Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

GPSS*
A GPSS IMPLEMENTATION WITH HIERARCHICAL MODELING FEATURES

Thomas Behlau
Volkmar Hinz

Technical University Magdeburg
Department of Computer Simulation and Graphics
PSF 4120
D - 39016 Magdeburg, Germany

ABSTRACT

Though GPSS is about 32 years old it has not been
changed in its main algorithms since Henriksens new
version (see Henriksen 1976). This paper describes
some new features of a GPSS implementation in order
to improve the macro concept of GPSS. Besides a
short review on environments for simulation systems
is given. Finally an OS/2 environmental frame for
the new GPSS* is suggested.

1 INTRODUCTION

At present GPSS belongs to the most used discrete
simulation systems in the world. However, its inter-
nal structures have not been modified since the devel-
opments by Henriksen in 1976. But the current fad
in computer science and simulation breaks with the
classical simulations languages and goes in the direc-
tion of graphical oriented simulation environments.
Beside the lack of any environment GPSS has a num-
ber of disadvantages presented in the following para-
graph:

GPSS does not allow hierarchical modeling. GPSS
provides structured programming with macros using
parameters to specify the entities in the macro. How-
ever, all names are used in a global mode. That is why
a real hierachical modeling is impossible.

GPSS does not have an array concept. Only a spe-
cialized EQU statement can be used
(e.g. DESK EQU 5(3),F,Q).

GPSS does not allow the addition either of new en-
tity classes (transaction, queue, storage) or of new
methods (ADVANCE, QUEUE, ENTER). Enlarge-
ments are possible with the help of subroutines in
FORTRAN or C only.

Because the user can not see the model entities it is
more difficult to teach and to learn GPSS than other
simulation languages. The user only works with the
entities using statements to manipulate them.

618

Transaclions cannol be provided with names. For
that reason debugging of larger programs is difficult.
Transactions can be distinguished either by different
priorities or specialized parameter values.

GPSS programms can hardly be struclured clearly.
This criticism is well-founded considering that pa-
rameters cannot be transfered to subroutines by us-
ing TRANSFER SBR as in other programming lan-
guages. The fact that in GPSS several transactions
can be processed at the same time must be kept in
mind and therefore only their parameters are candi-
dates for parameters of subroutines.

This paper adresses the deficiencies of the macro
concept as well as the lack of a modern environment
for the development of simulation projects.

2 DISADVANTAGES OF THE MACRO
CONCEPT OF GPSS

To reduce errors writing the source code of a simula-
tion program GPSS provides macros. A macro defini-
tion is a sequence of GPSS statements where portions
of the statements can be replaced by operands. These
operands are supplied each time the macro is invoked.
(see GPSS/H manual).

However, the concept has some deficiencies:

1. The macro definition has to be located in the
simulation source code. There is no way to con-
struct libraries of sets of macros.

2. Each time a MACRO definition statement is
found the compiler produces a sequence of GPSS
statements where the text to be replaced —
coded by a # character followed by a letter (A-J)
— is substituted with the corresponding macro
definition operand. But this procedure is noth-
ing more than a string exchange. In reality no
simulation code is saved up.

3. This string replacement shows disadvantages if

GPSS*: A GPSS Implementation with Hierarchical Modeling Features 619

one uses macros which contain other macro direc-
tives. A simple example should illustrate that.

MACHINE STARTMACRO

QUEUE #A
SEIZE #A
DEPART #A

ADVANCE #A
RELEASE #A
ENDMACRO
*
MCENTRE STARTMACRO
QUEUE #A
MACHINE MACRO MACH1,30,10
ADVANCE #B,#C
MACHINE MACRO MACH2,20,15
ADVANCE #E,#F
DEPART #A
ENDMACRO

Now two macros are invoked by means of the
MACRO directives

MCENTRE MACRO MCENTRE1,20,10,30,20
MCENTRE MACRO MCENTRE2,15,7,20,15

There will be an undetected error using facilities
and queue with equal names both in the macro
MCENTRE! and macro MCENTRE2. With a
more sophisticated programming one can avoid
these errors but they will become more likely us-
ing higher levels of nesting.

However these problems are not only typically for

GPSS, but also for other simulation languages as
SIMAN, SLAM etc.

3 HIERARCHICAL MODELING
APPROACHES

There are a lot of extensions to existing simulation
systems which try to overcome the disadvantages of
the macro concepts. Granas created a GPSS-like hi-
erarchical simulations language in 1986. But this sys-
tem was not able to work with older GPSS programs.
It was a real new simulation language.

Pedgen and Davis introduced the system Arena™,
a hierarchical system, based on the SIMAN simula-
tion language. The use of hierarchical features in this
system are restricted to the environment, creating a
SIMAN source program. The language itself is not
extended.

In general, macro concepts generate block state-
ment every time a macro is invoked. This is very

inefficient, because blocks only need to be coded once
per macro.

The main difference between these two approaches
above and the new concept of GPSS* are

o full compatibility with the old GPSS language

o inserting new features in GPSS as new state-
ments

o use of local entity.
This is very similar to the declaration of vari-
ables in programming languages (i.e. PASCAL).
Identifiers of entities are only valid in the block
where they are defined.

e coding block statements only once for all in-
stances of a submodel. Only data of submodels
are generated more than once.

4 HIERARCHICAL MODELING USING
SUBMODEL’S

The new features — named SUBMODELS— should
overcome the following deficiencies:

1. define new entities

2. define new blocks and control statements work-
ing with these new entities

3. define new standard numerical and logical at-
tributes (SNA’s and SLA’s)

4. use local entities
5. reduce errors of name conflicts

6. build libraries of new entities

In the next subsections statements corresponding
with the submodel entity are described.

4.1 Definition of Submodels

The statement sequence

SUBMODEL name

PREFIX 11

PREAMBLE

ENDPREAMBLE

koK ok ok ok o ok ok o ko ok o ok o oKk ok Kk ok
model the system behavior

ko kK ok ok ok ok kKK ok ok ok kKR ok ok koK

ENDSUBMODEL

is used to define a submodel name. The PREFIX
statement can be used to substitute the name of the
submodel with a short name which is used with stan-
dard attributes.

620 Behlau and Hinz

4.2 Declaration in the PREAMBLE

With the PREAMBLE statement a sequence of state-
ments starts which defines new model entities, names
of new blocks, control statements and standard at-
tributes. The entire form of this statement can look
as follows:

PREAMBLE

LOCAL

**xxx*x define local entities
ENDLOCAL

GLOBAL

*x*** define global entities
ENDGLOBAL

LABELS

***x**% define new block names
ENDLABELS

CONTROLS

*****x define new control statement
*%k*k*k names

ENDCONTROLS

ATTRIBUTES

*x**%* define new SNA’s and SLA‘s

ENDATTRIBUTES
ENDPREAMBLE

The parts LOCAL and GLOBAL are used to de-
fine local und global entities of the simulation model
which is comparable with subroutines in Pascal. All
names of entities which are declared between the LO-
CAL and ENDLOCAL statement are only valid in
this submodel and local submodels. Names of enti-
ties which are defined GLOBAL has to be already de-
clared in the main simulation model or in a submodel
of a higher level. The references to these entities will
be established during compilation. New names for
blocks, control statements and standardattributes are
declared in the parts LABELS, CONTROLS and AT-
TRIBUTES. The exact syntax for these statements
18

LABLES

labelname paraml,param?,. ..
ENDLABELS
CONTROLS

conirolname paraml,param2,. ..

ENDCONTROLS
and for attributes:
ATTRIBUTES
attrname Ul
ENDATTRIBUTES

A list of formal parameters has to be given with the
block and control statement description. Each formal
parameter should be defined as a local model entity.

4.3 Definition of the System’s Behavior

The definition of the system’s behavior includes the
following tasks

e description of the SNA’s and SLA’s
e programming new LABELS and CONTROLS

description of actions for CLEAR and RESET

[

description of a standard output

definition of other structurs like

[

— describe the flow of internal transaction

— define algorithms for scheduling and control

The next pattern can be used to define a block with
a specified name.
labelname blockstatement operands
blockstatement operands

blockstatement operands
GOOUT

The new block statement GOOUT cause the trans-
action to return to the main simulation model or to
the submodel calling this submodel.

A similar way is used for control statements. The
CLEAR and RESET statements have to be defined.

The description of new standard numerical and log-
ical attributes can be compared with the declaration
of a variable in GPSS/H. After the name of the at-
tribute an arithmetical or locical expressionis follow-
ing which is evaluated with every call of the SNA or
SLA.

The desription of the system’s behavior is ending
with the definition of the standard output. The stan-
dard output is declared in a REPORT statement,
with the following format:

REPORT

HEAD

*x*x* output of a title for all

GPSS*: A GPSS Implementation with Hierarchical Modeling Features 621

****x submodels of this type
ENDHEAD

ENTITY

***x*x output for every entity of
x this submodel type

ENDENTITY
ENDREPORT

With all these new statements you can create new
entities put them into libraries and use them in other
models. There are no differences between new block
statements and the basic statements of GPSS.

5 AN EXAMPLE OF A SUBMODEL

This examble is the same as in section 2.

Creating a new entity MACHINE
vith the blocks INMACH

LR K

SUBMODEL MACHINE
PREFIX MA
PREAMBLE
LOCAL
MACH : FACILITY,QUEUE
4MEAN,&STD : REAL
ENDLOCAL
LABELS
INMACH &MEAN,&STD
ENDLABELS
ENDPREAMBLE

Definition of the block

INMACH ASSIGN 1,%MEAN-&STD+2+FRN1#&STD,PL1

QUEUE MACH go into the local queue
SEIZE MACH seize local facility
DEPART MACH free queue

ADVANCE PL1
RELEASE MACH
GoouT

free facility

Definition of the control statements

* * *

CLEAR CLEAR ALL
RESET RESET ALL
ENDSUBMODEL MACH

* *

Definition of the new entity MCENTRE
with the block INMCENTRE

* *

SUBMODEL MCENTRE
PREFIX MC
PREAMBLE
LOCAL

MCENTRE : QUEUE
MACH1,MACH2 : MASCHINE
&MEAN1,&STD1,
&MEAN2,&STD2 : REAL;
ENDLOCAL
LABELS
INWERK
ENDLABELS
ENDPREAMBLE

&MEAN1,&STD1,&MEAN2,&STD2

*

* Defintion of the block INMCENTRE

*

INMCENTRE ASSIGN 1,%MEAN1-&STD1+2*FRN1*&STD1,PL
ASSIGN 2,%MEAN2-&STD2+2*FRN1*&STD2,PL
QUEUE WERK
INMACH MACH1,30,10
ADVANCE PL1
INMACH MACH2,45,25
ADVANCE PL2

GOOUT
*
* Defintion of Control statements
*
CLEAR CLEAR ALL
RESET RESET ALL
ENDSUBMODEL

The statements

INMCENTRE MCENTRE1,20,10,30,20
INMCENTRE MCENTRE2,15,7,20,15

will not detectd errors as in the macro statements be-
cause the specific entites are defined to be local. The
notation of the source is more similar to the standard
source code of a GPSS programm.

These new structures are implemented for OS/2 us-
ing the System Object Model (SOM) features. This
new GPSS — called GPSS* — requires special needs
to an environment. The next section describes a pro-
totype of a powerfull simulation environment.

6 A SIMULATION ENVIRONMENT FOR
GPSS*

Using GPSS simulation systems for applications most
users demand

e a better support in the model development (de-
velopment environment) and

o powerful tools for preprocessing external model
input parameters or to collect and prepare sim-
ulation results which are easy to use (high-level
I/O-interface).

Available GPSS implementations (i.e. GPSS/HT™
(Wolverine), GPSS/PCT™ (Minuteman)) are ex-
tremely bad concerning these requirements.

622 Behlau and Hinz

Since years development environments are fully in-
tegrated in high-level programming languages (Bor-
land’s ”IDE”, Microsoft’s "PWB”). However, GPSS
implementations were put on the market without any
environment (i.e. GPSS/H) comparable or without a
modern acceptable environment (i.e. GPSS/PC), re-
spectively.

Today the GPSS user must create a model as fol-
lows:

e edit with a general purpose text editor

e run GPSS Compiler

e read compiler listing and note the error messages
o edit the source and so on.

In available GPSS implementations I/O functional-
ity is on a low level. In GPSS/H the I/O is organized
with the help of GETLIST and PUTPIC statements
(only sequential access) or by using external routines
(HELP, CALL, BCALL). In GPSS/PC one can use
the HELP block statement only (calls a external rou-
tine written in FORTRAN or PASCAL).

There are no tools as for instance for the process-
ing dBase files or to prepare simulation results for
statistical packages existing.

In addition to the implementation of GPSS* de-
scribed above a simulation environment has to be de-
veloped.

This is for the reason of better support in the de-
velopment of GPSS* models. Besides, preprocessing
input parameters as well as preparing output results
are possible. This idea is not limitted to GPSS* but
partly applicable to other GPSS implementations.

The GPSS* simulation environment should be di-
vided in the parts

¢ GPSS* model development environment (MDE)

¢ GPSS* submodel package for high-level /0O

6.1 GPSS* developmental environment

GPSS* is a simulation system familar with GPSS. It
is running under the OS/2 2.x environment (32 bit
application). GPSS* for OS/2 consists of

e GGPSS* kernel (dynamic link library)

e GPSS* metacode generator (processed GPSS-V
code with many extensions)

e GPSS* run time processor (processing the meta-
code with the GPSS* kernel)

GPSS* models are implemented in GPSS source
code. The model implementation by composing
GPSS block symbols with the help of a graphical en-
vironment is not an acceptable way, especially for the
development of large and complex models. However,
those editors are suitable for teaching the GPSS mod-
elling process. The basis of the development environ-
ment for GPSS* should be based on a powerful text
editor. Analysing development environments of high-
level programming languages we propose a text editor
extended by function groups below:

Function group 1: (editor functions)
o formatting of GPSS source code

¢ syntax expansion (optional)

°

keyword help

[]

syntax scan of source lines (optional)
o syntax highlighting
Function group 2: (environment functions)

e invoke the GPSS* metacode generator (compil-
ing)

start GPSS* simulation

[]

e view compiler listing
e view and prepare standard output
¢ maintenance of GPSS* SUBMODELs

Together with the OS/2 2.x operating system there
is a powerful text editor called ”enhanced editor”
(EPM) supplied. The ”enhanced editor” itself is an
application of the E-Toolkit built by two dynamic
link libraries (ETKExxx.DLL, ETKRxxx.DLL). The
E-Toolkit supports the software developer by build-
ing applications that edit multiple lines of text (see
E-Toolkit manual). For building editor based appli-
cations two fundamental ways exist. At first one can
write a new Presentation Manager (PM) application
like EPM with own extensions. Secondly the exist-
ing application EPM can be extended by writing edi-
tor macros using the editor language ”E”. The proto-
type of the GPSS* Simulation Environment was im-
plemented by using the second way. Through EPM
macro GPSS.EX the following extensions for EPM
are available:

Extensions for fuctions group 1:

Linking GPSS.EX into EPM adds a new menu item
”GPSS* Editor Settings...” to the action bar pull-
down ”Options”. It displayed a Notebook to change
any editor settings especially for GPSS*.

GPSS*: A GPSS Implementation with Hierarchical Modeling Features 623

For GPSS* source code files (*.GPS or *.GSS)
EPM used the tabulator positions (2,8,19,40,50,60).
The values for comment positions (40,. . .) are change-
able in the ”GPSS Editor Settings...” Notebook.

While writing a source line a syntax expansion oc-
curs when Space or Enter is pressed. The kind of
syntax expansion depends on the selected Syntax Ex-
pansion Level (Settings Notebook) listed below:

Level 0 : no syntax expansion

Level 1 : expansion of block and control
statements, jump to the next tab
position

Level 2 : operand field generation in addi-

tion to level 1

By pressing CTRL-H a help for any GPSS* key-
word is available. The option ”Scan” (Settings Note-
book) specifies that each line is to be checked for
proper syntax as it is entered. (Set option to ”ON”).

Extensions for Function group 2:
Linking GPSS.EX into EPM causes a new action bar
entry” GPSS* Simulations. ..” with menu items

”Compile model”,

”Start simulation”

”Prepare output”,

”GPSS* system settings...” and
”Submodel maintenance”.

The item ” Prepare output” starts the GPSS* output
browser to view and prepare GPSS* standard out-
put. The item ”GPSS* system settings...” displays
anotebook for changing any GPSS* compile time and
run time settings (i.e. protocol form, actions by er-
rors, automatically start output browser).

”Submodel maintenance” consists of ” List exports”
and ”Library maintenance”. ”List exports” opens a
dialog with informations about a SUBMODEL of a
given name. Informations are including

o exported Block statements and SNA’s/SLA’s
¢ operands of exported Block statements

e general informations of submodel (date, time,
version)

e user comment

”Library maintenance. . .” supports GPSS* submodel
libraries (.GSL, contains precompiled submodels) by

¢ add, replace, delete of precompiled submodels
(.GSO) and

¢ edit submodel sources (.GSS).

6.2 GPSS* submodel package for high-level
I/0

The GPSS* submodel package is a submodel library.
An high-level I/O submodel exports a set of block
statements and SNA’s/SLA’s. The implementation
of high-level 1/0 is based on combination of GPSS*
code and dynamic linking of external procedures with
the HELPDLL block statement. A first prototype
submodel for the access to dBASE-files (dBASE-III
or IV) exports block statements

DBUSE open dBASE-file as a database
DBCLOSE close a database

DBREAD read the actual record
DBWRITE write the actual record
DBSEEK seeks to a record number

DBLOCATE [x] locate to a matched record

and standard numerical /logical attributes

DBFXn number of fields of each record
DBRXn number of records of database
DBFTn(i) type of field i

DBFVn(i) value of field i (if numerical)
DBRNn actula record number
DBEOFn TRUE if end of file

The SNA’s DBF?n(i) contents the values of the actual
record.

Analog it is planed to implement a set of submod-
els for preprocessing many kinds of input data or for
preparing output data for statistical packages exist-
ing.

7 DISCUSSION

This paper describes some new features of a modern
GPSS. With this new extensions the user of GPSS*
can add entities to GPSS as well as new block and
control statements. The new GPSS* is implemeted
using the OS2 system. That is why a new simulation
environment is introduced for this platform. An edi-
tor was built with the E Editor Toolkit of IBM. This
editor allows both text manupulation and submodel
maintenance.

With the new GPSS* and its environment a simu-
lation product was developed combining the old fash-
ioned GPSS with techniques of modern programming
languages.

REFERENCES

M. Granas, F.J. Torrealdea, A.D’Anjou, and
F. Ferretes. Semantic description of a GPSS-like
hierarchical simulation language. Proceedings of
the 2nd European Simulation Conference, 1986.

624 Behlau and Hinz

J. O. Henriksen. Building a better GPSS. A 3:1 per-
formance enhancement. Proceedings of the 1975
Winter Simulation Conference.

J. O. Henriksen. The Development of GPSS/85. Pro-
ceedings of the 2nd European Simulation Sympo-
sium, 1985.

Henriksen,J. O. and R. C. Crain. 1989 GPSS/H Ref-
erenz Manual, Third Edition. Wolverine Software
Corporation, Annandale, VA.

IBM T.J.Watson Research Center. Programmers
Guide to the E Editor Toolkit. 1993.

Pedgen,C. D. and D. A. Davis. 1992. Arena™:
A SIMAN\CINEMA Based Hierarchical Modelling
System, Proceedings of the 1992 Winter Simulation
Conference.

B. P. Zeigler. 1990. Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press,
1990.

AUTHOR BIOGRAPHIES

THOMAS BEHLAU works as a graduate research
assistent in the Department of Computer Simulation
and Graphics at the University of Magdeburg. His
areas of research are the modeling of manufacturing

systems and modeling methodologies. He is a mem-
ber the GPSS-Users’-Group Europe.

VOLKMAR HINZ works as a Assistent Profes-
sor in the Department of Computer Simulation and
Graphics at the University of Magdeburg. His re-
search interests are focused on environments of simu-
lation systems. He is a member of the GPSS-Users’-
Group Europe.

