in an
arbitrary order). A combination of the two has
almost the same performance as the null message
algorithm and would in addition, also not require
lookahead for progress. On certain kind of appli-
cations, the combination could potentially per-
form better than the null message algorithm.
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¢ Knowledge of communication topology plays an
important role in controlling the null message
overhead. Most of the existing work on conserva-
tive algorithms assumes a static communication
topology. In fact, it is widely believed that the
null message algorithm can not be used in a dy-
namically changing topology. However, dynamic
process and channel creation can potentially im-
prove the performance of conservative algorithms
(Lin 1992). Maisie allows dynamic process and
channel creation. We describe how these con-
structs can be supported with conservative algo-
rithms.

o Lookahead (Fujimoto 1987), which is defined as
the ability of a process to predict its future out-
puts, plays an important role in the performance
of a conservative algorithm. We present a more
general formulation of lookahead than presented
before. We discuss this formulation in the con-
text of Maisie and describe how information can
be extracted transparently from Maisie programs
to improve the lookahead. We also describe lan-
guage level features that are provided to the user
to further improve the value of lookahead.

e We study the performance of the conservative
implementations using a variety of benchmarks.
The effect of varying different parameters like
lookahead is studied.

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 describes
the various conservative algorithms used. Section 4
briefly describes Maisie. Section 5 describes some of
the optimizations for the conservative implementa-
tion. Section 6 describes the benchmarks used in the
experiments. Results are explained in section 7 , and
section 8 gives the conclusions.

2 RELATED WORK

Languages/systems that support conservative simu-
lation protocols include Yaddes (Preiss 1989), SIMA
(Rajaei and Ayani 1992), and OLPS (Abrams 1988).
Yaddes requires user to use system calls to send null
messages, and therefore the simulation protocol is
not completely transparent to the user. SIMA, on
the other hand, uses synchronous protocols which
are radically different from the algorithms used by
us. OLPS requires the user to choose different types
of processes for different simulation protocols, and
hence, 1s not algorithm independent. Most of these
languages don’t provide language level constructs to
express lookahead and dynamic topology.

Performance of the null message deadlock avoid-
ance algorithm (Misra 1986) using queuing networks
and synthetic benchmarks has been studied by Fuji-
moto (1987). Chandy and Sherman (1989) describe
the conditional event algorithm and study its perfor-
mance using queuing networks. They use null mes-
sages in the conditional event algorithm too, but,
since their implementation is synchronous (i.e. all
LPs carry out local computations followed by a global
computation), its performance is quite sensitive to
load balancing.

Effect of lookahead on the performance of conserva-
tive protocols was studied by Fujimoto (1987). Nicol
(1988) introduced the idea of precomputing the ser-
vice time in order to improve the lookahead. Cota
and Sargent (1990) have described the use of graphi-
cal representation of a process in automatically com-
puting its lookahead.

3 CONSERVATIVE ALGORITHMS

For the correct execution of a (process based)
discrete-event simulation, the underlying system has
to ensure that all messages to a Logical Process(LP)
are processed in an increasing timestamp order. Dis-
tributed simulation algorithms are broadly classified
into conservative and optimistic based on how they
ensure this. Conservative algorithms, in general,
achieve this by not delivering a message of timestamp
t (and hence blocking the process if it can’t proceed
without the message) until it can ensure that the pro-
cess will not receive any other message with a times-
tamp lower than ¢. Optimistic algorithms, on the
other hand, allow events to be processed (possibly)
out of timestamp order. The causality errors are cor-
rected by rollback and recomputations. In this sec-
tion, we describe three conservative algorithms. We
assume that the communication channels are FIFO,
and messages with the same timestamp can be pro-
cessed in an arbitrary order.

At any simulation instant, let n be the next mes-
sage, with timestamp t,,, to be processed by an LP. In
conservative protocols, n will have to wait for some
time after its arrival, until the LP can make sure
that there won’t be any messages with smaller times-
tamps, before it can be processed. This waiting pe-
riod, which is the main overhead in conservative pro-
tocols, can be reduced by estimating ¢, in advance.
Earliest Input Time(EIT) for an LP, at a given
simulation instant, is a lower bound on t,. Under
conservative protocols, therefore, an LP can not pro-
cess any messages with timestamp greater than EIT.
Different protocols compute the value of EIT differ-
ently. In general, efficiency of a protocol is deter-
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mined by how close the value of EIT is to the actual
tn. In the ideal case, if EIT is always equal to t,, the
waiting period would be zero for every message, and
the simulation protocol would be optimal. We now
describe how EIT is computed in the three conserva-
tive protocols that we have studied.

3.1 Null Message Algorithm

Earliest Output Time(EOT), for an LP, at a given
simulation instant, is a lower bound on the timestamp
of the next message sent by the LP. It is equal to EIT
plus the value of lookahead(described in detail in
section 5) for the process at that simulation instant.
Every LP uses null messages to inform the LPs, cor-
responding to all its output channels, of the value of
EOT whenever it changes. The EIT of a process is
simply equal to the minimum of the last EOTs re-
ceived on every input channel. Note, therefore, that
the knowledge of communication topology is cru-
cial for the performance of null message based algo-
rithms. Null message overhead can be reduced by pig-
gybacking null messages with regular messz;.ges, and
by requiring that the entities send null messages only
when they have no regular messages to process. A
non zero lookahead is required (Misra 1986) in every
cycle of entities to ensure that the simulation model
doesn’t deadlock(i.e. EIT keeps advancing).

3.2 Conditional-Event Algorithm

Consider an instantaneous global snapshot of the
system. We define Earliest Conditional Output
Time(ECOT) for an LP to be the timestamp of its
earliest unprocessed input plus the minimum times-
tamp increment(lookahead), if any. The minimum
over the values of ECOT of all the LPs and the times-
tamps of all the messages in transit is the (Globally)
Earliest Conditional Event Time in the system, and
gives an estimate for the EIT of every LP in the sys-
tem. Note that the computation of Earliest Condi-
tional Event Time is similar to GVT calculation in
optimistic algorithms. Hence, any of the the GVT
computation algorithms can be used.

3.3 A New Algorithm

Assuming that messages with same timestamp
may be processed in an arbitrary order, the
conditional-event algorithm doesn’t require lookahead
for progress. However, in presence of good lookahead,
the null message algorithm performs much better
than the conditional-event algorithm(which requires
frequent global computations to ensure progress).

We superimpose the null message protocol on top
of the conditional event algorithm. The conditional
event algorithm uses a GVT algorithm that doesn’t
require freezing of normal computation in order to
calculate the Earliest Conditional Event Time(hence
allows the null message protocol to perform unhin-
dered). The EIT for any process is, therefore, the
maximum of the estimates computed by the two al-
gorithms. This method has the potential of combin-
ing the efficiency of the null message algorithm in
presence of good lookahead with the ability of the
conditional event algorithm to execute even without
lookahead(a scenario in which null message algorithm
alone will deadlock).

4 MAISIE

Maisie (Bagrodia and Liao 1992a) is a C based dis-
tributed simulation language. The central construct
introduced by the language is that of an entity. A
Maisie entity-type models physical objects (or a col-
lection of objects) of a given type. An entity-instance,
henceforth referred to simply as an entity, represents
a specific object. Interactions among the physical ob-
jects in the system are modeled by message exchanges
among the corresponding entities.

An entity may be created and destroyed dynam-
ically. An entity is created on a specific proces-
sor and cannot be migrated subsequently. Message-
communication among the entities is based on
buffered message-passing. An entity-type specifies
the types of messages that may be received by it.
A message-type consists of a name and a list of pa-
rameters. Every entity has a unique message-buffer.
A message is deposited in the message-buffer of an
entity on the execution of an invoke statement. Each
message carries a timestamp, which corresponds to
the simulation time at which the corresponding in-
voke statement was executed. Messages sent by one
entity to another are delivered to the destination
buffer in FIFO order.

An entity accepts messages from its message-buffer
by executing a wait statement. The wait statement
has two components: an integer value called wait-
time (f.) and a Maisie statement called a resume
block — a (non-empty) sequence of resume statements.
A resume statement is like a guarded command,
where the guard consists of a message-type (say my)
and an optional boolean expression(say b;). A resume
statement is said to be enabled if the message-buffer
contains a message of type m;, which if delivered to
the entity would cause b; to evaluate to true; the cor-
responding message is called an enabling message. If
the buffer contains one or more enabling message, in
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the most commonly used form of the wait statement,
the message with the earliest timestamp is removed
from the buffer and delivered to the entity. If two
enabling messages have the same timestamp, they
are processed in an arbitrary order. By selecting the
guards appropriately, the wait statement may be used
to ensure that an entity accepts a message from its
input buffer only when it is ready to process the mes-
sage.

If the buffer does not contain any enabling mes-
sages, the entity is suspended for a mazimum dura-
tion equal to its wait-time ¢.; if omitted, t. is set to
an arbitrarily large value. If no enabling message is
received in the interval ¢, the entity is sent a special
message called a timeout message. An entity must
accept a timeout message that is sent to it. A non-
blocking form of receive may be implemented by spec-
ifying ¢,=0.

If a wait statement contains exactly one resume
statement and its guard specifies timeout as the
message-type, the entity will resume execution only
when it receives a timeout message after the wait-time
specified in the statement has elapsed. As this time-
out message cannot be cancelled, it is referred to as
an unconditional timeout message. Wait statements
that schedule an unconditional timeout message are
used frequently and are often abbreviated by a hold
statement. The example at the end of the section
illustrates their use in a simulation. If the wait state-
ment contains multiple resume statements, only one
of whose guards include timeout as the message-type,
the entity may resume execution on the receipt of a
message other than timeout. Thus, the timeout mes-
sage scheduled by such statements is referred to as a
conditional timeout message.

As a simple example, consider the simulation of a
pre-emptible priority server in Maisie. In the physi-
cal system, the server receives two types of requests,
respectively referred to as high and low, where the re-
quests of the first type have a higher priority and can
mnterrupt the server if it is currently serving a request
of type low. Figure 1 describes the Maisie model of
the server. In the interest of brevity, the program
ignores issues concerned with the initiation and ter-
mination of the simulation. The maisie code for the
source entities is also omitted. .

5 OPTIMIZATIONS

Two factors which affect the performance of conser-
vative algorithms most are the knowledge of the
exact communication topology, and lookahead.
Since the conditional event algorithm finds the earli-
est conditional event over the entire system, knowl-

1 entity server { mean }

2 int mean;

3 { message high { ename hisid; } ;

4 message low { ename hisid; } ;

5 ename jobid,;

6 int rem_time=MAXINT, dep_time, busy=0;
7

8

for(;;)
{ wait rem_time for
9 { mtype(high)
10 { if(busy)
11 rem_time=dep_time — sclock();
12 hold(ezpon(mean));
13 { if(busy)
14 dep_time=rem_time + sclock();
15 invoke msg.high.hisid with done; }
16 or mtype(low) st('busy)
17 { busy=1; jobid=msg.low.hisid;
18 rem_time=ezpon(mean);
19 dep_time=sclock() + rem_time; }
20 or mtype(timeout)
21 { busy=0; rem_time=MAXINT;
22 invoke jobid with done; }
23 }
24}

25 }

Figure 1: Maisie Model of Priority Server

edge of communication topology affects only the null
message based algorithms. In this section, we discuss
the language level constructs provided in Maisie to
support these optimizations.

5.1 Dynamic Communication Topology

Any conservative method that uses null messages re-
quires the knowledge of the communication topology.
In absence of this knowledge, the null messages would
have to be broadcast which would severely degrade
the performance. Since, typically, the communication
pattern keeps changing over the course of the simula-
tion, having a static communication topology, which
would necessarily have to encompass all the channels
that exist at any point during the simulation, would
mean that each LP, at any given time, might be syn-
chronizing (using null messages) with a large number
of LPs that its not going to be interacting with in the
near future. Allowing dynamic process and channel
creation(and destruction), therefore, can improve the
performance considerably (Lin 1992). However, it is
widely believed that null message based algorithms
can’t support these constructs.

The main problem in allowing dynamic channel cre-
ation in conservative schemes is illustrated by the fol-
lowing example: In Figure 2, there already exists a
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Figure 2: Creating Channels Dynamically

channel from a to b and from a to ¢. A channel is to
be created from b to ¢ at time t(i.e. the first message
on that channel will have a timestamp equal to t). If
the information to add b to its source set reaches ¢
after ¢’s local simulation clock is past time ¢, then, it
could result in a violation of causality(i.e. the mes-
sage from b to ¢ might arrive in the past of ¢). Also, if
entity b didn’t add c to its destination set until after
simulation time ¢, it could lead to a deadlock, since,
b would inform(through null messages) only the enti-
ties currently in its destination set about the value of
its EOT, whereas, ¢ would start waiting for b’s EOT
at or before time t.

At the time of process creation, Maisie automati-
cally creates a channel from the creator to the created
process. Any other channels have to be created or de-
stroyed explicitly by the entities by (locally) adding or
deleting entities from their source or destination sets.
Four constructs, namely, add_source, add_destination,
del_source, and del_destination are available to an en-
tity for this purpose. In order to avoid the potential
problem of causality violation as described above, if
the earliest message on a channel from entity b to ¢
has a timestamp ¢, then, the user has to ensure that
the following conditions are satisfied:

1. b should add ¢ to its destination set before or at
simulation time t.

2. ¢ should add b to its source set before or at sim-
ulation time ¢.

First condition is easily satisfied, since, b can sim-
ply execute an add_destination(c) just before it sends
a message to ¢ . In order to satisfy the second condi-
tion, ¢ needs to be informed about the ename of the
entity b before or at time t(normally, in Maisie, the
destination doesn’t need to know source’s name). In
most applications, b and ¢ are created by the same en-
tity, say, a(typically the driver entity), and the chan-
nel from b to ¢ is created at the simulation time ¢,
when the two entities are created (see Figure 2). In
such a case, a can send the ename of b to ¢ right after
creating the two entities, thus ensuring that it reaches
c at time ¢t.

The only responsibility of the user is to satisfy con-
ditions (1) and (2). The actual synchronization with
the source-set and destination-set is a part of the al-
gorithm used, and hence is transparent to the user.

5.2 Lookahead

Informally, lookahead is defined as the ability of a
process to look ahead into the future. Quantitatively,
we define lookahead(t) for a process, at simulation
time t, to be the value of EOT — t after all and
only the inputs to the process with timestamp less
than t have been processed by the process (for sim-
plicity, we assume that the EOT, and hence looka-
head, is same on all output channels). Note that the
value of lookahead depends on the semantics of pro-
cess behavior(local factor), and the message arrival
pattern(global factor). The above definition is simi-
lar to the one used by Fujimoto (1987). They define
the lookahead for a process to be t/, if upon having
processed all messages with timestamp ¢ or less, it
can predict all future messages with timestamp t +t'
or less. However, they assume the lookahead to be
fixed throughout the simulation which, we believe, is
inadequate to explain the lookahead characteristics of
most of the applications.

An eager server (Fujimoto 1987) is defined to be
one in which the departure event is scheduled(i.e. the
corresponding output message is sent) as soon as the
arrival event for a job is processed (only possible for
FCFS servers). A lazy server , on the other hand,
waits until the simulation time advances past the
departure time before sending the output message.
Consider the lookahead of an eager FCFS server in
a Closed Queueing Network. If the message arrival
pattern and the service time distribution is such that
the number of messages received with timestamp less
than t is n and the server is never idle during the time
interval [0,t], then, the value of lookahead(t), for the
eager server, is equal to z::ol serv_time; —t. If, in
addition, the server also precomputes the service time
of the next job (Nicol 1988), the value of lookahead(t)
is equal to 2?;01 serv_time; + serv_time, —t. The
lookahead(t) of the lazy server , irrespective of the
message arrival pattern, is zero, for all t. For a
lazy server which precomputes the service time of
the next job, serv_time,,, lookahead depends on the
message arrival pattern. If the message arrival pat-
tern and the service time distribution is such that
the server is idle at simulation time t, lookahead(t) is
equal to serv_time,. If the server is busy with a job
that has a remaining service time left of r_time, then
lookahead(t) is equal to r_time.

Clearly, In order to be compared across applica-
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tions, the absolute value of lookahead has to be nor-
malized with respect to the service time(timestamp
increment) (Fujimoto 1987).

Now, we discuss how the value of EOT is calcu-
lated for Maisie entities (which determines the value
of lookahead at any instant). Every Maisie entitiy
has a Clock variable associated with it. Whenever
an input message is processed by an entity, the value
of its Cllock 1s updated to the maximum of its current
value and the timestamp of the message. In Maisie,
the timestamp of a message is equal to the Clock
value of the sender entity. Since the value of Clock
increases monotonically, an obvious estimate of EOT,
at any simulation instant, is equal to Clock. There-
fore, lookahead(t) is equal to Clock,—t, where Clock,
is the value of Clock when all and only the inputs
with timestamp less than ¢t have been processed(or
are ineligible to be processed by the current selective
receive command) and the entity is waiting for the
next input. The following subsections outline how
this estimate of EOT can be further improved upon.

5.2.1 Transparent Extraction of Lookahead

hold(t.) statement is frequently used in Maisie pro-
grams to model servicing of jobs. Semantically,
hold(t.) is equivalent to a wait(t,) statement with
the only resume condition being timeout. Therefore,
upon processing a hold(t.) statement, the C'lock can
be incremented by ¢, time units. It is easy to see how
in applications which frequently use hold statement,
for example, the code for an eager FCFS server, the
value of C'lock, can progress far beyond the value of ¢,
thereby improving the lookahead estimate Clock, —t.

5.2.2 User Specified Lookahead

If the user is able to guarantee that the minimum
increment to Clock between processing the next input
and sending the corresponding output is equal to §,
then the estimate of EOT can be improved to Clock +
6. Maisie provides a special function call, lookahead,
to allow the user to express this minimum timestamp
increment in form of an expression consisting of local
variables and the function call sclock() which gives
the current value of the Clock for the entity. This
expression is evaluated whenever its value is used by
the underlying system. In the simple case of an FCFS
server the expression could simply be ntime, where
the variable ntime contains the precomputed service
time of the next job. The expression for the pre-
emptible priority server is more complicated. and is
shown in Figure 3. In presence of the user defined
lookahead, therefore, the estimate for lookahead(t)

1 #define MIN(a,b) ((a <b)?a:bd)
2 entity server { mean }
3 int mean;
4 { message high { ename hisid; } ;
5 message low { ename hisid; } ;
6 ename jobid;
7 int rem_time=MAXINT, dep_time,
next_time, next_next_time, busy=0;
8 lookahead(busy ? MIN (next_time,dep_time
—sclock()) : MIN (nezt_time,nezt_next_time));

9 next_time=ezpon(mean);

10 next_next_time=ezpon(mean);

11 for(;;)

12 { wait rem_time for

13 { mtype(high)

14 { if(busy)

15 { rem_time=dep_time — sclock();
16 dep_time=dep_time + next_time; }
17 hold(nexzt_time);

18 nezt_time=next_next_time;

19 next_nert_time=ezpon(mean);

20 invoke msg.high.hisid with done; }
21 or mtype(low) st('busy)

22 { busy=1; jobid=msg.low.hisid;

23 rem_time=nezt_time;

24 nezt_time=nezxt_nexrt_time;

25 nezt_next_time=erpon(mean);

26 dep_time=sclock() + rem_time; }
27 or mtype(timeout)

28 { busy=0; rem_time=MAXINT,

29 invoke jobid with done; }

30 }

31}

32 )

Figure 3: Maisie Code for Pre-emptible Priority
Server Incorporating User Defined Lookahead

improves to Clock, + 6, — t, where &, is the value of
the lookahead expression at t.

6 EXPERIMENTS

Two sets of experiments, one consisting of queuing
network simulations and the other using synthetic
benchmarks, were carried out to evaluate the perfor-
mance of the conservative implementations.

The Closed Queueing Networks(CQN), used in our
experiments, consist of N switches. Each switch
has a tandem queue of Q servers(note that the
server process includes a queue where the incom-
ing jobs are stored before being processed) associ-
ated with it. FEach switch routes the jobs to the
first server in any one of the tandem queues, with
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Switch Server Queue

A A

Figure 4: Closed Queueing Network(N=2, Q=3)

equal probability. Each server services the job,
with a shifted-exponential service time distribution(a
shifted-exponential distribution is chosen so that the
minimum lookahead for every entity is non-zero, thus
preventing a potential deadlock situation in the null
message protocol) and sends it to the next server in
the queue, the last server in the queue sending it back
to the unique switch it is associated with. The topol-
ogy of the network, for 2 switches, is shown in Fig-
ure 4. Each switch has J jobs initially. The simu-
lation is carried out up to simulation time H. Two
variations of the above CQN model are considered -
CQNF, where every server is First-come-first-serve,
and CQNP, where every server is a Pre-emptible pri-
ority server. In the CQNP model, a fixed fraction of
Jjobs are HIGH priority and the rest are LOW priority.
The second set of experiments used synthetic bench-
marks. These benchmarks consist of closed networks
of processes with fixed number of messages circulating
between them. Each process in the network processes
the messages it receives in the FCFS order with a
shifted-exponential service time. Different topologies
can be selected by varying benchmark parameters.

7 RESULTS

All the experiments were carried out on an imple-
mentation of Maisie on Symult 2010 hypercube where
each node uses a Motorola 68020 cpu and has 4MB
of main memory. All the programs were written in
Maisie. The programs used for the parallel implemen-
tations were the same as the ones used for sequential
implementation, except for (a). explicit assignment
of Maisie entities to specific nodes of the multicom-
puter, (b). code to create the source and destination
sets for each entity, and (c). specification of looka-
heads. The speedups were calculated with respect to
the sequential version(using the Global Event List al-
gorithm implemented using splay trees) running on
one node of the multicomputer.

7.1 Closed Queueing Network Experiments

The maisie model of the CQNF network(Figure 4),
called CQNF1, models each FIFO server by a sepa-
rate Maisie entity. Similarly, each switch is modeled
by a separate entity. For the parallel implementation,
each switch entity and the associated queue entities
are allocated to one processor. Here, we sumimarize
some of the main results. A more detailed description
can be found in Jha and Bagrodia (1993).

Figure 5 shows the variation of speedup, using 16
processors, with the number of jobs initially at each
switch, for the three algorithm(null message, condi-
tional event, and the combination of the two).
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Figure 5: CQNF1: Speedup vs. Jobs/Switch

As shown in the figure, the performance of the null
message algorithm is much superior to the conditional
event algorithm for both the experiments. This can
be attributed to the high overhead of the global com-
munication required to compute the next event time
in case of the conditional event algorithm. However,
the performance gap between the two narrows con-
siderably for higher values of Jobs/Switch, since, pro-
cesses have more jobs to process between successive
global computations in case of conditional event algo-
rithm resulting in a better computation to overhead
ratio. The combination of null message and condi-
tional event algorithms performs almost as well as
the null message algorithm in both the cases.

Note that 1 node execution of any of the three
algorithms is faster than the global event list al-
gorithm(which is used as the basis to calculate the
all the speedups reported in this paper) and higher
than linear speedup is observed in many cases. This
is because the global event list algorithm executes
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events in strictly timestamp order across all processes,
whereas in case of conservative algorithms, for good
lookahead processes, a number of events may be ex-
ecuted on the same entity before other events with
lower timestamp are executed on a different process.
This results in fewer context switches. Also, since
the context switching overhead is not linear in terms
of number of processes, the total overhead decreases
when they are divided over many processors.
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Figure 6: CQNP: Speedup vs. Fraction of HIGH Jobs

Figure 6 plots the speedup with respect to the
fraction of HIGH priority jobs in the CQNP experi-
ment(same as CQNF1 with the FIFO servers replaced
by priority servers). While processing the high pri-
ority jobs, the code uses hold(service_time) instruc-
tion to model the servicing of the job because the
HIGH priority jobs can’t be pre-empted. This allows
the transparent extraction of lookahead to take place.
Hence, increasing the fraction of HIGH jobs should
improve the performance. This expected behavior is
confirmed by the figure. When all the jobs in the
system are HIGH, performance is similar to that of
CQNF1, since, the priority servers behave like FIFO
servers in such a case.

In order to study the effect of the user defined
lookahead, we repeat the CQNP experiment with-
out the user defined lookahead, and the results are
shown in Figure 7. As explained before, the null
message algorithm deadlocks in absence of the user
defined lookahead(the transparent lookahead is not
guaranteed to break the deadlock in general). As
predicted, the new(combination) algorithm is able to
execute even in absence of a lookahead guarantee in
every cycle, and is able to utilize (transparent) looka-
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Figure 7: Effect of User Defined Lookahead(CQNP):
Speedup vs. Fraction of HIGH Jobs

head where its available(when the fraction of HIGH
jobs is high. Note that the lookahead in every cycle
is still not guaranteed to be non zero). Compari-
son of Figure 6 and Figure 7 reveals that presence
of user defined lookahead improves the performance
dramatically when the transparent lookahead is mini-
mal(i.e. low fraction of HIGH jobs), but, the improve-
ment is negligible when the transparent lookahead is
high. Presence of user defined lookahead marginally
improves the performance of conditional event algo-
rithm too. This is because we utilize the user defined
lookahead in computing a better estimate of the glob-
ally earliest conditional event.

7.2 Synthetic Benchmark Experiments

In order to study the effect of specific network charac-
teristics like lookahead, communication topology, and
processes per node on the performance of the simu-
lation, we used synthetic benchmarks. Here we only
report the results of the lookahead. Rest of the results
are summarized in Jha and Bagrodia (1993).

7.2.1 Lookahead

We study the effect of improving the lookahead of
a system on the performance in two ways: one in
which lookahead characteristics of all the entities in
a simulation are the same and are improved across
different simulations (lookahead in homogeneous net-
works), and the other in which some of the entities
in the simulation have good lookahead characteris-
tics and others have poor lookahead characteristics,
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with the proportion of each type being varied across
different simulations (lookahead in non-homogeneous
networks). The effect of changing lookahead in a net-
work is closely related to its communication topology.
We choose a simple topology, namely, a ring of enti-
ties. Each entity is an FCFS server.

Lookahead in homogeneous networks: As
noted before, an FCFS server can be programmed
as a lazy server or an eager one, and with or with-
out precomputed service time as the lookahead. In
order to further vary the degrees of lookahead in
the synthetic workload, we express only a fraction,
called LAF, of the precomputed service time as looka-
head(using the Maisie constructs to specify looka-
head). Thus, although, the application knows the
amount of timestamp increment on the next message
that it would process, it expresses only a fraction of it.
In the studies done by Fujimoto (1987), the process
knows(and expresses as lookahead) only the minimum
possible value of the timestamp increment. The ra-
tio of mean timestamp increment and the minimum
possible timestamp increment is defined as the Looka-
head Ratio(LAR). Therefore, LAF, as defined above,
corresponds to the inverse of LAR. Fujimoto varies
LAR by changing the service time distribution(hence
the ratio of mean to minimum service time), whereas
in our case LAF is specified directly by the user(and
is independent of the service time distribution).

Figure 8 shows how the speedup(on 16 processors)
varies with the value of LAF. For the case of lazy
server, the speedup improves dramatically as we in-
crease LAF from 0.1 to 1.0. Note that we choose the
minimum value of LAF to be non-zero since a zero
value for LAF might lead to a deadlock in case of the
null message algorithm. The speedup of the eager
server is not affected much because of an increase in
LAF. This is because the lookahead of an eager server
is very good even without the precomputed service
time (as explained before) and presence of precom-
puted service time as lookahead doesn’t help appre-
ciably. In fact, in some cases, the performance might
even degrade slightly because of increased null mes-
sage overhead.

Lookahead in non-homogeneous networks:
We use an eager server with an LAF of 1.0 to rep-
resent a good lookahead entity, whereas a lazy server
with LAF of 0.1 represents a bad lookahead entity.

Figure 9 shows how the speedup(on 16 processors)
varies as the number of consecutive bad lookahead
nodes are increased(a connectivity of n implies that
each process is connected, via an output channel, to
the next n processes in the ring). All the curves show
a gradual degradation in performance as bad looka-
head nodes are introduced, instead of a sharp decline.
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8 CONCLUSION

An important goal of parallel simulation research is
to facilitate its use by the discrete-event simulation
community. We have designed a simulation language
called Maisie which separates the simulation model
from the specific algorithm (sequential or parallel)
that is used to execute the model. This paper ad-
dressed the problem of transparent implementation
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of conservative algorithms for parallel simulation lan-
guages. In particular, it describes how three different
conservative algorithms can be implemented trans-
parently under the Maisie simulation language.

The paper also described how conservative meth-
ods can be implemented to handle dynamic communi-
cation topologies, in a restricted way. Previous stud-
ies of conservative implementations have used a static
communication topology. If the communication pat-
tern in the model varies dynamically, this assumption
leads to sub-optimal performance. We describe lan-
guage constructs to ensure that topological changes
are made consistently by the run-time system. Lastly,
the paper describes how certain types of lookahead
behavior can be extracted transparently by the simu-
lation system. It also introduces language constructs
that can be used by a programmer to specify the
lookahead behavior of a specific object.

The three algorithms that were studied include the
null message algorithm, the conditional event algo-
rithm, and a new algorithm that combines the pre-
ceding approaches. Maisie models were developed for
standard queuing network benchmarks. Various con-
figurations of the model were executed using the three
different algorithms. The implementations were opti-
mized to exploit the lookahead properties of the mod-
els. The benchmarks were used to compare the per-
formance of the three algorithms and were also used
to evaluate the effect of variations in lookahead char-
acteristics on the performance of the algorithms.
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