Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

THE MODELING METHODOLOGY, MODEL SPECIFICATIONS AND
DEVELOPMENT OF CASI: CASE/ARCHITECTURE
SIMULATION INTEGRATION

Arnold J. Almanzor
Paul R. Work

Computer Sciences Corporation
Integrated Systems Division
304 West Route 38, Post Office Box N
Moorestown, New Jersey 08057, U.S.A.

ABSTRACT

This paper discusses the CASE/Architecture Simulation
Integration (CASI, pronounced “CASEY "), methodology
for integrating performance engineering architectural
modeling information with CASE-based systems
requirements analysis and design. The CASI approach is
to embed data structures within a CASE tool so that the
output of the CASE tool can serve as an input to an
architectural modeling tool. Portions of a sample model,
developed to show how the CASI data structures are
embedded within the CASE based model, are presented.
Also discussed are potential future directions where the
CASI methodology may evolve.

Keywords: Modeling Methodology, CASE, Architecture
Simulation, Performance Engineering

1 INTRODUCTION

The purpose of CASE/Architecture Simulation
Integration (CASI) is to develop a common model
between system software requirements and architectural
performance simulation. Computer-Aided Software
Engineering (CASE) tools provide systems designers and
engineers with an easier way to model systems.
Systems designers model the functionalities of a system
and use CASE tools such as Cadre Technologies’
teamwork to create data flow diagrams. Systems
engineers, on the other hand, model the architecture of a
system and use CASE tools such as CACI’s
NETWORK IL.5® to run performance simulations.
However, modeling the same system in different CASE
tools can lead to various analytical and design problems.
The major concern is that there is not a unified concept
of the system. According to Hatley and Pirbhai (1987),
“the requirements and architecture models complement
each other well. Processes in the requirements model can

657

be allocated to slots in the architecture model...” The
CASI methodology will serve as an approach to integrate
CASE tool technology and help bridge the
communication gap of modeling a system between
systems designers and engineers.

1.1 CASI Example Model

The following material was developed as an example
model of a system so that the architectural information
necessary for simulation could be shown. The example
model uses the CASE/Architecture Simulation
Integration (CASI) methods for embedding architectural
performance characteristics, requirements, constraints,
capacities, and budgets. This is done so that the
performance engineering tasks necessary to ensure a
reasonable design are incorporated while the system is
being analyzed and synthesized and not put off to some
modeling group distinct from the engineering and design
team or just put off until “another time” when it’s “more
convenient”. According to Jain (1991), “ Performance
cvaluation is required at every stage in the life cycle of a
computer system...” We are extending this concept to
state the importance of analyzing the system architecture
as soon as possible in the early stages of system design.

1.2 Problem Statement

A hypothetical aerospace company needs an Aircraft
Monitoring System (AMS) to be placed in one of their
prototype aircraft. The purpose of the Aircraft
Monitoring System is to monitor and poll different
sensors on the aircraft. These sensors should measure
the engine’s pressure and temperature, fuel tank level and
smoke detection. The system should also include a
timer, a clock and a CRT to display the status of each of
the sensors. The AMS we used is based on an example
that can be found in Cadre Technologies’ teamwork/SA

658 Almanzor and Work

and teamwork//RT User’s Guide, Release 4.0, (1990).

2 REQUIREMENTS ANALYSIS

The analysis of this system will be based on Hatley and
Pirbhai’s structured analysis methodology. The central
component of the system shall be called Monitor_
Aircraft. The main function of Monitor_ Aircraft will be
to poll the sensors to determine their status. The sensors
will be external to Monitor_Aircraft. The sensors will
notify Monitor_Aircraft of their status and whether or
not a problem has occurred. The system should monitor
these sensors about once a second. The external sensors
shall be called the Engine_temperature_sensor,
Engine_pressure_sensor, Smoke_detector and Fuel _tank.
The other components shall be called the Timer, CRT
and Clock.

Monitor_Aircraft will request messages from the
Engine_pressure_sensor, Engine_temperature_sensor and
Fuel_tank to gather information of their status. These

sensors, in tum, will then send their data information to -

Monitor_Aircraft. The Smoke_detector will send a
message to Monitor_Aircraft of its status. Since
Monitor_Aircraft needs to monitor the sensors about
once a second, the Clock will send an interrupt once a
second to Monitor_Aircraft. Monitor_Aircraft then
requests data from the sensors and scts a Timer to a one-
second interval. During this one-second interval, data
from the sensors will be accepted for this period. Once
Monitor_Aircraft has received its information after
polling its sensors then it will display the data on a
CRT.

3 CREATING THE AMS teamwork
MODEL

Upon completion of the requirements analysis, our next
step was to put the requirements in a computer-based
model. The CASE tool used was Cadre Technologies’
teamwork. The following are portions of the AMS
teamwork model. The Context-Diagram illustrates the
overview of the AMS (refer to Figure 1).

Conlend-Diagram 17
Awncrafi_mMonioning_Syslem

Figure 1: The Context-Diagram of the AMS

Monitor_Aircraft can be further abstracted into two
internal subsystems which are Monitor_Sensor and
Generate_Alarm. The Monitor_Sensor subsystem can be
further decomposed into six processes (refer to Figure 2).
The Receive_Sensor_Data process can receive sensor_
data and read the time_of_day from the read-only storage
area. The Rececive_Sensor_Data process can send out
several events. The sensor_data_received event is an
input to the Monitor_Sensor State Event Matrix
(Monitor_Sensor_SEM). This matrix can also receive a
time_out from the Timer_Handler process and an
one_second_interrupt from the One_Second_Interrupt
Handler. The events that can be output from the
Monitor_Sensor_SEM are sensor_data_received, set_
timer, reading_request and record_timeout. The
sensor_data_received, fuel_data_received and record_
timeout events are inputs to the Monitor_Sensor Process
Activation Table (Monitor_Sensor_PAT). The Receive_
Sensor_Data process can write to a storage area called
sensor_reading. The Determine_Fuel_Capacity process
can receive from the sensor_reading data store and output
an event called fuel_status. The Determine_Range
process can read from the sensor_reading and range_
constants data stores and output a sensor_status event.
The Record_Timeout process can read the time_of_day
and range_constants storage areas and output to the
sensor_reading storage area.

rAomity_SRrsor

read-only
dala slore

The Modeling Methodology, Model Specifications and Development of CASI 659

one_second_

Figure 2: The Monitor_Sensor Subsystem

The Monitor_Sensor_PAT (refer to Figure 3) shows
control actions (left of the double vertical broken line)
and processes (right of the double vertical broken line).
The Monitor_Sensor_PAT status indicates whether or
not to enable particular processes. If the control action
fuel_data_received is sent from the Receive_Sensor_Data
process and it is true then execute the Determine_Fuel _
Capacity process. If the control action sensor_ data_
received is sent from the Receive_Sensor_Data process
and itis true then execute the Determine_Range process.
If the control action record_timeout is sent from the
Monitor_Sensor_SEM and it is true then execute the
Record_Timeout process followed by the Determine_
Range process.

1124
Monfor_Semor_PAT

TRug*

CTRUET L)) 2

Figure 3: The Monitor_Sensor Process Activation Table

4 DEFINING THE SYSTEMS
ARCHITECTURE FOR THE AMS

Now that the software requirements have been modeled,
we considered the architecture of the system which would
include the hardware, software and performance
simulation characteristics (refer to Figure 4).

The Aircraft Monitoring System will have two main
processors called the Monitoring_Subsystem and the
Alarm_Display_Subsystem. The eight storage devices
will be the Alarm_Display_Crt, Engine_Pressure_
Sensor, Engine_Temperature_Sensor, Smoke_Detector,
Fuel_Tank, Memory, Timer and Clock. The two
transfer devices will be the Crt_Interface and the
Vme_Bus. The two LANs will be the Dedic_Smoke_
Alrnn_Bus and the Main_ Avionics_Data_Distribution_
Bus.

The Monitoring_Subsystem will be connected to the
Vme_Bus and the Main_Avionics_Data_Distribution_
Bus. The software modules that will reside on this
processor are Record_Timeout, Determine_Range,
Determine_Fuel_Capacity, Store_Sensor_Data, Process_
Sensor_Data, Read_Sensor_Data, One_Second_
Interrupt_Handler, Setup_Timer and Process_ Timeout.

The Alarm_Display_Subsystem will be connected to the
Crt_Interface, Vme_Bus, and Dedic_Smoke_Alrm_Bus.
The software modules that will reside on this processor
are Display_Fuel_Status, Display_Sensor_Status,
Process_Smoke_Detector_Alert and Smoke_Detector_
Interrupt_Handler.

CLOCK

TWER
VME BUS
MONITORING ALARM DISPLAY
SUBSYSTEM SUBSYSTEM
ENGINE
MEMORY
e CRT INTERFACE

MAIN AVIONICS DISTRIBUTION BUS

Figure 4: The Systems Architecture of the AMS

DEDIC SMOKE
ARLM BUS

660 Almanzor and Work

5 EMBEDDING CASI STRUCTURES IN =0 QY= sensor_readingid* m =
CADRE’S teamwork MODEL Fle Whole DDE Annowte Print OOA Help

Anributes: (store)

The three primary areas in which the user embeds CASI S This date fhle coninans Information of sensor states
structures in Cadre's teamwork model are in the Notes U omnined sensor_data

attached to the Context-Diagram (refer to Figure 5), the ¢ vimeet By

P-Spec's Notes attached to the Process Bubbles (referto | -

Figure 6), and the Data Dictionary Entries (DDEs) (refer * L TYPE = FLAT

to Figure 7). The CASI structure will only be Stekss wEmop - F1ro

recognized if the location is correct and if the CASI
structure is surrounded by the characters (‘*~* asterisk-
tilde and “‘~* ““tilde-asterisk).

The following figures are examples that show the

embedded CASI structures within the teamwork model _

for the AMS.
=0 = =

File Whole_Note Print Help
TITLE: SUBSYSTEM_CONFIGURATIONS
BODY:

6 TRANSLATION OF CASI
e T — STRUCTURES INTO ARCHITECTURE
SRR C el tarace SIMULATION MODEL

SUBSYS_NETWORK_NAME = dedic_smoke_alrm_bus
NO_OF_NODES = 1 -
NODE NAME = alars dlsplny subsystem
NODE_LOCATION = within_aiTcraft

3
&

Figure 7: CASI Structures Attached to the Data
Dictionary Entries

N

The CASI Implementation Design Approach diagram

No or SUBers NEmoRKE LT TeYeten (refer to Figure 8) illustrates the process of extracting the
:gag:s"gsgofx‘ums = main_avionics_date_distribution_bus CASI Slmctures from Cadrevs team)vo’.k in "VhiCh a
NODE NAME = monitoring_ nubsyste-

NODE_LOCATION = within_afrcraft "«

CASI extraction/translation program translates CASI
structures to NETWORK I1.5® structures (1992). The
CASI extraction/translation program will be generic so
3, that other architectural simulation models can be
— substituted such as SIMAN and SES/Workbench. In
:> & this case, the resultant file will be the NETWORK IL.5®
Figure 5: CASI Structures Attached to the Context- et file. This file will be later imported into
Diagram Notes NETWORK II.5® so that the performance simulation
=0 A . & can be executed and reports generated.

File Whole_P-Spec Annotate Print Help
TITLE: Record_Timeout

INPUT/OUTPUT:

range_constants : data_in

time_of _day : data_in

sensor_reading : data_out

1l

fl&.«; ! CAS) EXTRACTION/TRANSLATION PROCESS

N

o

BODY:

This function receives range_constants file and the time_of_day file
and sends its sensor_reading to a file when the process_sensor_data
funct]on has timed out.

MODULE_TYPE = LOGICAL_TRANSITION PROCESS
PROCESSING (

KEAD time of_day
OVER vme_bus

g
:

OVER vme_bus
FROM memory

g
»

PROCESS estimate_new_reading
FOR 0.05 SECS

TEAMWORK
MODELING
TOOL
FROM memory Q
READ range_constants
TEAMWORK
g

WRITE sensor_reading
OVER vme_bus
TO memory

SET sensor_data_recelved SEMAPHORE

)
SCHEDULING_INFO (
WAIT FOR PREDECESSOR TO COMPLETE

)
ALLOCATED_TO (
monitoring_subsystem &

) . <

o N |
Figure 6: CASI Structures Attached to the P-Spec Notes Figure 8: CASI Implementation Design Approach

i
”_Ei‘
) | § o

r

The Modeling Methodology, Model Specifications and Development of CASI 661

7 FUTURE DIRECTIONS FOR CASI

There are two major directions that can be taken to
evolve the CASI methodology. The first is to address
object-oriented CASE-based modeling such as described
by Zeigler (1990), and the second is to apply artificial
intelligence techniques.

Since the architectural elements and processing
specifications within the CASI methodology are to a
certain extent already object-oriented, the transition to
object-oriented CASE-based modeling should be
somewhat straightforward. The processing specifications
currently deal with the operations to be performed by a
single processing node while the architectural elements
are structured on the characteristics of the objects in the
system architecture, such as processors, LANs, and files.
Therefore, transitioning from the functional analysis
methodology of the Cadre’s teamwvork SA/RT world to
an OOA/OOD world should be achievable.

In the area of artificial intelligence, expert system
technology could be visited. Here the conventions and
rules of thumb used by <ystem architectures for certain
parameters of the archite..ural ¢iements could be supplied
by an expert system knowledge-base, e.g., basic
assumptions for protocol definitions. In addition,
consistency rules could be added to ensure that when
certain bounds or that other required elements are also
specified for consistency and completeness of the model
such as suggested by Fishwick (1992). As another
alternative by Aronson (1991) could be to combine both
OO and Al techniques to take advantage of the strengths
of both.

8 CONCLUSION

It has been shown that the CASI model specifications
and development methodology can be applied to a simple
real-world problem. The CASI approach has
demonstrated that it can embed performance simulation
characteristics within a functional CASE based model
using tools such as Cadre Technologies’ teamwork .
According to Connie Smith (1990), “we can expect
future CASE tools to incorporate performance prediction
and assessment features." In CASI’s model
specifications and development methodology, we have
shown that this can be done now.

REFERENCES
Aronson, Jesse S. 1991. AES: An Object-

Oriented, Knowledge-Based Approach to Simulation.
VA:375-379.

Fishwick, Paul A. and Bernard P. Zeigler. 1992. A
Multimodel Methodology for Qualitative Model
Engineering. ACM Transactions on Modeling and
Computer Simulation.. 2:1:52-81.

Hatley, Derek J. and Imtiaz A. Pirbhai. 1987. Strategies
for Real-Time System Specification. New York:
Dorset House Publishing.

Jain, Raj. 1991. The Art of Computer Systems
Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling.
New York: John Wiley & Sons, Inc.

NETWORK I11.5® Data Structures. 1992. California:
CACI Products Company.

Smith, Connie U. 1990. Performance Engineering of
Software Systems (The SEI Series in Software
Engineering). New York: Addison-Wesley
Publishing Company.

teamwork/SA® teamwork/RT® User’s Guide Release
4.0. 1990. Oregon: Cadre Technologies Inc.

Zeigler, Bemard P. 1990. Object-Oriented Simulation
with Hierarchical, Modular Models: Intelligent
Agents and Endomorphic Systems. San Diego:
Academic Press, Inc.

AUTHOR BIOGRAPHIES

Arnold J. Almanzor is a systems analyst and
programmer at the Integrated Systems Division of
Computer Sciences Corporation, Moorestown, NJ. Mr.
Almanzor holds a BS in Information Systems from
Drexel University and is currently pursuing a MS in
Information Systems at Drexel University. His research
interests include computer-based tools for modeling and
assessing the performance of system architectures as well
as human computer interface design. He is a member of
the IEEE Computer Society and ACM.

Paul R. Workis a Deputy Director of Systems
Engineering with the Computer Sciences Corporation,
Moorestown, NJ. Mr. Work holds a BS in Computer
Science/Mathematics from Roger Williams University;
and closing in on a MS in Engineering Management
from Drexel University; has over 20 years of software
and systems engineering experience in the commercial
and military sectors; and is responsible for providing
performance and systems engineering services. He is a
member of the Society for Computer Simulation, IEEE
Computer Society, and ASEM.

