Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

GRAPHIC MODELING USING HETEROGENEOUS HIERARCHICAL MODELS

Victor T. Miller
Paul A. Fishwick

Department of Computer and Information Sciences
University of Florida,
Gainesville, Florida, 32611, U.S.A.

ABSTRACT

The importance of efficiently representing each
abstract level of a complex model has become
significant for many reasons. Because of the size of
complex models, an organizational methodology is
needed as an aid during both development and
investigation of a system. In addition, some modeling
formalisms are design to describe certain classes of
systems while others are general enough to represent a
broad class of systems. Therefore, the ability to use
multiple formalisms is advantageous when the model is
complex.

In this paper, we define Heterogeneous
Hierarchical modeling (HH modeling) as a modeling
methodology which allows an investigator to use
multiple formalisms and to organize these formalisms
hierarchically. We then present Hybrid Model Theory
which supports HH modeling by theoretically unifying
graphic-based formalisms such as Petri nets, block
models and state machines. An example is given which
demonstrates top-down refinement of a partial model
using a variety of established, well-known formalisms.

1 INTRODUCTION

Heterogeneous hierarchical modeling is defined
by Miller (1993) to describe any modeling methodology
which supports several conceptually distinct
representations and hierarchical development of system
simulations. Additionally, a unified theory is needed in
order to provide a firm mathematically-based foundation
upon which one can build a method to improve the
conceptual and developmental efforts of an investigator.
The unified theory is not to be used by the "end user" of
a computer simulation modeling environment, but rather
the theory is meant only to provide a formal medium
which allows a computer environment to automatically
perform certain functions on behalf of the user. In
particular, the formal theory must stipulate how

heterogeneous modeling formalisms (e.g., Petri nets,

612

block models) can be used hierarchically to form a single
system model.

An investigator who needs to create a large
complex system model requires the ability to choose a
formal representation which is most appropriate to model
the subsystem currently under consideration and requires
an organizational structure to formally compose the
subsystems into a single system. To this end, hierarchical
modeling provides a representation that organizes the
model for both the investigator and the computer
environment in which it is developed. It also allows for
incremental refinement of a model or a portion of a
model in top-down development. It also furnishes a
structure for bottom-up composition from previously
established models which may be in a database.

In this context, there are two categories of model
hierarchies which should be distinguished: type-of and
part-of hierarchies. Type-of hierarchies are related to
object-oriented models and are usually the focus of the
software engineering and artificial intelligence
communities. However, object-oriented models also
appear frequently in the simulation literature (Nelson
1991). Type-of hierarchies emphasize the categorization
of entities based on the generalization of static
properties. Part-of hierarchies can describe either static
or dynamic properties and emphasize the categorization
of physical or conceptual composition. Although both
types of hierarchies are essential, we limit our discussion
to part-of hierarchies.

When using part-of hierarchies, there are two
methods in which the hierarchy is constructed. These two
methods roughly relate to bottom-up and top-down
development. An intermodel hierarchy defines the
coordination of input and output between formal models
and, therefore, favors bottom-up development of abstract
models by grouping preexisting formal models. The
DEVS system (Zeigler 1984) is a good example of
intermodel coordination (however, DEV’s system entity
structure is a type-of hierarchy). An intramodel hierarchy
defines the coordination of input and output from within
a formal model to another different formal model and,

Graphic Modeling Using Heterogeneous Hierarchical Models 613

therefore, favors top-down refinement of an abstract
model into submodels. An HH modeling theory must, in
general, support both types of coordination in order to
allow the maximum flexibility to an investigator. We
present an intramodel hierarchy in section 3 of this paper.

In an accordant relationship with hierarchical
modeling is heterogeneous modeling. Heterogeneous
modeling refers to any type of representation which
permits the integration of a diverse set of modeling
formalisms (such as knowledge-based, discrete,
continuous, fuzzy, and object-oriented models) into a
single formalism; hence heterogeneous modeling
expands the definition of discrete-continuous modeling.

In heterogeneous modeling there are two
categories of model classes: static and dynamic. Static
model formalisms, (e.g., semantic nets) are used to
describe entity types and are used in type-of hierarchies
or graphs. Although there is no theoretical impediment to
prevent static model formalisms from including dynamic
information, dynamic model formalisms (e.g., Petri nets
and queuing nets) are generally used to describe the time
depend relationships among entities in a system.

In order to support HH modeling, hybrid model
theory was recently purposed as a possible formal
representation (Miller 1993). Hybrid model theory
originated from Fishwick and Zeigler’s multimodel
methodology (1992) and is an alternative approach to
other such modeling formalisms as hierarchical, modular
models (Zeigler 1990) and combined discrete-continuous
system simulation (Prachofer 1991).

Hybrid model theory is a specialized construct that
is defined in terms of general system theory and permits
asingle model to be hierarchically constructed either by
inter or intramodel coordination from five well-known
formalisms: Petri nets, Markov systems, queuing
networks, state machines and block models. The
hierarchy is based upon the composition of a system
(part-of hierarchy) rather than the classification of
entities as purposed in object-oriented simulation (e.g.,
Simula, C++ libraries). Although some primitive type-of
information can be derived from a part-of hierarchy, the
Structure attempts to encapsulate only the dynamic
behavior of a system within the hierarchy.

In hybrid model theory, state formalisms model the
transition of a system from one discrete event to another
(state machines, Markov systems), selective formalisms
model events based on resource allocation (queuing
networks, Petri nets) and functional formalisms model
continuous signal-based systems (block models). These
combined formalisms, together with a hierarchically
organized development method, increase the ability of an
investigator to construct system models in a productive
manner.

2 HYBRID MODEL THEORY

Although hybrid model theory (HMT) encapsulates
several representations, only those properties of a hybrid
model which directly relate to simulation are presented.
In hybrid model theory a state machine, Petri net, etc.,
are not atomic models but structured models. Structured
models are made up of at least two hierarchical levels.
The first level is called a controller model. For a variety
of formalisms only four controller models are necessary.
The second level is made up of atomic models called
component models. This split-level approach to HMT is
demonstrated in Figure 1.

Input Controller Model

Ou!ﬁul

Component Model 1

Component
Model 2

Component Model 3

Figure 1: HMT Representation of a Model

As shown in the figure, the data (or control)
"Input” and "Output” are directed into the controller
model. The component models (nodes in the graph) may
or may not have data input and output. Depending on the
type of controller, edges in the graph will either indicate
control flow or data flow. This dual functionality has
been captured in the controller model’s interpretation of
its components (via the transition relation to be described
next). Only under direction of the controller model is
data passed down toandup from the component
models or submodels. In hybrid model theory, refining a
component model into another modeling formalism is
called submodeling.

Formally, a hybrid model M is a named set such
thatM=<H, A, X, ¥,0,1,B,8 1, A>and

H: Component <self , Nys >

A: Edge <ayp, 0y, ..>

X: Input X1 X> >

¥: Output <Y1, Yo, >

©: State <01.,01,..>

7. Time Domain <(T,+,5), z, d, m[], mag[]>
B: Initialize (1,%,0)->6

d: Transition (T, %, 6)->0

A: Output (T, % 0) > V.

614 Miller and Fishwick

The symbols < and > indicate the use of named sets, and
elements in these sets can be accessed as described by
Zeigler (1984). The special symbol self is always a
member of the component set (H) of a model. This
symbol is used to indicate a reference to a submodel (if
one exists). The self symbol is the only member of the
component set for component models. In controller
models, the component set contains the models which are
supervised by the controller model. The edge set (A) of a
component model is empty. In controller models, the
connectivity between component models is identified
with the edge set. An edge o € A is a named set of the
form <to, from, type>, where the symbols to and from are
models in the component set (H), and type is either
undefined (1) or a structured data type based on the reals
(R)or the integers (3). Together, the components and
edges describe the graph of the model and either what
type of data is passed between the components or how
control is transferred among the components.

The input (X) and output () also have the form
<to, from, type>. These sets signify the data or control
information used by different types of models. There is
one difference between inputs and outputs; Inputs are
signals (functions over time) and outputs are values. The
state (©) named set is used for a variety of purposes,
depending on the type of controller or component model.
It is very similar to local memory in computational
definitions.

The time domain T of a model is used in
knowledge-based simulation and is not essential to the
concepts in this paper. It is only noted here that the time
domain of a model contains the time quantum used in
numerical-based simulations.

The last three elements of a model are relations.
Typically, these are used to compute the new state and
output trajectories over a time interval. Because hybrid
model theory is centered around simulation concepts,
these relations have been conceptually altered. It is
assumed that all three relations use two times: the current
time (a global variable) and an end time (given at
relation invocation). These times are used to calculate the
state or output at the end time. The current input and state
are also assumed to be part of the input to these relations.
Output trajectories are created by symbolic methods
which take a model hierarchy as input or created through
numerical analysis techniques. Additionally, it should be
emphasized that these relations are declared, not
precompiled. When numerical analysis (simulation) is
needed, the declarative model is compiled and optimized.

The initialization relation (B) is necessary since
models can be dynamic. At any time during analysis, a
model can become active. This not only allows for the
modeling of systems which may lay dormant, but more

importantly, it models systems which have multiple
descriptions over time. The transition (8) relation is
intended to be used when a model is active. Although, as
can be seen from the description, it could be used to get
the initial state of a model. The initialization and
transition relations were derived so that the concept of
state, transition and initialization could be separated. For
the same reason (and tradition), the output relation (}) is
also kept separate from the other relations.

One of the optimizations for numerical analysis is
the integration of the three relations (8, 8, A) so that only
one invocation of the model’s relations produces the total
behavior. This integration is possible in hybrid model
theory because there are only four controller models and
each type of controller has the same form of transition
and output relations. For instance, the difference between
a Markov system and a state machine is the component
models. The controller model is the same.

3 EXAMPLE

A modeling environment has been developed to
demonstrate and verify hybrid model theory. Figure 2
shows the graphical interface to the environment which
allows an investigator to draw the simulation using a
selected formalism. It also allows the investigator to
sketch the objects or concepts being simulated and to
add text comments to the drawing (the simulation
package was developed from an object-oriented diagram
drawing package).

In this example, a simulation of a robot cell is
modeled with a queuing network. The robot cell simply
transfers a pallet from one conveyor to another. The
simulation is represented by the small graph at the top of
the window. Everything else in the window is considered
as text or graphical comments. Another window (called
an inspector) allows the investigator to select details
about the selected object in the window. For text and
graphic comments, the investigator selects features such
as fill color, line width, etc. For simulation objects, the
investigator selects properties such as distributions,
signal type (real, integer), queue capacity, trace options,
etc.

The HMT representation of this simple queuing
network is

H: <self , arrival, queue, robotCell>

A: <<arrival, queue, 1>, <queue, robotCell, t>>

X: <>

Y <

©: <queueState>

T <(R,+,2),z,d, m[J, mag[]>

B: (1, %, 0) -> <queueState = idle>

A (T, 0) > <>

Graphic Modeling Using Heterogeneous Hierarchical Models 615

amival queue rabotCell

This model identities the mos! abatract
level of the sysiem. Amriving pallats are
‘Queuad by the sysiem unill the robol
call ls Iree 10 work il. The amrvial node
above has an inter-arrival ime ol 0.6
(&s shown In the Modal Information
window). iInslead of using a disiribulion
for the sarvice lime, a dala modal is
coordinaled with the server node in
order (o modal the senvice lima.

Figure 2: GUI to Modeling Environment

The transition relation is far more complex, but is
described in detail in Miller (1993). Essentially, it
computes the state at each new event (arrival or
departure). This continues recursively until the end time
is reached. For numerical analysis (simulation), the
recursion is compiled into an event loop.

Once the simulation is drawn and the details set in
the inspector window, the investigator can select the
"compile and run” option in the pull down menu and the
program will compile the model into code, run it, and
present the investigator with a list of the traces that
he/she selected in the model. The investigator then has
the option of selecting one or more traces and viewing
them graphically or displaying statistics about them.
Figure 3 shows a sample plot of the robot cell’s busy
state when the arrival node has an exponential arrival
time of 0.6 and the robot has an exponential service time
of 0.5.

0.4

° 4 0 10

Figure 3: - Plot of Robot Cell Busy State vs Time
1 =busy, 0 = idle

This simple queuing network model can be used as
an abstract model for a more complex model. Figures 4
and 5 show models of a robot master and motor which
are stored in a database. The robot master model controls
a single degree of freedom robot arm by supplying an
output voltage given the robot arm’s current angle
(Figure 4). As the diagram indicates, a state machine is
used to model this system. The robot master also supplies
a signal indicating when the robot arm is busy (moving a
pallet). Thus, each state must supply 2 output signals
(voltage and busy) and uses 1 input signal (angle).

arge»1700

wailForSiop

tabs{velocly) <- Q1

Figure 4: Model of Robot Master States

The motor has been modeled using a block model
(Figure 5). This model uses a voltage to calculate the
current angle of the motor’s shaft. These two models will
be used together in an intermodel hierarchy to model the
time required for the robot cell server in Figure 2 to
transfer a pallet from one conveyor to another. These
models are coordinated as in Figure 6.

In Figure 6 there are a total of three models which
have been coordinated. This type of bottom-up
development is similar to DEVS (Zeigler 1984) and
combined-discrete simulation (Prachofer 1991).
However, hybrid model theory integrates the
concept of time somewhat differently that either
Zeigler’s or Prachofer’s work. The robot state component
model in Figure 6 is another state machine which
calculates the internal state of the robot and is not shown
in this paper.

616 Miller and Fishwick

Figure 5: Model of Motor

The model of Figure 6 can now be used to
implement the robot cell server in Figure 2 by using an
intramodel hierarchy. In HMT any model which supplies
a "default” idleRet (or busy) signal can be used to refine
a transition in a Petri net or a server in a queuing
network. The operation is fairly simple. When the
queuing model determines that the robot cell server is
active, the model of Figure 6 is initialized (hence the
need for an initialize relation). The queuing network
model monitors the idleRet (or busy) signal. When the
signal goes low, the queuing network interprets this as
the server being idle. Thus, the server time has been
replaced by a more complex model which better
represents the actual system. In hybrid model theory,
there are a few of these "default" signals which allow
coordination between different models. They are very
easy to learn, and with them any type formalism can be
used to refine a component of another formalism.

Figure 6: Intermodel Coordination

A numerical simulation of this model can also be
compiled and run by the investigator. Figure 7 shows the
plot of the three traced signals: voltage, angle and
velocity. This simulation run began with one pallet in the
queue. As can be seen from the trace, at time zero the
queue network initialized the robot cell model and waited
until the robot controller return an idle signal. During this
time, the voltage applied to the motor was 120 volts from
time 0.0 to 3.1 and -120.0 from time 3.1 to 6.2 and was
supplied by the state machine. The robot arm’s angle
moved from O degrees to 180 and then back down to 0
again and was supplied by the block model. Also from
the trace, it can be seen that more pallets arrived starting
at time 33.0. In between time 6.2 and 33.0 the server of
the queuing network, the robot cell server, was idle and
therefore the robot cell model of Figure 6 was
deactivated. In this interval the signals are undefined. At
time 33.0 when another pallet arrived, the robot cell
model is again initialized and the queuing network waits
for the idle signal.

Fuzzy and qualitative simulations (Fishwick 1991)
can also be run using the computer environment. In
hybrid model theory signals and time domains are
structured objects and are stored in a database. When the
investigator declares a signal type, he/she selects the type
from the database. These structured types contain the
necessary information for all three types of simulation. In
Figure 8, an example of the signal type database is
shown. This information allows the computer
environment to check several types of semantic errors
(such as out-of-range errors during simulation and
dimension analysis). It also allows the use of linguistic
values for fuzzy simulation (Fishwick 1991), and it
permits the computer environment to set up simple
qualitative spaces for the investigator in qualitative
simulation (Bobrow 1986).

150 n A

"I A
irA i

-50

-100

—— — a—
-
[10 20 30 40

Figure 7: Traced Signals of complex model vs Time.
Voltage & Velocity - black, Angle - gray

Graphic Modeling Using Heterogeneous Hierarchical Models 617

mperature - water (default)
mperature - star

Celsius - C

Figure 8: Type Database

4 SUMMARY

The example given in the last section
demonstrates how an investigator can develop a model
using either a top-down or bottom-up methodology. At
any point, the investigator can select a formalism which
suits the pragmatic issues at hand and coordinate this
model within the system. Hybrid model theory dictates
how these coordinations must occur in order to maintain
consistent input/output, time and model control;
nevertheless, for all practical purposes, hybrid model
theory is hidden from the investigator. The program
ensures correctness by automatically setting up the
appropriate signals and coordination, and the investigator
is free to concentrate on modeling the system.

There are a few important limitations to the current
version of hybrid model theory. Many simulation
packages allow a user to model the entities in a queuing
network and the tokens in a Petri network. It is
reasonable to assume that these entities represent
important components of a system. Hybrid model theory,
at the moment, does not allow these entities to modeled.
However, current research indicates that there is no major
obstacles to including this type of modeling.

There are times, especially in larger systems, when
a duplicate or slightly modified model is needed in order
to implement a new component of the system. Sharing a
model between two parts of a system can only occur
when the two parts are guaranteed never to be active at
the same time; otherwise, a duplicate mode is needed.
When a model is needed which is slightly different than
an existing model, the investigator must duplicate and
then modify the model. An integration of of type-of
hierarchies into hybrid model theory is needed for this to
occur efficiently.

REFERENCES
Bobrow D.G (ed), Qualitative Reasoning about Physical

Systems, MIT Press, Cambridge, Massachusetts,
1986.

Fishwick, P.A., "Fuzzy Simulation: Specifying and
Identifying Qualitative Models," International
Jounal of General Systems, 19 (3), pp. 295 -
316, 1991.

Fishwick P. A,, and B.P. Zeigler, "A Multimodel
Methodology for Qualitative =~ Model
Engineering,” ACM Transactions on Modeling
and Computer Simulation, 2 (1), pp. 100, 1992.

Miller V.T., "Heterogeneous Hierarchical Modeling for
Knowledge-based Autonomous Systems," Ph.D.
Dissertation, Computer and Information Sciences
Department, University of Florida, August, 1993.

Prachofer H., "Systems Theoretic Formalisms for
Combined Discrete Continuous System
Simulation," International Journal of General
Systems, 19 (3), pp.219-240, 1991.

Zeigler B.P., Multifacetted Modeling and Discrete Event
Simulation, Academic Press, London, 1984,

Zeigler B.P., Object Oriented Simulation with
Hierarchical, Modular Models, Academic Press,
New York, 1990.

AUTHOR BIOGRAPHIES

VICTOR T. MILLER is a visiting assistant professor in
the Department of Computer Information and Sciences at
the University of Florida. He received a Ph.D. in
Computer Engineering from the University of Florida in
1993. His interest and research include simulation,
geometric and computational modeling.

PAUL A. FISHWICK is an associate professor in the
Department of Computer and Information Sciences at
the University of Florida. He received a Ph.D. in
Computer and Information Science from the University
of Pennsylvania in 1986. He also has six years of
industrial/government production and research
experience working at Newport News Shipbuilding and
Dry Dock Co. and at NASA Langley Research Center.
His research interests are in computer simulation
modeling and analysis methods for complex systems.
He isa senior member of the IEEE and the Society for
Computer Simulation. He is also a member of the IEEE
Society for Systems, Man and Cybernetics, ACM and
AAAIL Dr. Fishwick was chairman of the IEEE
Computer Society technical committee on simulation
(TCSIM) for two years and he is on the editorial boards
of several journals including the ACM Transactions on
Modeling and Computer Simulation, Man and
Cybemnetics, The Transactions of the Society for
Computer Simulation, International Journal of Computer
Simulation, and the Journal of Systems Engineering.

