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ABSTRACT

In this paper, we present the design and implementation
of a multiprocessor simulator written in the language
SimCal. We use the simulator to test our scheme to par-
tition a sequential program for parallel execution on a
shared memory. asynchronous multiprocessor. The
results of the simulations indicate that our partitioning
scheme can provide significant speed-up by executing
the program in parallel. We then execute the partitioned
program on an actual multiprocessor and find a high
degree of correlation between the simulations and the
actual executions. This correlation serves to validate our
simulator. We then use the multiprocessor simulator to
hypothetically extended the actual multiprocessor and
we show that adding more processors will not provide
significant improvement in the parallel executions unless
the communication structure is also improved to contain
more parallelism.

1. INTRODUCTION

Over the past decade or so, changes in technology
have provided the possibility for vast increases in com-
putational speed and power through the exploitation of
parallelism in program execution. However, it has been
difficult to test these new developments in parallelism on
a target architecture since the architecture is often not
available, or too expensive for the researcher to obtain.
One approach to solving the problem of unavailability of
the target architecture is to use a simulator to capture the
behavior of the architectural system. A problem with the
use of simulators is the possibility that the simulations
do not adequately capture the system due to the omission
of an important factor in the system or because not all of
the factors in the target system are adequately known. In
this event, the simulations may allow a researcher to
arrive at an erroneous conclusion about the power of the
parallel system under scrutiny. Also, despite the
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researchers care in capturing every detail of the target
system, other researchers are sometimes sceptical about
the reliability of the simulation approach.

We present the design of a multiprocessor simula-
tor. We briefly discuss our techniques to partition a
sequential program into threads for parallel execution on
a shared memory, asynchronous multiprocessor. We
then use the simulator to execute the threads for parame-
ters that describe an actual multiprocessor system, the
Data General AViiON[DataGeneral1990]. The correla-
tion that we obtain between the simulations and the
actual executions verify that the multiprocessor simula-
tor captures the important factors of the multiprocessor
system. Having validated the simulator, we use it to
hypothetically extend the Data General AViiON to deter-
mine the degree of speed-up that might be obtained if the
multiprocessor were configured differently, for example,
by adding more processors to the AViiON.

The multiprocessor simulator that we present is
coded in a simulation language, SimCal[Malloy1986],
that is based on Simula. Simula is a powerful, process
oriented simulation language that possesses a high
degree of expressibility.

The paper is organized as follows. In section 2, we
briefly describe SimCal, the simulation language that we
use to implement the multiprocessor simulator. In section
3 we discuss the computational model that captures the
important features of the multiprocessor system under
study. We then briefly describe the parallel threads that
are executed on the multiprocessor system followed by
the design and construction of the multiprocessor simu-
lator. In section 4, we describe our validation of the sim-
ulator through the comparison of the results of the simu-
lations with the results obtained by executing the threads
on an actual multiprocessor, the Data General AViiON.
Also, in section 4, we hypothetically extend the AViiON
through the use of the simulator. Finally, in section 5 we
draw conclusions.
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2. DESCRIPTION OF SimCal

SimCal is a process-driven simulation language
that is based on standard Pascal. The SimCal language is
extended to directly incorporate simulation primitives
designed to have essentially the same syntax and seman-
tics as those found in Simula. Therefore, a SimCal user,
knowledgeable in Pascal, need only consult previous
work[Malloy1990, Malloy1986] or a Simula reference
text[Lamprecht1983] for information regarding the syn-
tax and semantics of the simulation primitives. The sim-
ulation primitives are directly incorporated into Pascal,
meaning that the user is not responsible for adding any
calls to system procedures or declaring any extra data
structures. This is all handled by a preprocessor for Sim-
Cal that takes a SimCal program and translates it into a
standard Pascal program.

We chose Pascal as the base language because it is
a widely used language. The simulation primitives are
based on Simula because it a powerful, process-oriented
simulation language. The SimCal language was
designed as a preprocessor so that it can be used in any
environment that has a Pascal compiler and therefore
obviates any additional software cost. As a preproces-
sor, SimCal sits on top of the Pascal compiler and there-
fore requires no alterations to the compiler in any way.

2.1. Using SimCal Language Primitives for Simula-
tion Modeling

We have previously described the design and
implementation of SimCal[Malloy1990], and the reader
interested in the preprocessor construction may consult
this work. We do not discuss the SimCal design and
implementation in this paper but rather we summarize
the actions of the language primitives and demonstrate
how they can be used to construct a simulation model.
The discussion in this section will facilitate our discus-
sion of the multiprocessor simulator described in the
next section.

Because SimCal is a process-driven simulation
language, there are language facilities to support the cre-
ation and manipulation of processes. A system clock and
an event list ordered by time are included in the lan-
guage. Since it is essential to express the relationships
among processes in a simulation, the Simula list facility
is also included.

A process in SimCal is represented by a special
"procedure like" block of code called a PROCESS. A
process may be acted upon by the simulation primitives
ACTIVATE, ACTIVATE AT, PASSIVATE and HOLD.
These primitives insert processes into or remove pro-

cesses from the event list. Processes also may be inserted
or removed from user defined lists. SimCal provides
primitives INTO, OUT, FIRST, EMPTY and CARDI-
NAL that may be used to examine or manipulate the user
defined lists.

The use of the simulation and list primitives in the
example in Figure 1 illustrate how control can be passed
among processes both explicitly and implicitly. Control
is passed explicitly through the use of the ACTIVATE
primitive and implicitly through the use of PASSIVATE
or HOLD. All simulation primitives pass control by
using the event list, where the process at the head of the
event list is the currently active process. For example,
the ACTIVATE B primitive inserts process B at the head
of the event list and passes control to an event manager
which always activates the process at the head of the
event list. Only the HOLD primitive can increment sys-
tem time.

Process A Process B

ACTIVATE B; / PASSIVATE;

ACTIVATE B; / HOLD(2),

End Process; /EndPIOCeSS;

Figure 1: Process synchronization using primitives

3. DESIGN OF THE MULTIPROCESSOR MODEL

In this section we begin by presenting the compu-
tational model that forms the basis for our target archi-
tecture. We then give a brief explanation of the tech-
nique used to partition a sequential program into threads
for parallel execution on a shared memory, asynchronous
multiprocessor. Finally, we present the parameterized
multiprocessor simulator that we construct from the
computational model. This parameterized multiproces-
sor simulator is used to simulate execution of our paral-
lel threads, constructed by partitioning a sequential pro-
gram.
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3.1. The Computational Model

In order for us to accurately evaluate the quality of
the schedules that we produce, it is necessary that we be
precise about certain aspects of the asynchronous proces-
sor system that we utilize. In particular, we assume that
such a system consists of p asynchronous identical pro-
cessors, shared global memory modules, and a com-
munication structure that allows processors to commu-
nicate with other processors or with the shared memory.
An example of such a communication structure is a bus
that typically allows a single processor to communicate
values to memory. We assume that the system includes
the standard primitives send and receive, which are used
for the synchronization of processors. Because of the
kind of synchronization required here (i.e., based on data
dependencies), we assume that the send operation does
not require the invoker to wait until a corresponding
receive is executed[Dinning1989].

In conjunction with the above system, we employ
three parameters that, together, describe the "speed” of
the architecture. The first is a function F.(I) that returns
the number of cycles required to execute instruction I.
The second is a function F, = F, + F,,, that indicates the
number of cycles needed for communication of values
through the interconnection structure. By an intercon-
nection structure or communication structure we
mean hardware support such as memory chan-
nels[Kowalik1985], register channels[Guptal990] or an
interconnection network[Lang1976] that provides sup-
port for communication of values. Here, the function F,
is the access time needed to traverse the communication
structure and F,, is the number of cycles a processor
waits (due to contention) before it can access a required
value. The third parameter, BW, is the bandwidth of the
communication structure or the number of processors
that can simultaneously use the structure. Contention
occurs when the number of processors vying to commu-
nicate during a given cycle, exceeds BW. The multipro-
cessor simulator discussed in this paper takes the param-
eters p, F,, F., and BW as inputs. We will discuss the
computational model in more detail in section 4.

3.2. Threads

We have developed techniques to partition sequen-
tial code for parallel multiprocessor —execution
[Malloy1992a, Malloy1994, Malloy1992b].  We now
present key ideas of the technique for partitioning
straight line code, such as the code found in basic blocks,
into threads for parallel execution[Malloy1994, Mal-
loy1992b). The interested reader may consult our previ-
ous work[Malloy1992a] for a discussion of partitioning

Time 1 2 3 4 5 6 7

P1 1 RV2 3 Sd3 4 RV5 6

P2 | 2 |Sd, Rvs | 5 | Sds

Figure 2. A schedule where nodes 1, 3, 4, and 6 are as-
signed to list P1 and nodes 2 and 5 are assigned to list
P2.

entire programs for asynchronous multiprocessor execu-
tion.

A schedule is obtained in the following manner:
the operations in list i are executed on processor i, and
the jth operation in a list executes only after the previous
j-1 operations of the list have completed. Also, a receive
operation may execute no earlier then its corresponding
send operation (which is on another processor). Clearly
this means that some idle time may exist on the proces-
sor executing the receive. For example, processor P2 is
idle during time slot 3 in the schedule shown in Figure 2.
In the schedule presented in Figure 2, we use a unit
model where each operation requires one time unit to
complete, and send and receive operations can occur in
the same time unit. The length of schedule S is equal to
the latest time slot during which an operation executes.
For example, in Figure 2, the length of the schedule is 7.
In a simulated schedule, the time to execute any particu-
lar operation may vary due to factors such as contention
in the communication structure. For example, in Figure
3, each of the receive operations required two time units
while the send operations required one time unit, possi-
bly due to the particular implementation of the synchro-
nization operations by the multiprocessor.

Tme 1 2 3 4 5 6 7 8 9 10
P1 1 RV2 RV2 3 Sd3 414 RV5 RV5 6
P2 2 Sdz RV3 RV3 5 Sd5

Figure 3. A possible run-time schedule for the compile-
time schedule in Figure 2. All receive primitives re-
quired 2 time units to execute in the run-time schedule
while send primitives required 1 time unit. Also, opera-
tion 4 required 2 time units to execute in the run-time
schedule.
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3.3. Construction of the Multiprocessor Simulator

As discussed in the previous section, we construct
a schedule consisting of tasks where each task represents
a node in a dag or an operation such as an intermediate
code operation. We now present the multiprocessor sim-
ulator which simulates the parallel execution of the
schedule. Figure 4 summarizes the simulator.

For the simulator of Figure 4, execution begins in
the main program by supplying the parameters p, F., F
and BW, as discussed in the previous section. Since the
simulator must actually execute the statements in the
schedule, the second statement in the main program in
Figure 4 initializes an Interpreter that actually executes
the instructions in the schedule. After initializing the
Interpreter, the simulator then reads the parallel schedule
or threads, one thread for each processor. In executing
the loop in the main program of the simulator, the CRE-
ATE primitive is used to instantiate p processors (cpu)
and the ACTIVATE primitive is used to begin execution
of thread; in the respective processor cpu;. In SimCal, as
in Simula, the main program is itself a process and must
not be allowed to terminate before any child processes
terminate, since that would cause the entire program to
terminate prematurely. Thus, the final simulation primi-
tive executed in the main program is HOLD(50000),
which inserts the main program at the end of the event
list, allowing each of the cpu; an opportunity to execute
the respective threads. Execution will resume in main
after all of the cpu;’s have terminated. At that time, any
statistics that may have been gathered during the simula-
tion, such as the total time spent waiting to access the
bus, may be output.

In addition to the main program of the simulator, a
summary of the actions of each processor (cpu;) is also
illustrated. Each cpu; is itself a PROCESS that, through
the use of the event list, can execute in "parallel”. The
important part of cpy; is a while loop that contains a case
statement that chooses the actions to be performed by the
simulator. The important operations listed are: send,
receive, store, load and operation. By operation, we
mean an intermediate or assembly code operation.

To illustrate the actions of the multiprocessor sim-
ulator, we will now discuss the send primitive listed in
the case statement in PROCESS cpu shown in Figure 4.
The first action of the send primitive is to "wait to access
the bus” as described above. Having gained access, the
next action of the send primitive is to increment bus-
Count to update the number of processors currently
using the bus. Then, the synchronization bit correspond-
ing to the data value being communicated is set to indi-
cate to the receiving process that the value is "ready".
Having "sent” the data, the next action in implementing

the send is to HOLD for the number of cycles that are
required in the send operation; this execution of the
HOLD will update system time appropriately. In the
early stages of the multiprocessor simulations, we exe-
cuted the HOLD primitive for the send operation for the
number of cycles that we felt were reasonable. Later, as
we will discuss in the next section, we conducted experi-
ments on an actual multiprocessor to provide greater
accuracy for our simulations/predictions. The final
action of the send primitive is to decrement the busCount
to indicate that this processor is now relinquishing the
bus. The actions of the other operations listed in PRO-
CESS cpu are similar to the send primitive.

4. VALIDATION OF THE MULTIPROCESSOR
SIMULATOR

In the previous section we presented the design of
the parameterized multiprocessor simulator. In this sec-
tion, we validate the simulator by using it to simulate the
executions of schedules produced by our algorithm to
partition sequential code into threads for parallel execu-
tion. This is achieved by supplying appropriate values
for the parameters p, F.(I), F., and BW, to the simulator
that we constructed using SimCal[Malloy1990].

4.1. Performance of the Partitioning Scheme on a
Data General Multiprocessor

In order to determine the performance of our parti-
tioning scheme on a "real" multiprocessor, we executed
our parallel threads on a Data General AViiON shared
memory  multiprocessor  system[DataGeneral1990]
equipped with a unibus communication structure and
two identical processors. As we will show, we obtained
an excellent correlation between these "actual execu-
tions’ and the simulations, thereby validating our multi-
processor simulator. The send and receive primitives
were implemented on the AViiON using spin-lock opera-
tions on unix shared variables{Bach1986]. In order to
obtain the parameters for our simulator, we first con-
ducted a series of experiments to determine the average
cost of the send and receive primitives and the cost of
using the unibus communication structure. These experi-
ments revealed that a send primitive requires approxi-
mately the same time to execute as a floating point multi-
plication, and that a receive primitive requires approxi-
mately twice as long as a floating point multiplication
(provided, of course, that the receive does not have to
wait). These values were utilized in setting the parame-
ter F, for the simulation studies described below.
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program multiprocessor,
const maxProcessors = 16;
ref (cpu) array processor [1..maxProcessors].

PROCESS cpu( i : integer );
var pc :integer;
begin
while there are more statements to execute in thread; do
begin
case this statement in thread; of
send : wait to access the bus;
increment the busCount;
set synchronization bit for this data value;
HOLD(cycles required for send);
decrement the busCount;
receive : (* we are examining a synchronization bit stored in local memory *)
while synchronization bit for this data value is not set do
HOLD(1);
end (* while *)
HOLD(cycles required for receive);
reset synchronization bit for this data value;
store : wait to access the bus;
increment the busCount;
pass this operation to Interpreter
HOLD(cycles required for store);
decrement the busCount;
load : (* similar to store *)
operation : pass this operation to Interpreter, and
HOLD for the number of cycles specified by F.(operation);
end; (* case *)
increment pc to indicate appropriate statement in thread;;
end; (* while *)
writeln(’processor ’, i, * terminates execution at ’, time);
end; (*cpu*)

begin (* main *)
input parameters to specify Fe(I), F., BW and p;
initialize Interpreter;
input threads;
fori:=1topdo
processor[i]:- CREATE cpu(i);
ACTIVATE processorl[i];
end;
HOLD(50000);
output statistics;
end.

Figure 4. Summary of the Multiprocessor Simulator.
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Table 1. '
Comparison of simulation with actual execution.

Experimentation
Test Simulations using Actual executipn on
Parameterized Cost Model Data General Multiprocessor

Program Time (p=1) | Time (p=2) | SpUp | Time (p=1) | Time (p=2) | SpUp
Fibonacci 54 60 0.90 0.23 0.25 0.88
Pyramid 102 113 0.90 0.43 0.67 0.65
Mat Mult 336 277 1.21 1.14 1.13 1.01
Dual Dag 311 160 1.94 2.49 1.27 1.96
Whetstone 411 300 1.37 0.90 0.67 1.34
FFT 506 325 1.55 2.05 1.37 1.49
Livermore 643 381 1.69 1.71 0.95 1.80

The results summarized in Table 1 indicate a very
strong correlation between the simulation results and the
actual executions on the Data General multiprocessor. In
Table 1, the first column lists the programs used in the
experiments, the next three columns report the results of
the simulations and the last three columns report the
results of the actual executions. For the simulations, the
second and third columns express the number of cycles
required to execute the test program on 1 and 2 proces-
sors respectively. For the actual executions, the fifth and
sixth columns express the number of seconds required to
execute the test program 10,000 times; these experiments
were conducted 1000 times and the results reported are
the averages. As a particular instance, note that the sim-
ulation indicates that 54 cycles are required to execute
the sequential code, and that 60 cycles are required to
execute the schedule for 2 processors with a resulting
speed-up of 0.90 over the sequential execution. Note
that a speed-up of less than one indicates that the parallel
execution took longer than the sequential execution
assuming machines with the same architectural configu-
ration. For the actual execution of the Fibonacci pro-
gram on the Data General multiprocessor, an average of
0.23 seconds were required for 10,000 iterations using 1
processor and 0.25 seconds were required for 10,000
iterations using 2 processors producing a speed-up of
0.88 over the sequential execution.

The similarities in speed-up between the simula-
tion and actual execution results are established by com-
paring columns 4 and 7. With the exception of the Pyra-
mid and Livermore programs, the difference between
these speed-ups is never more than 0.06. This is a
remarkably small difference, and certainly validates the
use of the simulation approach in most instances.

In addition to supporting the cormrelation between
the simulation results and the actual executions on a
Data General multiprocessor, Table 1 also supports the

conclusion that the our partitioning scheme is able to
provide good speed-up for programs containing suffi-
cient parallelism. Sufficient parallelism implies that the
sequence of code being scheduled does not contain a
large number of data dependencies and has enough par-
allelism to support all or most of the processors.

Since the Data General AViiON multiprocessor at
our installation is equipped with only two processors, we
are not able to evaluate the performance of the partition-
ing scheme for actual executions of schedules using
more than two processors. However, simulations using
parameters appropriate to the Data General machine,
produce the results shown in Table 2 for executions on
2,3, 4, 8 and 16 processors. These results suggest that if
the AViiON were to maintain its current configuration
except for the addition of more processors, no significant
speed-up would be achieved by using these additional
processors. The main bottleneck in the system is the
unibus communication structure. In fact, an examination
of Table 2 reveals a "leveling off" effect in the ability of
the scheduler to provide speed-up for the case where a
unibus communication structure is employed. The lack
of parallelism in the unibus communication structure
produces a great deal of contention when accessing
memory for load/stores and for synchronization with
unix shared variables.
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Table 2.
Simulations for 2, 3, 4, 8 and 16 processors
using Parameters that describe the Data General AViiON.

Processors

Program > T p=3 | p=4 | p=8 | p=16

Fibonacci 0.90 1.35 1.35 1.35 1.35
Pyramid 0.90 1.32 1.30 1.30 1.30
Mat Mult 1.21 1.76 1.80 1.77 1.62
Dual Dag 1.94 1.65 1.45 1.45 145
Whetstone 1.37 1.40 1.67 1.47 147
FFT 1.55 1.29 1.31 1.30 1.28
Livermore 1.69 2.56 2.52 2.55 2.55

5. CONCLUSIONS

We have reported our experiences in developing a
multiprocessor simulator using the process oriented lan-
guage SimCal. We used the simulator to test our scheme
to partition a sequential program for parallel execution
on a shared memory, asynchronous multiprocesor. The
results of the simulations indicate that our partitioning
scheme can provide significant speed-up in the parallel
execution of a program. We also executed the paral-
lelized program on a Data General multiprocessor where
the speed-ups on the actual machine correlated very
closely with the simulations. This correlation served as a
validation for our simulations. We then used the simula-
tor to hypothetically extend the Data General machine by
adding more processors and a communication structure
that provided more parallelism. We concluded that the
parallel execution of the program would not achieve any
significant speed-up simply by adding processors.
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