Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

COMPLEXITY OF SIMULATION MODELS:
A GRAPH THEORETIC APPROACH

Lee Schruben

School of Operations Research
and Industrial Engineering
Cornell University

Ithaca, New York 14853

USA

ABSTRACT

Complexity of a simulation model is defincd as a
measure that reflects the requircments imposed by
models on computational resources. It is often related
to the structural properties of models. In this paper,
we introduce complexity measures for simulation
models using the concept of Simulation Graphs. A
reasonable measure of complexity is useful in a priori
evaluation of proposed simulation studies that must be
completed within a specificd budget. They can also be
useful in classifying simulation models in order to
obtain a thorough test bed of models to be used in
simulation methodology research. Some surrogate
measures of run time complexity are also devcloped.

1 MOTIVATION

A formalism provides a set of conventions for
specifying a class of objects in a precise,
unambiguous, and paradigm-frce manncr. The
structure of a formalism further provides a basis for
measuring the complexity of objects in that class. For
example, complexity measures for finite-state
machines include number of inputs, number of statcs,
and number of outputs; number of vertices, number of
directed edges, maximum fan-in, and maximum fan-out
are some of the complexity measurcs [or directed
graphs. Analogously, complexity of a simulation
model is defined as a measure that reflects the
requirements imposed by models on computational
resources. As Zeigler [1976; p.31] points out, these
requirements can be characterized in various different
forms:

1. the space the program requircs in the
computer to represent the model structure,

2. the time it takes to simulate one
realization of the model,

3. the time and effort involved in
constructing, implementing, testing, modifying,
maintaining, and communicating the model.
Ultimately, the complexity of a model can be
measured in terms of the extent of the resources it
needs for development and simulation; this complexity
is often related 1o the structural properties of the model
[Zeigler, 1976].

The objective of this paper is o propose
complexity measures that are dircctly related to the
Structural properties of simulation models. The main
focus is on implementation and maintcnance costs (as

641

Enver Yiicesan

European Institute of Business Admn
INSEAD

Boulevard de Constance

77305 Fontainebleau Cedex
France

specified in 1 and 3); the execution time (as defined in
2) is of secondary interest. Simulation Graph Models,
are introduced to assess the structural properties of
models. The complexity measures are then defined
with respect to these properties.

An early attempt to define the complexity of
simulation models is by Evans, Wallace and
Sutherland {1967; p.133]. Their measures include the
number of different types of units (entities) in the
modecl, the interaction among units, the proportion of
“contingent” events, and the number and complexity of
decisions made by event routines. These measures are
principally abstract concepts as the authors provide no
concrete metrics to quantify them.

A practical measure of complexity for
simulation models will find ready utility in a priori
evaluation of simulation models. This would be
important for sponsors of large simulation projects,
because a model whose complexity exceeds the limits
imposed by the project budget is useless even if it is
valid within some experimental framework. In
particular, these measures will provide a quantitative
basis for modularization that would allow program
developers to identify software modules that will be
difficult to test or maintain.

A perhaps more important application of
simulation model complexity measures could be in
evaluating simulation modeling and analysis
techniques. The major problem in simulation
methodology evaluation is in selecting a reasonable
test bed of simulation models. Even a partial ordering
of the complexity of simulations would help insure
that the selected test models cover a wide range of
possibilities.

This paper is organized as follows: §2
introduces and briefly discusses Simulation Graph
Models. §3 discusses some intuitive measures of
model complexity. In §4, a complexity measure based
on the cyclomatic number of a connected graph is
introduced. Illustrations of these measures are
presented in §5. A surrogate measure for run time
complexity is discussed in §6. Concluding remarks
are presented in §7.

2 SIMULATION GRAPH MODELS

The elements of a discrete event simulation are state
variables that describe the state of the system, events
that alter the values of state variables, and the logical
and temporal relationships between events. An event

642

graph [Schruben, 1983] is a structure, a network, of
these elements in a discrete event system that
facilitates the development of a correct simulation
model. Within this representation, the emphasis is
directly on system events; system entities are
represented implicitly as event attributes.

Events are depicted on the network as vertices
(nodes). Typically, events are programmcd as separate
routines or procedurcs in an event-scheduling
simulation. These event routines may transform state
variables, generate delay times, test event incidence
conditions, and perhaps schedule or cancel further
events. Each vertex is associated with a set of changcs
to state variables. These variables are used to describe
system entities. State variables can be thought of as
event conditioning, performance monitoring or both.

Relationships between events are represented
in an event graph as directed edges (arcs) between pairs
of vertices. Each edge is associated with scts of
logical and temporal expressions. Two types of edges
are distinguished. Scheduling edges appear as solid
arcs on the graph while cancelling edges are depicted as
dashed arcs. Basically, the edges define under what
conditions and after how long of a time delay an event
will schedule or cancel another event. There can be
multiple edges between any pair of vertices; the edges
can point in either direction or may simply point from
a vertex to itself.

In an event graph, it is also possible to
parameterize the event vertices. Event
parameterization is a modeling convenience and does
not augment the modeling capabilities of these graphs.
Parameters simply kecp the graphs from bcing
cluttered or possibly infinite [Yiicesan, 1990). This is
achieved through vertex parameters and edge attributes.
A vertex parameter list is a string of state variables
associated with a particular vertex. An edge attribute
list, on the other hand, is a string of expressions
associated with a particular edge. These lists are used
in scheduling or cancelling specific instances of
events. For example, in a simulation model depicting
the operation of a group of machines, a single
start_processing event together with parameters can be
used to model the start of processing on any of the
machines in the group. This practice is analogous 10
passing values to a subroutine using a list of
arguments in a high level programming language.

In summary, the construct,

t (0)

K
(Wt

is interpreted as follows: whenever event A occurs, if
condition (i) holds, event B is scheduled to occur in t
time units with the parameter siring, j, assuming the
value k.

The major advantage of this modeling
framework is that thc nctwork provides a complete and
consistent environment for model development. No
new icons or constructs need to be defined as the
modeling requircments change. In addition, this

Schruben and Yiicesan

framework offers practical guidance not only for model
specification, but also for model implementation. For
instance, the customary notion of an event routine
(see, for example Simscript [CACI, 1976]) in a
simulation program may correspond to a subgraph,
typically a set of vertices connected by edges with no
delays. Alternatively, these graphs can be
implemented directly using SIGMA [Schruben, 1991]
either to be executed in an interpretive fashion or to be
translated in high level programming languages such
as Pascal and C for compilation. A simple example is
presented next to illustrate the foregoing concepts.

Example: Single-Server Queueing Model

An event graph for a single-server queueing
system is developed. Suppose that customers arrive
into the system every ta time units and it takes ts time
units to serve each customer. The state variables used
in this model are defined as follows:

- Q represents the number of customers
waiting for service, and

- S denotes the status of the server with 0 =
busy and 1 = idle.

The edge conditions for the model are:

(i) (The serverisidle): S=1,

(i) (Customers are waiting to be served): Q >
0.

The event descriptions are presented in Table 1 while
the event graph is depicted in Figure 1.

Several variations of event graphs have
appeared in the literature. Pegden [1985], Hoover and
Perry [1989], and Law and Kelton [1991] use these
networks to construct event-scheduling discrete event
simulations. Schruben [1991] presents SIGMA, a
microcomputer implementation of event graphs aimed
at tcaching the principles of discrete event simulation.

Table 1; Event Descriptions
T D . .. S Cl

INT Initialization Q&0
Se1
ARV Customer Arrival Q«Q+1
BGN Begin Service S« 0
Qe<Q-1
END End of Service Se1

Extensions of event graph analysis have also
been introduced. Sargent [1988] presents new rules for
detection of simultaneously scheduled events and for
cvent reduction. He also models a flexible
manufacturing system with event graphs. In a more
recent paper, Som and Sargent [1989] define rules for
identifying simultaneously scheduled events and
assigning execution priorities. They also introduce a
conceplual algorithm for event reduction.

Simulation Graphs [Yiicesan and Schruben,

Complexity of Simulation Models: A Graph Theoretic Approach

1993] represent an extension in another dimension.
The references cited above mainly focus on issues
related to the implementation of an event-scheduling
simulation model. Schruben and Yiicesan, on the
other hand, focus mainly on model specification.
Their objective is to characterize these networks as a
formalism for developing discrete-event models.
Moreover, their treatment is not limited to the event-
scheduling world view, but targets discrcte event
dynamic systems in general. For example, a
transformation procedure, namely the geometric dual,
is shown to yield equivalent representations of
queueing models under both event-scheduling and
activity scanning world views [Schruben and Yiicesan,
1989]. It is indeed this change of focus that lead them
to rename these networks Simulation Graphs.

ig.1. Single-Server Queue
ta

)=t

()

&

ts

(ii)

Graph theory is used as the foundation of this
formalism. A directed graph is characterized as an
ordered triple (V(G), E(G), WG) consisting of a
nonempty set of vertices, V(G), a set E(G), disjoint
from V(G), of edges, and an incidence function, ¥G,
that associates with each edge of G a pair of (not
necessarily) distinct vertices of G [Bondy and Murty,
1976]. A network is then defined as a graph in which
additional data are stored in the vertices and edges
(Lawler, 1976). A Simulation Graph is then defined
as an ordered quadruple,

G = (V(G), E5(G), Ec(G), ¥G),
where V(G) is the set of event vertices, Eg(G) is the
set of scheduling edges, E¢(G) is the set of cancelling
edges, and W is the incidence function. The entitics
in this network are then defined as the following
ordered sets:

F =(fy : ve V(G) }, the set of state
transition functions associated with vertex v,

C = {Ce : e € Es(G) U Ec(G) }, the set of
edge conditions,

T = {te : e € Eg(G) }, the set of edge delay

643

times,

I' = {ye : e € Eg(G) U Ec(G) }, the set of
evenl execution priorities.
The key idea is that a Simulation Graph specifies the
relationships among the elements of the sets of
entities in a simulation model. Then, a Simulation
Graph Model is defined as:

§$=(¥,C,7,TI,G).
The first four sets in the above five-tuple define the
entities in a model. The role played by the Simulation
Graph, G, in the definition of a Simulation Graph
Model, 8, is analogous to the role of the incidence
function, ¥, in the definition of a directed graph: it
organizes these sets of entities into a meaningful
simulation model specification. That is, G specifies
the relationships between the elements in the sets F,
C,7,andT.
Example (Continued):

The entities in the network depicting a single-
server queueing system are defined as follows:
F = {fINT, fARV, fBGN, fEND} = { S« 1, Q05
Q—Q+1; S0, Q—Q-1; Se1}.
C = (CARV,BGN, CEND,BGN]} = {S=1, Q>0}.
T = (tARV,ARV, IBGN,END] = {ta, ts}.
I': to be assigned to ensure the correct execution of the
model.
G: see Figure 1.

3 MODEL COMPLEXITY:
INTUITIVE MEASURES

The most intuitive measure to predict model
complexity is probably the physical size of the
program that implements the model specification. In
fact, Overstreet [1982] reports that there is a strong
relationship between program size and development
costs. Hence, a useful complexity measure for
Simulation Graph Models is.

Ci1=1V@G)I
which denotes the cardinality of the vertex set of a
Simulation Graph, G. Note that this metric ignores
the potential complexity of an event since events are
defined to be “simple” or “atomic” in this paper as
they reflect potential modifications in the values of
state variables.

In addition, the physical size could be a
misleading criterion for judging the overall complexity
of a simulation model. Interaction among different
modules within the model can be a significant
contributor to model complexity. Therefore, a more
realistic measure of complexity should also incorporate
the impact of potential intermodular interaction. One
such mecasure is the edge-to-vertex ratio, which is
defined as:

C2=1EG)I/1V(G)I
where E(G) = Eg(G) U E¢(G). Simulation Graphs are
connccted directed graphs. Hence, the minimum edge-
to-vertex ratio is (n-1)/n, where n is the cardinality of
the vertex set. As Overstreet [1982] points out, “this
represents the simplest possible case, one with no
branching. Any execution must consist of a fixed

SOME

644 Schruben and Yiicesan

sequence of actions, each of which occurs exactly once.

The more potential branching after each action, the
more complex the behavior of the model.” This
assertion is consistent with McCabe’s [1976]
observation that complexity depends only on the
decision structure of a program while the addition or
deletion of functional statcments lcaves it unchanged.

A more rcalistic measure of complexity may
be defined as the sum of cach module’s complexity and
the intermodular interaction. In the context of
Simulation Graphs, if we lct C(v) denote the
complexity of vertex v and I(v,w) denote some
measure of interaction between (not necessarily
distinct) vertices v and w, then the complexity of the
model is given by

C3= D Cw+

ve V(G) v,we V(G)
Even if the form of the above measure is acceptable,
there are no clear choices for C(v) and I(v,w). One
approach is to let C(v) represent the number of distinct
state changes associated with vertex v. Allernatively,
C(v) can be defined as the number of distinct state
variables associated with the state transition function,
fy. We will also let I(v,w) represent the number of
edges directed from vertex v to vertex w as a measure
of interaction. In other words, the second term in C3
is simply equal to the cardinality of the edge sct of the
Simulation Graph.

The intuitive measures of complexity
discussed thus far can be gencrally referred to as space
complexity. The latter is dcfined as the space needed
by an algorithm (in our case, model description) as a
function of the sizc of the problem [Aho ct al., 1974).
One can then associate diffcrent cost criteria to quantify
model complexity. For example, a uniform cost
criterion would assume that each enlity rcquircs one
unit of space whereas a logarithmic cost criterion
would assume that the cost of storing each entity is
proportional to its length.

I(v,w)

4 MODEL COMPLEXITY: CYCLOMATIC
NUMBER

4.1 Motivation and
Definitions

The complexity measure discussed here is adapted {rom
[McCabe, 1976] who uses it to determine the
complexity of computer programs. As will be shown
shortly, the scheme presented by McCabe applics to
Simulation Graphs quite naturally with almost no
modifications.

The complexity measure reflects the number
of control paths through a program. Since a program
with a backward branch potentially has an infinite
number of paths, the measure devcloped here is defined
in terms of the basic paths.

Preliminary

Definition: A sct of paths is called basic if appropriate
linear combinations of these paths gencrate cvery
possible path through the program. In addition, paths
are called linearly independent if they cannot be
expressed as linear combinations of other paths.

The following mathematical preliminaries are
needed in subsequent derivations. The details can be
found in any book on Graph Theory (see, for instance,
[Berge, 1973)).

Definition: The cyclomatic number of a graph G with
n vertices, ¢ edges, and p connected components is
dcfined as

nG)=e-n+p.

Result: In a strongly connected graph, the cyclomatic
number is equal to the maximum number of linearly
independent cycles.

This result has implications beyond the
application in determining model complexity. In
electrical network theory, for instance, n(G), the
maximum number of linearly independent cycles,
corresponds to the largest number of independent
circular currents that can flow in the network.

In determining the complexity of a computer
program, the above result is used along with a
program control graph. This directed graph with
unique entry and exit vertices is associated with a
program in the following manner: each vertex on the
graph corresponds to a block of code in the program
where control flow is sequential. The edges, on the
other hand, correspond to branches taken in the
program. It is assumed that each vertex can be reached
from the entry vertex, and each vertex can reach the
cxil verlex.

Suppose that Figure 2 depicts a program
control graph with entry vertex a and exit vertex f. To
apply the above result, one adds an extra edge from the
exit vertex to the entry vertex (edge 10). The control
graph then becomes strongly connected and the
cyclomatic number is equal to 10-6+1=5, which, in
turn, is equal to the maximum number of linearly
independent cycles. One can then choose a basis B for
the set of all cycles, and any path through the control
graph can be expressed as a linear combination of
cycles from B.

To illustrate, let B be the following basis:
B:(abefa),(beb),{abea),(acfa),(adcfa).

To each member of the basis B, we associate a vector
as follows:

vector \ edges

(abefa)
(beb)
(abca)
(acfa)
(adcfa)

Then the path (abe abebe be f) can be expressed as
a vector addition of (abea)+2(beb)+ (abefa).
In fact, any path through the graph can be expressed as
a lincar combination of the members of the basis B.

Complexity of Simulation Models: A Graph Theoretic Approach

Fig. 2

ogram Control Gra
10

Note that the sequence of an arbitrary number
of vertices always has unit cyclomatic complexity.
Some properties are listed below:

1.1(G) 2 1.

2. 1n(G) is the maximum number of linearly
independent paths in G; it is the size of a basis set.

3. Inserting or deleting functional statements
to G does not affect n(G).

4. G has only one path if and only if n(G)=1.

5. Inserting a new edge in G increases 1(G)
by unity.

6. 1(G) depends only on the decision structure
of G.

7. n(U; Gj) = Zm(Gy).

For connected planar graphs, the computation of the
cyclomatic number is simplified. Let G be a planar
graph with n vertices, e edges, and f faces. Then, by
Euler’s formula, we have n - ¢ + f = 2. Note that
control graphs are strongly connected; then p = 1.
That is, n(G) = e -n + 1 = f - 1. Hence, the
complexity of a program with a planar control graph is
equal to the number of faccs minus one.

4.2 Simulation Graph Complexity
Simulation Graphs are analogous to program control
graphs. On a Simulation Graph, each vertex is
associated with a set of changes to state variables,
which corresponds to a block of code in the program
where the flow is sequential. The edges in a
Simulation Graph basically determine under what
conditions and after how long of a time dclay one
event will schedule or cancel another one.

Without loss of generality, we can assume
that Simulation Graphs have unique entry and exit
vertices. An initialization vertex, where the initial
conditions of the model are established, is the entry
vertex. The exit vertex, on the other hand, is a special
vertex on the Simulation Graph, which terminates the
execution of the simulation run upon the satisfaction
of the termination conditions.

Simulation Graphs are connected directed

graphs. Then, by applying the results of the previous
subsection, we define the cyclomatic complexity of a
Simulation Graph Model as (G) = e - n + p, where p
= 1. Equivalently, n(G) = f - 1, where f is the number
of faces of G.

It is then possible to measure the complexity
of a simulation model by computing the number of
linearly independent paths on the associated
Simulation Graph and use the cyclomatic number as
the basis for testing for model verification and
classification for selecting a reasonable test bed of
simulations.

5 EXAMPLES

The complexity measures discussed in §§3 and 4 are
illustrated on a series of examples. These examples
show that the complexity measures, Cg, C2, C3, and
n(G), are indeed reasonable reflections of the
requirements imposed by models on computational
resources.

All of the tested models are taken from
Schruben [1991]. The first model is a single-server
qucue described in our example and depicted in Figure
1. The second model captures the operations of a
semi-automatic machine with breakdowns (ibid, p.60-
62). The third model is a job shop (ibid, p.99-107);
the fourth represents a flow shop (ibid, p.86); the fifth
models a simple assembly process (ibid, p.85). These
models are implemented and executed in SIGMA for a
single run of 1000 service completions on a personal
computer with a 486 processor and 33MHz clock
speed. The run times are also depicted in Table 2
together with the proposed complexity measures.

One interesting point to note is that the
complexity of individual events, measured as the
number of modified state variables within that event,
plays a principal role in determining the execution
time of a single run, while the branching structure,
measured by the cyclomatic complexity of the graph,
has secondary influence. This contradicts both
Overstreet’s [1982] and McCabe’s [1976] assertions

645

646

that complexity depends only on the decision structure
(branching) of a program and not on the number of
functional statements.

Model C1 C2

C3 n(@) R.Time
I 4 5/4 11 3 12.4 sec
I 7 11/7 19 6 23.4 sec
m 9 12/9 49 5 256 sec
v 5 10/5 23 7 34.4 sec
\"/ 6 10/6 31 6 65.4 sec

6 RUN TIME COMPLEXITY

During the execution of simulation modcls, a
considerable portion of the execution time is spent on
maintaining the future events list. Comfort [1981]
reports that approximatcly 40% of all the instructions
executed during a simulation run is devoted to
managing the events list. Henriksen [1983] asserts
that, in models of telecommunication systems, total
run times can easily differ by as much as 5:1
depending on the choice of the events list algorithm.
Special attention has been given to designing efficient
list management techniques (see, for example,
[McCommack and Sargent, 1981]).

Fox [1987c] presents an efficient alternative
for systems that can be modeled as a continuous-time
Markov chain. In this setting, instead of using an
events list, he improves the execution speed through
direct generation of the state transitions by producing
rows of the transition matrix as they are needed.

It is therefore natural to use the size of the
events list maintained during the execution of a
simulation model as a surrogate measure for the run
time complexity of that model. In this section, we
present a technique based on the Simulation Graphs for
determining both the maximum and minimum size of
the events list. The technique is based on constructing
an event tree and examining its lcaves. Our objective
is different from prcvious events list analysis
procedures such as the SIMULA HOLD model (sce
[Devroye, 1986; p.737] for a description). We are
simply trying to establish upper and lower limits on
the size of the events list. This type of information
can be used to assess the memory requirements for
executing a simulation. For example, appropriate
dimensionality can be determined for NSET and QSET
as well as the LIMITS statement in SLAM II
[Pritsker, 1986] using this information. We will
describe the method in more dctail next.

We are assuming again, without loss of
generality, that the Simulation Graph, G, has an
initialization vertex (entry vertex of Section 4.1), I,
where the initial conditions of the model are
established. We are also assuming that no vertex or
edge attributes are used in the model.

The event tree (ET) is then constructed as follows:
The root of the tree is the initialization vertex, I.
Next, suppose we are at vertex X. Then, forall Y €
V(G) such that (X, Y) € Eg(G), add vertex Y 1o the
tree along with a dirccted edge from X to Y. If (X, Y)
is a conditional edge on the Simulation Graph, then

Schruben and Yiicesan

denote this condition on the event tree as well.
Example (continued):

The Event Tree associated with the
Simulation Graph of Figure 1, which is a single-server
queueing model, is depicted below (where vertex labels
have been further abbreviated):

40
>
| &>——

As illustrated by this small example, an Event Tree is
a directed tree rooted at the initialization vertex. The
vertices on the tree represent events of the Simulation
Graph Model, and edges represent how one event
schedules further events. Moreover, the possible
explosion of the tree is avoided through the application
of the following Fathoming Rule: During the
construction of the Event Tree, if an existing vertex is
reproduced on the path from the root, the duplicate
vertex becomes a terminal vertex. Since the new
vertex is identical to its previous copy, all of the
events that can be scheduled from it have already been
added to the tree by the earlier identical vertex.

Also note that, since our major interest is in
determining the maximum possible size of an events
list, cancelling edges are ignored during the
construction of the Event Tree. This is because
cancelling edges may reduce the size of the events list
by deleting some of the event notices, rather than
increasing its size by inserting new ones into the
events list as scheduling edges do.

We also define an Unconditional Event Tree
(UET) which contains only those events that are
scheduled unconditionally. UET is constructed as
follows: The root of the tree is the initialization
vertex, I. Next, suppose we are at vertex X. Then, for
all Y € V(G) such that (i) (X,Y) € Eg(G) and (ii)
Cx,y =9, add vertex Y to the tree along with a
directed edge from X to Y.

Complexity of Simulation Models: A Graph Theoretic Approach

Example (continued):
The Unconditional Event Tree associated with
the single-server queueing model is given by:

(D))

' 4

Note that UET can also be obtained from ET by
starting at the root of ET and simply dcleting all
conditional edges along with the subtree onto which
the conditional edge is incident. Also note that the
same fathoming rule still applies. We next present
our surrogate measure of run time complexity.

Lemma: In a Simulation Graph, if there exists a
directed cycle with the number of out edges greater
than or equal to the number of in edges, then the
events list can grow without bound during the
execution of the model, provided that the sum of the
edge delay times around the dirccted cycle is strictly
less than the delay time on any of the outgoing edges.

Proof: Consider the following directed cycle in a
Simulation Graph:

A hand trace through time of the contents of the events
list starting with the exccution of event A shows that
the events list will grow infinitely large. []

Proposition 1: In the absence of the conditions cited
in the above lemma, the maximum size of the events
list at any instant during the execution of a Simulation
Graph Model is equal to the number of lcaves of the
associated Event Tree.

Proposition 2: In the absence of the conditions cited
in the above lemma, the minimum size of the events
list at any instant during the execution of a Simulation
Graph Model is equal to the number of leaves of the
associated Unconditional Event Tree.

Proofs of these propositions are presented in
Yiicesan [1989). The interval defined by the minimum
and the maximum size of the events list will be
referred to as the complexity interval of a Simulation
Graph Model. Note that all of the modcls considered
in §5 satisfy the conditions of the above propositions.
Therefore, the events lists will not grow without
bound during the execution of their computer
implementations.

The complexity interval can be uscd as a
guide in selecting onc of a group of equivalent

simulation models. Under the reasonable assumption
that smaller events lists lead to faster model
executions, the model whose complexity interval is
uniformly dominated by that of all other equivalent
models should be selected for implementation on a
computer.

7 CONCLUDING COMMENTS

Complexity of a simulation model is defined as a
measure that reflects the requirements imposed by
models on computational resources. All of the
measures introduced in this paper are related to the
structural properties of models, emphasizing mainly
implementation and maintenance efforts. Only one
surrogate measure for run time complexity is
presented. This is because computational complexity
is meaningful only within the context of a specific
problem. For example, Fox [1987a,b; 1988a,b]
studies finite-horizon, continuous-time Markov chains
and compares computational complexities of several
methods, including simulation, to estimate such
quantities as expected terminal reward, expected
cumulative reward, hitting time distribution, and
expected reward up to absorption. His complexity
criterion is the order of magnitude of the work required
to satisfy a given root-mean-square-error tolerance,
while assuming that each arithmetic operation and
comparison is done without round-off error in O(1)
time. The overall simulation effort is then the total
number of arithmetic operations and comparisons over
all runs. Similarly, computational complexities of
algorithms for estimating gradients via simulation are
also discussed in Fox and Glynn [1988], Heidelberger
ct al [1988], and Reiman and Weiss [1989].

One should also note that computational
complexity is not the sole, or necessarily even the
most important, criterion for evaluating algorithms
[Aho et al.,, 1983]). A complicated but efficient
algorithm may not always be desirable because a
person other than the writer may have to maintain the
program later. In simulation modeling, therefore, a
trade-off should always be made between a model that
is easy to understand, code and debug, and one that
makes efficient use of the available resources.
Moreover, this assessment should be a dynamic
process with different priorities at different stages of a
simulation study. For instance, during the verification
phase, a model that is easy to code and debug is
desirable whereas, during the experimentation phase, a
fast implementation is preferred.

We emphasize once again that measures of
complexity for simulation models would find ready
utility in supporting the work of both practitioners and
researchers. For instance, a reasonable measure of
complexity is useful in a priori evaluation of
proposcd simulation studies that must be completed
within a specified budget. It can also be useful in
classifying simulation models in order to obtain a
thorough test bed of models to be used in simulation
mcthodology research.

REFERENCES
Aho, A.V., J.E. Hopcroft, and J.D. Ullman (1974)

647

648 Schruben and Yiicesan

The Design and Analysis of Computer Algorithms.
Addison-Wesley. Reading, MA.

Aho, A.V,, J.E. Hopcroft, and J.D. Ullman (1983)
Data Structures and Algorithms. Addison-Wesley.
Reading, MA.

Berge, C. (1973) Graphs and Hypergraphs. North-
Holland. Amsterdam, The Netherlands

Bondy, J.A. and U.S.R. Murty (1976) Graph Theory
with Applications. North-Holland. New York, NY.

CACI - Consolidated Analysis Centers, Inc. (1976)
Simscript 11.5 Reference Handbook. Los Angeles,
CA.

Comfort, J.C. (1981) The Simulation of a
Microprocessor-Based Event Set Processor.
Proceedings of the Fourteenth Annual Simulation
Symposium. Tampa, FL. 17-21

Devroye, L. (1986) Non-Uniform Random Variate
Generation. Springer-Verlag. New York, NY.

Evans, G.W., G.F. Wallace, and G.L. Sutherland
(1967) Simulation Using Digital Computers.
Prentice Hall. Englewood Cliffs, NJ.

Fox, B.L. (1987a) Gradient Computation for
Transient Markov Chains. Technical Report #747.
School of OR&IE. Cornell University. Ithaca, NY.

Fox, B.L. (1978b) Generating Markov Chain
Transitions Efficiently. Technical Report #758.
School of OR&IE. Cornell University. Ithaca, NY.

Fox, B.L. (1987c) Bealing Future-Event Schedules.
Technical Report #761School of OR&IE. Cornell
University. Ithaca, NY.

Fox, B.L. (1988a) Numerical Mcthods for Transient
Markov Chains. Technical Report #810. School of
OR&IE. Cornell University. Ithaca, NY.

Fox, B.L. (1988b) Complexity of Gradient
Estimation for Transient Markov Chains. Technical
Report #753. School of OR&IE. Cornell University.
Ithaca, NY.

Fox, B.L. and P.W. Glynn (1988) Replication
Schemes for Limiting Expcctations. Technical Report
#778. School of OR&IE. Cornell University.
Ithaca, NY.

Heidelberger, P., X.R. Cao, M.A. Zazanis, and R.
Suri (1988) Convergence Properties of Infinitesimal
Perturbation Analysis Estimates. Management
Science. Vol.34.11, 1281-1302

Henriksen, J.O. (1983) Event List Management - A
Tutorial. Proceedings of the Winter Simulation
Conference (Roberts, Banks, and Schmeiser, eds.),

543-552

Hoover, S.V. and R.F. Perry (1989) Simulation: A
Problem Solving Approach. Addison-Wesley.
Reading, MA.

Law, A.M. and W.D. Kelton (1991) Simulation
Modeling and Analysis. 2nd Edition. McGraw Hill.
New York, NY.

Lawler, E. (1976) Combinatorial Optimization:
Networks and Matroids. Holt, Rinehart, and Winston.
New York, NY.

McCabe, TJ. (1976) A Complexity Measure. /EEE
Transactions on Software Engineering. Vol. SE-2.4,
308-320

McCormack, W.M. and R.G. Sargent (1981)
Analysis of Future Event Set Algorithms for Discrete
Event Simulation. Comm. ACM. Vol.24.12, 801-
812

Overstreet, C.M. (1982) Model Specification and
Analysis for Discrete Event Simulations.
Unpublished PhD Dissertation. Department of
Computer Science. Virginia Tech. Blacksburg, VA.

Pegden, C.D. (1985) [Introduction to SIMAN.
Systems Modcling Corp. State College, PA.

Pritsker, A.A.B. (1986) Introduction to Simulation
and SLAM II. 3rd Edition. John Wiley & Sons.
New York, NY.

Reiman, M.I. and A. Weiss (1989) Sensitivity
Analysis for Simulations via Likelihood Ratios.
Operations Research. Vol.37.5, 830-844

Sargent, R.G. (1988) Event Graph Modeling for
Simulation with an Application to Flexible

Manufacturing Systems. Management Science.
Vol.34.10, 1231-1251

Schruben, L. (1983) Simulation Modeling with
Event Graphs. Comm. ACM. Vol.26.11, 957-963

Schruben, L. (1991) Sigma: A Graphical
Simulation System. The Scientific Press. San
Fransisco, CA.

Schruben, L. and E. Yiicesan (1987) On the
Gencrality of Simulation Graphs. Technical Report
#773. School of OR&IE. Cornell University.
Ithaca, NY.

Schruben, L. and E. Yiicesan (1989) Simulation
Graph Duality: A World View Transformation for
Simple Queueing Models. Proceedings of the Winter
Simulation Conference (McNair, Musselman, and
Heidelberger, eds.), 738-745

Som, T.K. and R.G. Sargent (1989) A Formal

Complexity of Simulation Models: A Graph Theoretic Approach

Development of Event Graphs as an Aid to Structurcd
and Efficient Simulation Programs. ORSA Journal on
Computing. Vol.1.2, 107-125

Yiicesan, E. (1989) Simulation Graphs for Design
and Analysis of Discrete Event Simulation Modcls.
Unpublished PhD Disscrtation. School of OR&IE,
Cornell University. Ithaca, NY.

Yiicesan, E. (1990) Analysis of Markov Chains
Using Simulation Graph Models. Proceedings of the

Winter Simulation Conference (Balci, Sadowski, and
Nance, eds.), 468-471

Yiicesan E. and L. Schruben (1993) “Modcling
Paradigms for Discrete Event Simulation.”
Forthcoming in Operations Research Letters.

Zeigler, B.P. (1976) Theory of Modeling and
Simulation. John Wiley. New York, NY.

AUTHOR BIOGRAPHIES

LEE SCHRUBEN is a Professor in the School of
Operations Research and Industrial Engineering at
Cornell University. His research interests are in the
design and analysis of large scale simulation
experiments. He is a principal developer of SIGMA
simulation system. Three of his papers have reccived
outstanding publications awards from the TIMS
College on Simulation and the Chemical Division of
ASCQ.

ENVER YUCESAN is an Associatc Profcssor of
Operations Rescarch at the European Institute of
Business Administration (INSEAD) in Fontaincblcau,
France. He has a BSIE degree rom Purduc University,
and MS and PhD decgrees in OR from Cornell
University.

649

