Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

TOOLS FOR FUNCTIONAL SIMULATION

Adrienne Bloss
Michael Keenan
Kimberly Johnson

Department of Computer Science
Roanoke College
Salem, Virginia 24153, U.S.A.

ABSTRACT

Functional languages are useful for some types of sim-
ulation programming because they offer a clean, high-
level programming style with powerful features such
as higher-order functions and lazy evaluation. How-
ever, since functional languages are not specialized
for simulation, they lack the powerful tools offered
in simulation languages. In this paper we propose
a set of tools to support queueing simulation in the
functional language Haskell. The tools are applied to
three examples. Key words and phrases: Model-
ing methodology, functional programming, queueing
problems.

1 INTRODUCTION

Simulation models are usually programmed in tradi-
tional imperative languages such as C, Pascal, and
Fortran, or in special-purpose simulation languages
such as GPSS, SLAM, SIMAN, and SIMSCRIPT.
Traditional languages are not particularly well suited
to simulation programming; they are based on the
step-by-step computational model of the von Neu-
mann architecture, and produce low-level and rather
tedious simulation programs. Simulation languages
produce high-level code, but are not always avail-
able or appropriate for a given problem. In a pre-
vious work (Bloss 1990), the first author speculated
that functional languages such as LML, Miranda, and
Haskell may be well suited to simulation program-
ming, and outlined a functional approach to simula-
tion. In this paper we use the functional language
Haskell to develop high-level tools based on streams
and stream transformers for the simulation of queue-
ing systems. We apply these tools to three sample
problems, and discuss the results with respect to ele-
gance and efficiency.

The testbed for this work is the programming lan-
guage Haskell. Haskell is a lazy, purely functional

632

language that captures most of the major features of
modern functional languages. Haskell is still under
development; the programs in this paper were writ-
ten in version 1.2 as described in the most recent re-
port (Hudak et al. 1992), and compiled using version
0.999.4 of hbe, the Chalmers Haskell compiler.

At the writing of Bloss (1990), no working Haskell
system was available. Extensions to that work and
a rudimentary implementation appeared later (Engel
1991), as did comparisons of high-level and low-level
functional approaches (Bloss and Keenan 1992). At
the latter time, we concluded that the high-level ap-
proach was more elegant and at least as efficient as
the low-level approach, which led us to generalize the
high-level approach through simulation tools.

The next section provides a reader’s introduction
to Haskell. Section 3 presents the tools we have de-
veloped for modeling queueing problems in Haskell,
and Section 4 shows how these tools can be applied
to three sample problems. Section 5 discusses the is-
sues of efficiency and elegance, and Section 6 presents
directions for future work.

2 AN OVERVIEW OF HASKELL

A Haskell program is a collection of mutually re-
cursive functions, and the meaning of a program
is the value of its top-level identifier main. Func-
tion application is denoted by juxtaposition, so what
would be written as £(x,y) in most imperative lan-
guages is written £ x y in Haskell. Anonymous func-
tions may be written using lambda notation, e.g.,
\ x -> x =% xis the function that returns the
square of its argument. Unlike in LISP, parentheses
are used only for grouping, and are often used redun-
dantly for clarity. Consider the following definition of
the factorial function:

factorial :: Int -> Int -> Int
factorial n acc = if (n<=1)
then acc



Tools for Functional Simulation 633

else factorial (n-1) (n*acc)

The first line gives the type of factorial: it takes
two integers and returns an integer. (All functions
in Haskell are curried, that is, they take their argu-
ments one at a time.) Haskell is statically typed, and
although type declarations are not required (the com-
piler can infer them), we will generally include them.

Many interesting and important features of Haskell
are not discussed in this brief introduction. In
particular, modules, polymorphism and type classes
greatly influence the programming style encouraged
in Haskell, but are omitted here. The interested
reader should refer to the Haskell Report (Hudak et
al. 1992) for more information. In the current dis-
cussion, we will concentrate on imparting a reading
knowledge of the Haskell features that are important
in later sections, including lists, pattern-matching,
and lazy evaluation. The reader may find it help-
ful to skim this section on first reading, and refer to
it as necessary when reading the rest of the paper.

2.1 Lists

The list is the basic data structure in Haskell. Lists
are delimited by square brackets, and list elements are
separated by commas, e.g., [1,2,3]. [ ] represents
the empty list. The polymorphic infix list constructor
: has type a -> [a] -> [a] for any data type a,
where [a] signifies the type “list of a”. Function
head returns the first element of a list, and function
tail returns the list containing everything but the
first element. Thus for an element e of type a and a
list 1 of type [al, head(e:1) = e and tail(e:1) =
1

2.2 Pattern Matching

Pattern matching is a syntactic sugaring that en-
hances readability of function definitions. A func-
tion’s formal parameters may specify the structure of
the actuals, and a function definition “matches” an
invocation only if the structure of the actuals matches
that of the formals. Consider the following definition
of the standard map function, which applies a function
to each element of a list:

map :: (a -> b) -> [a] -> [b]
map £ 1 = if 1==[ ]
then [ ]
else (f (head 1)):
(map f (tail 1))

Now consider the same definition, written using pat-
tern matching:

map £f [ ] =101
map f (x:x8) = (f x):(map f xs)

This shows how : can be used to destructure, as
well as construct, lists. If the pattern a:b is bound
to a list 1, a is bound to head 1 and b is bound to
tail 1. (An identifier representing the list can be
specified with the symbol @; e.g., 10(x:x8) is the list
1 whose head is x and whose tail is x8.) Note that
map is polymorphic: for any types a and b, it takes a
function of type a-> b and a list of elements of type
a and returns a list of elements of type b.

When a function has multiple definitions because
of pattern-matching, they are tried in order from top
to bottom, and the first one to match is executed.
Argument matching is attempted from left to right
until all arguments have matched or one fails. As
another example, factorial could be defined using
pattern matching as follows:

factorial 0 acc
factorial 1 acc acc
factorial n acc = factorial (n-1) (n*acc)

acc

1

Function application has higher precedence than :
or arithmetic operators such as * and —. Thus the
parentheses in both definitions of map are redundant,
but the parentheses in factorial are necessary.

2.3 Lazy Evaluation

Like most modern functional languages, Haskell uses
a lazy evaluation strategy. This means that an ex-
pression is not evaluated until its value is demanded
in some greater context. One of the implications
of this evaluation strategy is that infinite lists, or
streams, can be defined and manipulated. Consider
the examples below:

ones :: [Int]
ones = 1 : ones
--- the infinite list of ones

nums_from :: Int -> [Int]

nums_from n = n : (nums_from (n+1))
-- the infinite list of integers
-- starting at n

A stream can be manipulated like any list — it can
be passed to or returned from a function, and can
be destructured into a head and tail. However, if a
function such as map tries to use every head or every
tail of an infinite list, it will compute forever. Streams
are often used in programs in which the number of
elements that will finally be required is not relevant to
the form of the solution. An outer call usually takes



634 Bloss, Keenan, and Johnson

a finite prefix of an infinite list in order to produce a
finite result. In the program below, the use of take in
tensquares ensures that only a ten-element list will
be produced:

nums: : Int
nums = nums_from 1

take :: Int -> [Int] -> [Int]

take n [] = [

take 0 1 = [

take n (x:xs) x : (take (n-1) xs)

square :: Int -> Int
square x = X * Xx

tensquares :: [Int]
tensquares = take 10 (map square nums)

3 SIMULATION TOOLS IN HASKELL

What tools are useful in writing queueing simula-
tions? We need some way to model queues and
servers, and, of course, random numbers. We also
need some way to collect statistics. We will discuss
each of these components individually in the next sec-
tions.

3.1 Queues

Queues are modeled naturally by Haskell’s infinite
lists. Input queues and output queues often have dif-
ferent structures, so we have defined them separately.
For our examples, we will assume that an input queue
is a list of job arrival times, and an output queue is
a list of time pairs representing job service times and
job departure times. The input queue for one server
may be derived from the output queue from other
servers, and the output queue from one server may be
divided to create input queues for a number of other
servers. Thus our basic tools must include functions
to merge and divide queues. The functions to merge
input queues are shown below:

mergeQs :: InQ -> InQ -> InQ

mergeQs (] q = q

mergeQs q [1 = q

mergeQs q1Q(ti:restl) q20(t2:rest2)
| t1 < t2 = t1 : mergeQs restl q2
| otherwise = t2 : mergeQs ql rest2

mergeall :: [InQ] -> InQ
mergeall [q] = q
mergeall (q:qs) = merge q (mergeall gs)

In mergeQs, we assume that each queue element is
a time, and that we want to produce a time-ordered
merge of the queues. This could be trivially extended
to operate on queues of arbitrary structure, assuming
that some fixed place in the structure contains the
time used for the merge. Function mergeall simply
uses mergeQs to merge all of the queues from a list
into a single time-ordered queue.

The dividing function, divideQ, takes an output
queue and returns a new input queue containing a
specified percentage of the jobs from the original
queue. The code is shown below:

divideQ :: OutQ -> Float -> Float ->
[Float] -> InQ
divideQ ((t1,t2):ts) bot top (r:rs)
| (r >= bot) && (r < top) =
t2 : divideQ ts bot top rs
| otherwise = divideQ ts bot top rs

The first parameter is the queue to be divided. Since
dividing is most often done with output queues, we
assume that this is a queue of pairs. (It would be triv-
ial to define divideInQ and divideOutQ if needed.)
Parameters bot and top define the percentage of jobs
that will be taken from the queue, and r:rs rep-
resents the list of random numbers that determines
whether the current job is taken. For example, sup-
pose q1 is to be divided into q2 and q3, with 20%
of the jobs going to q2 and 80% of the jobs going
to q3. Then q2 would be defined by calling divideQ
with parameters q1, 0.0, 0.2, and a list of 0/1 ran-
dom numbers, and q3 would be defined by calling
divideQ with parameters q1, 0.2, 0.8, and the same
list of 0/1 random numbers.

3.2 Servers

Servers take input queues and produce output queues,
and thus are naturally modelled by functions of type
InQ -> OutQ. The user could write a function to rep-
resent each server, but since most servers do funda-
mentally the same thing, this seems redundant. We
can use Haskell’s higher-order functions to define a
server creating function makeserver, which takes a
random number seed, the mean service time (we as-
sume exponential distributions, but this would be
trivial to generalize), and a sequence of externally-
determined time intervals during which the server is
available. These intervals represent finite “windows”
during which jobs may be served. For example, an
automatic teller machine might have scheduled down
time several times a day for balancing; customers who
arrive during a down time must wait until the ma-
chine comes back up, that is, until a “service window”
begins.



Tools for Functional Simulation 635

Given these parameters, function makeserver re-
turns a server that takes an input queue and returns
an output queue, servicing each job according to the
mean and windows indicated. A Haskell definition for
makeserver is given in Figure 1. As a tool it should
require little modification for most applications, but
it is comforting nonetheless to see that it is relatively
short and straightforward.

The real work here is done by really server. It
takes a list of random numbers, the next time at
which the server is available, an input queue, and
a list of time intervals during which the server is
available from external forces. If the arrival time
of the next job falls during an interval, the job is
processed and put on the output queue; otherwise,
really_server is called recursively with the appro-
priate parameters to let the job be served during the
next window.

3.3 Random Numbers

Most discrete-event simulations are based on ran-
dom numbers. In imperative languages it is easy
to write a function rand with a modifiable seed pa-
rameter that returns a new pseudo-random number
each time it is called. Such a function relies on side-
effects, and therefore cannot be written in a func-
tional language. However, random numbers may be
modelled functionally using streams. First, we de-
fine a stream of uniformly distributed pseudo-random
numbers. We use a multiplicative congruential ran-
dom number generator, in which the i** random num-
ber depends on the (i — 1)*! number recursively, i.e.,
7 = a*x 1;_; mod m for some values of a and m.
Given an initial integer value seed, a stream of ran-
dom numbers between 0 and 1 may be defined as
follows:

rand :: Int -> [Float]
rand seed = ((fromIntegral seed)/m)
(rand ((a * seed) ’mod’ m))

(The fromIntegral is needed to prepare the integer
value seed for real di-
vision.) Thus rand seed= [seed/m, (a*seed mod
m)/m, (a*(a*seed mod m) mod m)/m,

Given this stream of 0/1 random numbers, a stream
of exponentially distributed numbers with mean mu is
easily defined by converting each number in the usual
way:

expon :: [Float] -> Float -> [Float]
expon randlist mu =
map (\r -> -(log r) / mu) randlist

Of course, the elements of this list may be incremen-
tally summed to give the arrival time of each item:

cumul_expon :: Float -> [Float]
cumul_expon mu = accumulate 0
(expon randlist mu)

accumulate :: Float -> [Float] -> [Float]
accumulate x 1 =

let y = x + (head 1)

in y : (accumulate y (tail 1))

Clearly, other probability distributions could be mod-
eled as well.

3.4 Statistic Collection

Statistic collection is straightforward in traditional
simulation: when something of interest happens, the
event is recorded in the appropriate global variables.
In functional simulation this approach is not possible,
as modifiable global variables cannot exist. Instead,
since statistics are the desired output of a simulation,
the statistics collector must drive the simulation. Re-
call that under lazy evaluation, an expression is eval-
uated only when its value is demanded in computing
the final result of the program. Thus in our simu-
lations, queues will be generated only to the extent
that their elements are required for statistics collec-
tion. Of course, many different kinds of statistics
may be collected, so it is difficult to make the col-
lection fully general. However, the changes from one
sort of statistic to another are slight. Most statis-
tics are derived from the servers’ output queues; if
more information is carried along with each job, more
statistics can be computed. Consider the definition of
compute_stats below (the return type Dialogue sim-
ply indicates that compute_stats prints its result):

[OutQ] -> [Stat] ->
Int -> Dialogue
compute_stats qs s n
| allEmpty qs = appendChan stdout
(shows (n,
(map (\stat -> stat)) s))
"\n")

abort done

compute_stats ::

| otherwise =
let heads = map maybe_head gs
in  compute_stats
(map maybe_tail qs)
(upd_stats heads oldstats)
(n + 1)

This function is very general in that it simply pro-
cesses each job from each queue it is given according
to upd_stats, which determines exactly which stats
are computed. Upd_stats is straightforward; it could
be written specifically for a given simulation problem,



636

makeserver ::
makeserver mu seed patt =

Bloss, Keenan, and Johnson

Float -> Int -> [(Time,Time)] -> InQ -> OutQ

let really_server times@(t:ts) avail jobs@(j:js) windows@((b,e):rest)
| avail < b = really_server times b jobs windows
| j < e_time = let served = max j avail

done

in (served, done)

served + t

really_server ts done j& windows

| otherwise = really_server times avail jobs rest
in \q -> really_server (expon (rand0i1 seed) mu) 0 q windows

Figure 1: Haskell code for makeserver

or a general version could offer a variety of possible
statistics, and the programmer would simply select
those that were desired. For example, to compute
the utilization for each server, we use upd_stats to
sum the durations of that server’s service times:

Time -> Time -> QutQ ->
[Stat] -> [Stat]
upd_stats begin end [1 (] = []
upd_stats begin end ((t1,t2):t2) (s:ss) =
(s + ((min t2 end) - (max begin tl)))
(upd_stats t2 ss)

upd_stats ::

A slight modification would also be required in
compute_stats so that it divided each statistic by
total system time before printing.

4 APPLICATIONS

The tools described in the previous section can be as-
sessed by applying them to real simulation problems.
In this section we present a detailed solution to one
problem using these tools, and outline their use in the
solutions to two additional problems.

4.1 Computer System Simulation
4.1.1 Description of Problem

The first problem is taken from Balci (1988), and
is the same problem that was used in two previous
works (Bloss 1990, Bloss and Keenan 1992). Briefly,
it describes the behavior of a multiple virtual storage
batch computer system with two CPUs and a printer,
and with jobs entering from four different sources.
The problem is described in detail below.

A batch computer system operates with two cen-
tral processing units (CPUs). Jobs submitted to the
system come from four sources: (1) users dialed in by
using a modem with 300 baud rate, (2) users dialed
in by using a modem with 1200 baud rate, (3) users
dialed in by using a modem with 2400 baud rate, and

(4) users connected to the local area network (LAN)
with 9600 baud rate. Assume that the interarrival
times of batch programs to the system with respect
to each user type are determined to have an exponen-
tial probability distribution with means of 3200, 640,
1600, and 266.67 for the 300, 1200, 2400, and 9600
baud users respectively.

A submitted batch program first goes to the job
entry subsystem (JES). The JES scheduler (JESS)
assigns the program to processor 1 (CPU1) with a
probability of 0.6 or to processor 2 (CPU2) with a
probability of 0.4. At the completion of program ex-
ecution on a CPU, the program’s output is sent to
the user’s virtual reader with a probability of 0.2 or
to the printer (PRT) with a probability of 0.8. All
queues are handled by a first-come-first-served dis-
cipline, and each facility (JESS, CPU1, CPU2, and
PRT) processes programs one at a time. The pro-
cessing times of these facilities also have exponential
distributions, with respective means of 112, 226.67,
300, and 160.

The structure of the system is shown in Figure 2.

4.1.2 Solution in Haskell

A Haskell solution to the problem described above
is shown in Figure 3. The servers are represented
by functions jess, cpul, cpu2 and printer, and
are defined by passing the appropriate mean service
times and service windows to makeserver. Note that
for this problem, the windows encompass the entire
simulation time, since there are no outside restrictions
on server availability. Thus start_end_1ist is simply
a list containing the single pair of the starting and
ending times of the simulation.

The queues are defined in a straightforward way in
terms of the initial queues, the servers, and the appro-
priate divides and merges. These definitions should
be self-explanatory: q1 is the merge of the four initial
queues, each of which is a cumulative exponential dis-



Tools for Functional Simulation

Modem 300 Modem 1200 Modem 2400 LAN
inQ1 inQ2 inQ3 inQ4
ql

JESS
q3 a? q4
.6 4
CPU 1 CPU 2
q5 q7 q6
q8 q9
2 .8
Printer
ql0
Exit

Figure 2: Computer system; queue labels refer to Haskell code

637



638

stats begin end =
let

Bloss, Keenan, and Johnson

ql = let inQ1 = cumul_expon (rand seed1) 3200.0
inQ2 = cumul_expon (rand seed2) 640.0
inQ3 = cumul_expon (rand seed3) 1600.0
inQ4 = cumul_expon (rand seed4) 266.67
in mergeall [inQ1, inQ2, inQ3, inQ4]

g2 = jess ql

q3 = divide q2 0.0 0.6 divideRands
q4 = divide g2 0.6 1.0 divideRands

q5 = cpul q3
q6 = cpu2 q4

q7 = mergeOutQs gb q6
q8 = divide q7 0.0 0.2 divideRands2
q9 = divide q7 0.2 1.0 divideRands2

q10 = printer q9

jess = makeserver 112.0 seed5 start_end_list
cpul = makeserver 226.67 seed6 start_end list
cpu2 = makeserver 300.0 seed7 start_end list
printer = makeserver 160.0 seed8 start_end list
divideRands = rand seed

divideRands2 = rand seed9

start_end list = [(0,end))

Figure 3: Haskell code corresponding to labelled system in Figure 2.

tribution with a given mean; q2 is the output queue
produced from q1 by the JESS; q3 and q4 are derived
from q2, with 60% of the jobs in q2 going to g3 and
40% going to q4; and so on. These queues are labeled
in Figure 2.

The only pieces missing from the code shown in
Figure 2 are the tools described in Section 3, the
definitions for the random number seeds (constants),
and a main function that reads in a start and end
time and calls the statistics generator. Thus Figure 3
truly represents the entire substantive program; the
remarkable thing is how closely it resembles the dia-
gram in Figure 2.

4.2 Other Applications

After writing the computer system simulation de-
scribed above, we used the tools described in Sec-
tion 3 to write two additional simulations. Although
space constraints prohibit detailed descriptions here,
these problems and their solutions are outlined in this
section.

The first problem is a simple intersection controlled
by a single traffic light. Both streets carry one-way
traffic, and no turns are permitted. Given the cycle
time of the light and the distributions of car arrivals,

we wish to determine the average time for which cars
traveling in each direction must wait at the intersec-
tion.

The second problem is a recycling center with an
entrance station, five recycling workstations, and an
exit station. Each workstation handles a single type
of material — aluminum, plastic, etc. — and each
truck carries a single type of material. There are sev-
eral types of trucks, with different capacities and dif-
ferent probabilities of carrying each material. Each
truck stops at the entrance station, proceeds to the
appropriate workstation, waits to be serviced there,
then proceeds to the exit station. The center has
three workers that float among the five workstations;
a truck cannot unload at a workstation until it is as-
sisted by a worker, and only one truck can unload at
a given workstation at a time. Within a workstation,
trucks are served on a first-come-first-serve basis. We
wish to determine average wait time at each server,
and average total time in the system.

For both of these problems, the tools in Section 3
were helpful in designing Haskell solutions. For the
intersection problem, the tools applied directly and
the resulting program is very simple. Only about 10
lines of code are substantially different from the com-
puter system solution, and only 10 or so additional



Tools for Functional Simulation

lines are even trivially different.

The recycling center program is more complex, and
the tools in Section 3 were not general enough to
do all the work. Nevertheless, they served as tem-
plates from which the appropriate code was easily
derived. For example, the three kinds of servers (en-
trance, workstation, and exit) are not generated di-
rectly by the makeserver function, but in each case
only modest modifications were necessary. Further-
more, the top-level code clearly reflects the structure
of the problem.

5 COMPARING HASKELL TO C AND
SIMSCRIPT

For each of the three problems above, we looked at
the elegance, code size, and runtime efficiency of the
solutions coded in Haskell, SIMSCRIPT, and C. (We
did not construct a C solution for the recycling cen-
ter.) Our observations are described below, and the
length and runtime figures are shown in Tables 1 and
2.

Elegance is the hallmark of functional languages,
and in many ways this elegance is apparent in our
Haskell solutions. The Haskell programs are modular
and well-structured, and we were able to make use
of the simulation tools described in Section 3. On
the other hand, the lack of a global modifiable state
proved clumsy; we were forced to carry around a lot of
information that should have been local to one or two
functions. Nevertheless, in every case the top-level
code clearly reflects the structure of the problem, and
the underlying code is fairly straightforward. This
is in contrast to the SIMSCRIPT and C solutions,
both of which spread the structure of the simulation
throughout the code.

Counting lines of code provides only a rough mea-
sure of program size, but we felt that it was important
to get some idea of the relative bulk of the simulations
in the three languages. Because of the powerful sim-
ulation tools provided in SIMSCRIPT, we expected
the SIMSCRIPT programs to be significantly shorter
than the Haskell or C programs. But as shown in
Table 1, the Haskell programs are slightly shorter
than the SIMSCRIPT programs, with the C pro-
grams predictably much longer than either. It should
be noted, however, that the SIMSCRIPT programs
contain about four times as many lines of “trivial”
code (constant definitions, prints statements, etc.) as
the Haskell programs, and the SIMSCRIPT lines are,
on average, somewhat shorter than the Haskell lines.
But even accounting for these factors, the Haskell pro-
grams are reasonably concise.

The runtime figures in Table 2 must be viewed as

639

PROBLEM | HASKELL | SIMSCRIPT C
Computer

System 91 109 205
Traffic

Light 69 90 347
Recycling

Center 249 275 -

Table 1: Lines of code in sample simulations

PROBLEM HASKELL | SIMSCRIPT C

Computer
System 3.0 3.0 0.5
(400,000 sec)

Traffic
Light 13.0 3.4 5.0
(149,000 sec)

Recycling
Center 580 12.5 -
(10,000 trucks)

Table 2: Runtimes in sample simulations (seconds)

approximate, because we were unable to run all the
programs on the same platform. The SIMSCRIPT
programs were run on a VAX 4000; the C and Haskell
programs were run on a DECstation 3100. In our con-
figurations, the DECstation seems to be about twice
as fast as the VAX, so the SIMSCRIPT times have
been divided by two to produce comparable figures.
Thus for the computer system and the traffic light,
the Haskell times are close to the SIMSCRIPT times,
but the recycling center time is slower by a factor
of 500. Why is there such a big discrepancy? We
suspect that the Haskell recycling center code con-
tains a “space leak,” that is, that some interaction
between the programming style and the compiler op-
timizations cause it to use much more memory than
necessary. We are investigating this and other possi-
bilities, and hope to report on them soon.

6 CONCLUSIONS AND FUTURE WORK

We found that a small set of tools could be very useful
in coding queueing simulations elegantly and reason-
ably efficiently in Haskell, and we are very encouraged
by this result. We have identified several directions
for future work:

1. Identify and eliminate the cause of the poor exe-
cution time for the Haskell recycling center pro-



640 Bloss, Keenan, and Johnson

gram.

2. Investigate ways to reduce the clutter caused by
the lack of a global state. In particular, de-
termine whether some form of functional state
based on monads (Peyton Jones and Wadler
1993, Wadler 1992) or linear type systems (Gi-
rard 1987, Guzman and Hudak 1990, Wadler
1990) can help here.

3. Investigate the implications of these tools for
parallel evaluation; is sufficient parallelism avail-
able, and if not, can the amount of parallelism
be increased? What about parallelism in a state-
based approach?

4. Investigate the application of Haskell to non-
queueing problems in discrete event simulation.

REFERENCES

Baoci, O. 1988. The implementation of four concep-
tual frameworks for simulation modeling in high-
level languages. In Proceedings of the 1988 Win-
ter Simulation Conference, ed. M.A. Abrams, P.L.
Haigh, and J.C. Comfort. IEEE, Piscataway, NJ,
287-295.

Bloss, A. 1990. A functional approach to simulation.
In Proceedings of the 1990 Winter Simulation Con-
ference, ed. O. Balei, R.P.. Sadowski, and R.E.
Nance. IEEE, Piscataway, NJ, 214-219.

Bloss, A. Keenan, M. 1992. Discrete event simulation
in the functional language Haskell. In Proceedings
of the 22nd Annual Virginia Computer Users Con-
ference, Virginia Tech, 57-76.

Engel, J. 1991. Design of a discrete digital simulation
in Haskell. Undergraduate honors thesis, Depart-
ment of Computer Science, Virginia Tech, Blacks-
burg, Virginia.

Girard, J-Y. 1987. Linear logic. Theoretical Com-
puter Science, 50:1-102.

Guzman, J. Hudak, P. 1990. Single-threaded poly-
morphic lambda calculus. In Proceedings of the 5th
IEEE Symposium on Logic in Computer Science.

Hudak, P. Wadler, P. et al. 1992. Report on the
programming language Haskell, version 1.2. ACM
SIGPLAN Notices, 27(5).

Peyton Jones, S.L. Wadler, P. 1993. Imperative func-
tional programming. In.Proceedings of the 20th
Annual Symposium on Principles of Programming
Languages, 71-84, ACM Press.

Wadler, P. 1990. Linear types can change the world.
In Programming Concepts and Methods, ed. M.
Broy and C.B. Jones. North Holland.

Wadler, P. 1992. The essence of functional program-
ming. In Proceedings of the 19th Annual Sym-
posium on Principles of Programming Languages,
ACM Press.

AUTHOR BIOGRAPHIES

ADRIENNE BLOSS is an Assistant Professor of
Computer Science at Roanoke College. Her current
research interests focus on real-world applications for
functional languages.

MICHAEL KEENAN is a Visiting Associate
Professor of Computer Science at Virginia Tech. His
research interests include functional programming
and complexity theory.

KIMBERLY JOHNSON is a senior at Roanoke
College, majoring in Computer Science and Com-
puter Information Systems. She joined this project
in January 1993, and stayed on through a grant from
the College.



