Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

VISUAL MODELING OF DEVS-BASED MULTIFORMALISM SYSTEMS
BASED ON HIGRAPHS

Herbert Praehofer
Dietmar Pree

Systems Theory and Information Engineering
Johannes Kepler University
A-4040 Linz, Austria

ABSTRACT

This paper presents a graphical modeling method
and tool for DEVS model and DEVS-based combined
discrete/continuous model specification. In DEVS-
based modeling, atomic model behavior specification
is organized around different phases which define a
partition of the state space of the model. The phase
transitions depict the qualitative state changes and
naturally lend themselves to be represented by a state
transition diagram. Our representation of these phase
transitions is based on the higraph extension to con-
ventional graph representations. In higraphs, the
area of the diagram is used to represent set enclo-
sure and exclusion and the Cartesian product which
leads to remarkable reduction in the diagram’s com-
plexity. An interactive modeling tool based on the
graphical representation developed is presented.

1 INTRODUCTION

Graphical representations have advantageously been
employed to ease discrete event simulation model-
ing, model documentation, and model communica-
tion. Dependent on the particular simulation world
view in hand, different forms of representations have
emerged. FEvent graphs (Schruben 1983) have been
developed to model event-oriented models as graphs
showing the events and event dependencies. Activ-
iy cycle diagrams (Poole and Szymankiewicy 1977)
are capable representing activity-scanning models by
showing the cycles of activities the various entities in
the model traverse. Block diagrams (Schriber 1977)
or process networks (Pritsker 1977) have made the
programming of process-interaction models popular.
These diagrams are flowcharts which show the move-
ments of the entities, usually the jobs, through the
various operations of the system. Cota and Sar-
gent introduced a new version of the process world
view (Cota and Sargent 1992) and control flow graphs

595

(Cota and Sargent 1989) as a means for its graphi-
cal representation. Although introduced as a con-
ceptional tool for developing parallel simulation algo-
rithms, they are a useful representation of simulation
models. A control flow graph model is represented
by an directed graph where the nodes depict various
states of the model and the edges the event transi-
tions.

The DEVS formalism (Zeigler 1976,1984,1990) be-
ing the system theoretic formalism for modular, hi-
erarchical discrete event modeling and simulation
has been extended by Praehofer (Praehofer 1991a,
1991b, Pichler and Schwaertzel 1992) to facilitate
combined discrete/continuous multiformalism mod-
eling and simulation. The DEVandDESS formalism,
coming into being by a combination of the DEVS and
the differential equation specified system formalism
(DESS), allows the construction of atomic and hierar-
chically coupled combined models. In the DEVS for-
malism and its DEVandDESS multiformalism exten-
sion, atomic model specification is organized around
various phases which denote global system states. Ac-
tually, the different phases of a model represent a par-
titioning of the state space of the system into mutual
exclusive blocks where the different blocks identify
qualitatively differing system behaviors. In combined
modeling, the phases can be used to associate differ-
ent derivatives with different phases and the phase
transitions mean a change from one derivative to an-
other. Oeren (1991) termed such an modeling ap-
proach multimodeling. Fishwick (1991) and Fishwick
and Zeigler (1992) developed a methodology for qual-
itative model engineering based on the multimodeling
approach.

While coupled DEVS and DEVandDESS models
lend themselves to be graphically represented as block
diagrams, a graphical representation of DEVS-based
atomic models is still missing. The state space phase
partitioning and the dynamic behavior specification
organized around phases can serve as a basis for a

596 Praehofer and Pree

graphical representation. The phases and phase tran-
sitions are naturally represented by a state transi-
tion diagram similar to those of finite state automa-
tons and the control flow graphs of Cota and Sar-
gent. In the directed graph, the nodes depict the
phases and the edges the event transitions. However,
in contrast to finite state automaton diagrams, with
the transition edges we have to associate the com-
plex state event specifications of the events repre-
sented by the edges. There is general consensus that
state diagram representations of complex systems get
unwieldy through the unmanageable, exponentially
growing multitude of states with a multitude of link-
ing edges, all of which have to be arranged in a flat
unstratified fashion, resulting in an unstructured, and
chaotic state diagram. The higraphs extension (Harel
1987, 1988) of the conventional graph representations
offers a solution to this problem. In higraphs, the
area of the diagram is exploited to represent set en-
closure, exclusion and intersection and the Cartesian
product. The higraph representation nicely fits to our
state space phase partitioning.

In this paper we develop a graphical representation
for DEVS and DEVandDESS atomic models based
on state space phase partitioning and higraph-based
state transition graphs. This graphical form of rep-
resentation provides a foundation for an interactive
modeling tool implemented in Common Lisp / CLOS
(Steele 1990) employing the Common Lisp Interface
Manager (CLIM) toolkit (Lucid 92). The interac-
tive modeling tool will serve as a user interface mod-
ule of the STIMS modeling and simulation environ-
ment (Praechofer, Auernig, Reisinger 1993). STIMS
is a new powerful, object-oriented modeling and sim-
ulation environment currently in development and is
based on the DEVS and DEVandDESS system spec-
ification formalisms.

The outline of the paper is as follows: In sec-
tion 2 we give a short review of the DEVS and DE-
VandDESS modeling concepts, discuss the role of
phase partitioning in DEVS-based modeling, and in-
troduce models owning several dimensions. In sec-
tion 3 we discuss graphical representations of DEVS-
based models and show how higraphs are used ad-
vantageously to achieve compact representations. In
section 4 we present our CLIM realized modeling tool.

2 DEVS-BASED
MODELLING

MULTIFORMALISM

2.1 DEVS-Based Modeling Reviewed

Zeigler (Zeigler 1976, 1984, 1990) developed the dis-
crete event specified system (DEVS) formalism as a

mathematical basis for discrete event modeling. This
formalism provides a formal representation of discrete
event dynamic systems capable of mathematical ma-
nipulation and independent of any computer realiza-
tion, just as differential equation specified systems
serve this role for continuous systems.

In the DEVS formalism, one has to specify basic
atomic models and, by connecting together these ba-
sic models in a modular, hierarchical manner, one has
to specify complex coupled models. A DEVS-based
atomic model is a modular unit. It comprises input
and output interfaces in the form of input and out-
put ports through which all the interactions with the
environment occur. The interior of the model is repre-
sented by state variables. The dynamic state behav-
lor and its outside manifestation is defined employ-
ing two types of events. Input events lead to external
event transitions, i.e., upon occurrence of an input
event, the model transits to a state determined by the
external transition function. The other type of events
are time scheduled, internal events. For each state the
time advance function defines the time interval to the
next internal event. When this time has elapsed, an
internal event occurs. The system produces an out-
put event and transits to a next state determined by
the internal transition function. Specification of com-
plex coupled models is done by connecting the output
and input ports (modular coupling). Coupled models
also have their own input and output ports and they
can be used as components in bigger coupled models
(hierarchical modeling). From their input and out-
put interface, coupled models are not distinguishable
from atomic components and, therefore, are reusable
as building blocks in the same way as atomic models
are.

Based on DEVS, Praehofer (1991a, 1991b) devel-
oped system specification formalisms and simulation
concepts for combined discrete/continuous multifor-
malims modeling. He introduced the DEVandDESS
formalism as a combination of the DEVS and differ-
ential equation specified system formalism (DESS) as
a basic system theoretic formalism for combined dis-
crete continuous modeling. A DEVandDESS atomic
model has an input and output interface split up
into discrete and continuous input and output ports
through which all the interactions with the environ-
ment occur. It has a continuous as well as a dis-
crete state set, both split up into state variables.
The derivative function and the continuous output
function inherited from the differential equation part
are used to specify the continuous behavior. Dis-
crete event behavior is inherited from the DEVS part.
However, the DEVandDESS knows a further type of
event, viz. state evenis. State events are internal

Visual Modeling of DEVS-Based Multiformalism Systems Based on Higraphs 597

events caused by the continuous changes of the con-
tinuous inputs and continuous states and are mod-
eled in the stale event transition function. Condi-
tions on continuous inputs and continuous states in
the state event transition function may become true
when continuous states and inputs change continu-
ously. Whenever such a condition becomes true, a
state event occurs. Similarly to time events, the
system puts out the discrete output determined by
the discrete output function and transits to a new
state determined by the state event transition func-
tion. Strong influences exist between the discrete and
continuous parts. On one hand side, the continuous
behavior may depend on the current discrete state.
On the other hand side, the changes in the continuous
states and inputs trigger state events. The events can
change the discrete as well as the continuous states
leading to discontinuous jumps in the continuous tra-
jectories.

The DEVandDESS coupled model formalism facil-
itates modular, hierarchical coupling of components
which can be either of the discrete, continuous, or
combined type. Analogous to DEVS, coupling of the
components of different types is done simply by con-
necting their output and input ports. Couplings from
discrete outputs to continuous inputs are allowed. In
such a coupling, the event outputs are interpreted as
piecewise constant, i.e., an event output determines a
constant output value until the next event. However,
a coupling from a continuous port to a discrete port
1s not allowed since the continuous trajectory would
imply an infinite number of external state transitions.

2.2 State Space Phase Partitioning in DEVS-
Based Modeling

Conventional discrete event modeling approaches and
simulation languages emphasize the concept of event,
activity or process and de-emphasize the concept of
state. The DEVS formalism, however, originating
from the systems theory background, emphasize the
notion of state. In the DEVS formalism an atomic
model dynamic behavior specification is organized
around the phase variable which denotes some sort
of global state the system stays in. Depending on the
current phase of the system, it will react differently to
external inputs and occurrence of internal events. In
appendix A we show a model of a preemptive server
which is structured along different phases. The model
iseither idle, or busy with a low priority job (busyLP),
or busy with a high priority job (busyHP), or it may
service a high priority job but a low priority job may
be preempted. Depending on the current phase, the
reaction to external inputs and internal events differs.

4 gear

speed

Figure 1: State Partitioning of Automated Transmis-
sion Vehicle

In DEVS modeling, the phase actually defines a
partition of the state space of the model, i.e., the
different phases indicate different, mutual exclusive
blocks of the state space. So, in the preemptive
server model, the phase idle represents that subset of
the state space containing that single discrete state,
where both queues, the queues with low priority jobs
and high priority jobs, are empty. The phase busyLP
now represents that possible infinite subset where no
high priority job is in the system but there is at least
one low priority job. Similarly, the phases preempted
and busyHP define the subsets of states where there
are high priority jobs and a low priority has been and
has not been preempted.

In combined DEVandDESS modeling these issues
are getting even clearer. Here the phase variables of-
ten are used to define the partition of the continuous
state space or they are used to define the systems
current discrete input value. In any case the phase
transitions are done by discrete event transitions and
signify a qualitative change in the dynamic behavior
of a multimodel. The transitions are either external
when the phases depend on the input, time sched-
uled when they depend on particular times, or state
event when they depend on particular values of the
the continuous state space. Let us clarify these is-
sues by considering two similar simple models, viz.
a vehicle with a stick operated transmission system
and a vehicle with a rudimentary automatic transmis-
sion system which changes gears at particular speeds
only. The phases of the system obviously are given
by the different gears which determine different sys-
tem behaviors. In the model of the hand-operated
system, the gears are determined from outside. Thus
the phase transitions are determined by the external
transition function. In the model of the automatic
system, however, the gear changes occur when the
speed reaches certain thresholds. The phase transi-
tions are modeled by state events in the state event
transition function. The different gears are directly
associated to certain subsets of the continuous speed
variable as depicted in figure 1.

598 Praehofer and Pree

stop-filling
fll-ie ¢ '\ empty-it

3 is-full

heat-it
/

is-empty

\
cool-it

Figure 2: Boiling Water Pot System

2.3 More-dimensional State Spaces in

DEVS-Based Modeling

So far DEVS modeling has concentrated on systems
with one-dimensional state space only, i.e., systems
which only have one phase variable and the parti-
tioning is one-dimensional. However, in continuous
and combined modeling, systems with one dimen-
sion are the exception. Most systems show several,
if not a number of independent dimensions. More-
dimensional combined models usually also have inde-
pendent phase partitions for the different dimensions.
This motivated to introduce a new formalism which
1s a specialization of the usual DEVandDESS formal-
ism. We call it n-dimensional DEVandDESS and 1t
is characterized by owing several dimension and for
each dimension dim there is one

e continuous state variable dim,
e one phase variable dim-phase, and

e one sigma variable dim-sigma to define the time
to the next time event relative to that dimension.

Figure 2 shows a two-dimensional system of a pot
which can be heated and cooled, filled and emptied
(see Praehofer, Bichler and Zeigler (1993) for a more
detailed description of the system and for event-based
control of the system). The two dimensions are the
temp and the level dimension representing the lig-
uid level and the liquid temperature, respectively.
The system has two discrete command inputs - the
heat-com and the fill-com input - with three different
commands for each, viz. heat-it, cool-it, stop-heating

— stop-heating

H
€5 ,
P28 : i
2% E]]
El] 3
3533 * 3 3
K
g g3
is-full threshold
3
5% 3
—= is-cmpty
8% &
> temp (°C)
cold t-betw hot temp-phase
on off off Is-cold sensor
off off on is-hot sensor

Figure 3: Two-Dimensional State Space Partitioning
of Pot System

and fill-it, empty-it, stop-filling, respectively. The
system’s discrete outputs are given by four simple
threshold sensors, viz. is-cold, is-hot, is-empty, and
is-full. The values for output sensors are on and off
and they react at particular threshold values of the
two continuous state variables level and temp. Each
state dimension is partitioned into three mutual ex-
clusive blocks according to the threshold sensor out-
put values. Figure 3 shows the state partitioning.
There are 3 times 3 mutual exclusive blocks which
have different sensor output values and which are de-
noted by the phases cold, t-betw, hot and emipy, I-
betw, full, respectively. Although the continuous sys-
tem variables influence each other, the state events
modeling the phase transitions are independent in the
two dimensions.

Although most important for combined modeling,
n-dimensional models can also advantageously be em-
ployed in pure discrete DEVS modeling. Different di-
mensions in DEVS models should be employed if sev-
eral independently executing processes can be iden-
tified in one atomic model. For example, in a multi-
server system modeled as one atomic model compo-
nent, the different servers are independent execut-
ing components only interfering through the common
waiting queue. Each server has its own phase and
sigma variable. The sigma variable for one server
defines the time to next end-of-service event for the
particular server. The time to the next internal event
of the whole multiserver model, i.e., the value of the
time advance function, is given by the minimum of

Visual Modeling of DEVS-Based Multiformalism Systems Based on Higraphs

the sigma values over all servers.

3 HIGRAPH-BASED
TRANSITION DIAGRAMS

PHASE

3.1 DEVS-Diagrams

Graphical representations are advantageously em-
ployed to ease simulation modeling and model docu-
mentation. As conventional simulation modeling em-
phasizes the concept of event, activity, or process,
their graphical representation also are based on the
notion of the event, activity, or process. Our ap-
proach naturally lends itself to be represented as a
finite state diagram, i.e., a directed graph where the
nodes represent the different phases of the model and
the edges represent the event transitions. We call this
representation DEVS-diagrams. However, in contrast
to the usual finite state transition diagram of finite
state machine automaton, for DEVS-diagrams com-
plex procedures are associated with the event edges.
Only the phase changes are represented by the edges.
In background with each transition edge there is a
complex state transition affecting the arbitrary com-
plex state space and depending on an arbitrary com-
plex condition.

To represent purely discrete DEVS models, the
nodes denoting the different phases of the model are
linked by two types of transition edges representing
the internal and external event transitions, respec-
tively. With each internal transition edge we asso-
ciate the following code:

e a condition which is tested before the event is
selected,

e a priority value to arbitrate in case of several
executable internal transitions,

e next state values for a number of state variables,
and

¢ output values for different output ports.

With each external transition edge we associate the
following code:

¢ an input port,

o a condition which is tested before the event is
selected,

* a priority value to arbitrate in case of several
executable external transitions, and

® next state values for a number of state variables.

599

reempted inHP

—— cxternal event
LPQ ... low priority queue HPQ ... high priarity queue
inLP ... nput of low priority job inHP ... nput of high priarity job

Figure 4: DEVS-Diagram for Preemptive Server
Model

With a DEVS-diagram specified model then we
associate the following dynamic behavior: A time
scheduled internal event is executed when the time
advance value has elapsed. The conditions of the in-
ternal event edges starting at the current phase node
are tested. The transition edge whose condition eval-
uates to true and with the highest priority value is
executed, i.e., the next phase is entered as given by
the edge, the next state values are assigned to the
state variables, and the output events are generated.
Upon the occurrence of an input event, the external
transition edges are tested. The transition edge with
the appropriate input port and the condition evaluat-
ing to true is selected and executed. Figure 4 shows
the DEVS state transition diagram of our preemptive
server model.

To model DEVandDESS systems, we employ one
more event edge type, viz. edges for state event tran-
sitions. Similar to time scheduled transitions, with
the state event transition edges we associate the fol-
lowing code:

e a state event condition testing one continuous
state variable being greater or smaller a particu-
lar threshold,

e a further arbitrary condition which is tested be-
fore the event is selected,

e a priority value to arbitrate in case of several
executable internal or state event transitions,

e next state values for a number of state variables,
and

e output values for different output ports.

600 Praehofer and Pree

heat-com heat-cam
fill full, full,
cold hot
is-full . is-full
-~ p-full - - -full
beatkom
I-betw, l-belw,
cold hot
fil . fill
- is ~ is-gmpty
is isjempty
~iscold " is-bot s
fill empty, emply, empty,
cold is-cold t-betw - is-hot hot
beat-com heat-cam heat<com

Figure 5: DEVS-Diagram of the Pot System

The state event is to occur, when the continuous
value reaches the particular threshold. The condi-
tions are tested and if true the transition is executed.
In case of multiple executing transition edges, the pri-
ority value arbitrates.

Also, the continuous behavior of the continuous
part of the formalism is modeled within the diagram.
With the different phases, we specify the differential
equations for the continuous state variables and the
output values for the continuous output ports.

There is general consensus that the state dia-
gram representation of complex systems get unwieldy
through the unmanageable, exponentially growing
multitude of states with a multitude of linking edges,
all of which have to be arranged in a flat unstrati-
fied fashion, resulting in an unstructured, and chaotic
state diagram (Harel 1987). Figure 5 shows a state
transition diagram of the pot model represented in
figure 2 with the state phase partitioning given in
figure 3. One sees that already for this quite sim-
ple example, the diagram gets quite complex. All
the possible combinations of the two phase variables
have to be represented explicitly with all the possible
transitions between each other. This leads to a lot of
redundancy in event transition specification. In our
example the state event transitions for the temper-
ature and the level dimension are independent from
each other and therefore could be specified indepen-
dently. The input events, however, do not depend
on the phases at all and only effect the derivative
functions. But in the flat diagram all the transitions
from every node have to be specified explicitly. The
derivatives for the temperature and the level are all
the same expect the phase hot. But to allow changing

derivatives for different phases, we have to give the
derivative to each phase node explicitly. To solve this
problem, Harel (1987, 1988) introduced higraphs and
higraph-based state transition diagrams.

3.2 Higraphs and Higraph-Based DEVS.
Diagrams

Higraphs (Harel 1988) are a general extension of con-
ventional graph representations by introducing means
for representation of (1) set enclosure, exclusion and
intersection and (2) the Cartesian product. This has
been accomplished by exploiting the area of the dia-
gram similar to the well-known concept of Venn dia-
grams. Higraphs have a lot of potential applications
and have advantageously been employed for the state-
chart visual formalism for specification of complex re-
active systems (Harel 1987) which is the basis for the
Statemate design environment (Harel et al 1990). Our
application to the specification of DEVS-diagrams is
similar to statecharts, however, differs from it in the
way transitions are specified and in further details.
In higraph-based representations, atomic-blobs in
the form of rectangular shapes are used to repre-
sent basic mutual exclusive sets. In our applica-
tion, atomic-blobs are used to represent the basic
phases which are the blocks, i.e., mutual exclusive
subsets, of the state set partitioning. They corre-
spond to the nodes in our DEVS-diagram approach
above. Atomic-blobs now can be clustered to com-
pound blobs. A cluster-blob, called or-blob in the se-
quel, merely is the union of the atomic-blobs it en-
closes within its contour. This enclosure is a union
operation and not a membership operation. With
that, arbitrary combinations of atomic-blobs can be
built. An or-blob forms a more abstract concept
and can be used to represent equivalence relations
of atomic-blobs in respect to a particular edge. An
edge originating from an or-blob means that this edge
applies equivalently for all the atomic-blobs enclosed
in the or-blob. Figure 6 shows a higraph-based ver-
sion of the DEVS diagram of the preemptive server
model. As can be seen, an input event at port inLP
has the same behavior for phases busyLP, busyHP
and preempted. Therefore, the respective external
event edge originates from an or-blob enclosing ex-
actly these three phases which means that the tran-
sition applies if the system is in the busyLP, busyHP
or preempted phase. An input event at port inHP
will show the same reaction in the busyHP and pre-
empled phase but a different in the busyLP phase.
An or-blob with phases busyHP and preempted is the
origin of the respective external event edge. Similarly,
equivalent internal transitions are observed in phases

Visual Modeling of DEVS-Based Multiformalism Systems Based on Higraphs 601

)
inL.P Ty
idle busyLP [ey LPQ
) em empty HPQ &
inHP emgh;%& "ert";ty LPQ
P]
inLP
l busyHP l Ereemptedl
J
-~ empty HPQ nHP

-------- + intenal cvent ———= cxtemal cvent
LPQ ... low priority queuc HPQ ... high priority qucuc
inLP ... mput of low priority job inHP ... mput of high priority job

Figure 6: Higraph-Based DEVS-Diagram of Preemp-
tive Server Model

(" level-phase H temp-phase ')

]
]

full : hot
!
1

.] ot
is-tull - ls-full : ® - |s-hot
1
heat-com : fill-4om

I-betw | t-betw
|
|
]

- is-gmpty 1 - is-cold
is«empty] istcold

]
]
1

empty : cold
!
! J

Figure 7: Higraph-Based DEVS-Diagram of Pot
Model

busyLP, busyHP, and preempted when both queues
are empty and in phases busyHP and preempted when
the high priority queue gets empty.

To represent the Cartesian product, the states-
pace with several dimensions is combined in one big
blob — called and-blob — which is then divided into
several or-blobs separated by dashed lines. The or-
blobs making up the and-blob represent the differ-
ent dimensions of the Cartesian product. The and-
blob now is not longer made up by the union of the
atomic-blobs it contains but is made up by the prod-
uct of the atomic-blobs of each dimension. That is,
the atomic-blobs for each dimension exist in parallel.
Figure 7 shows the higraph-based DEVS-diagram of
the pot model. The phases of the two dimensions

are represented by two orthogonal or-blobs denoted
by the phase variables temp-phase and level-phase.
The product of the 3 atomic-blobs for each dimen-
sion make up the 3 times 3 is 9 possible phase con-
figurations seen in the original diagram of of figure
5. The state event transitions for these two dimen-
sions can be represented independently. The external
input events do not effect the phase transitions and
therefore can be specified at the outmost blob. The
derivatives for the continuous states applying for all
phases expect the hot phase, should be specified for
the outmost blob. Special derivatives then can be
specified for the hot phase which, in our semantic of
DEVS-diagrams, overwrites the general specification.
All in all, this results in a remarkable reduction of
the diagrams complexity. Also it should be recog-
nized that the blob diagram is a very good and com-
pact representation of the possible partitioning of the
state space of the system with the atomic-blobs being
the most granular units.

4 A CLIM IMPLEMENTED VISUAL
MODELLING TOOL

The user interface toolkit Common Lisp Interface
Manager (CLIM) (Lucid 1992) is employed to real-
ize an interactive modeling interface for the STIMS
modeling and simulation environment. A block dia-
gram editor is implemented for coupled model spec-
ification. Coupled models are specified by drawing
the component and coupling structure of a coupled
model. For atomic model interactive specification,
a user interface module is realized which is based on
the graphical higraph-based DEVS-diagram represen-
tation presented above.

CLIM is a portable, powerful, high level user inter-
face management system toolkit intended for Com-
mon Lisp / CLOS software developers. It acts as
an abstract, high-level generic layer that provides a
consistent interface across a large set of hosts and al-
lows achieving the look and feel of the target host
system without implementing it directly and without
using the low-level implementation language of the
host system.

CLIM is based on the object oriented concepts
provided by CLOS. But in contrast to conventional
object-oriented systems, CLIM also brings object ori-
ented programming to the surface, to the user in-
terface itself. A CLIM program is organized around
three object types, viz. the application objects which
are the internal objects building up the application,
the display objects which serve as graphical, on-screen
representations of the application objects, and the
presentations which establish the link between appli-

602 Praehofer and Pree

In out name: 0 tans-dme: 0
nessage ackn queue: 0 sendime: 0
phase 0
sgma: 0
[C]
Alomic Bleb OrBleb AndBleb Cluster SteleEvent
InputEvent TimeEvent EGEvent RESIZE! AddDim
DelDim Refresh (R) Qew Dol Exit (X]
el
=
tn
sepd ochn
ok
nd oTonan |22 hcin in i
ron.
o]
5] e
xternal Transition: n 253
nput port: In -
onditiom : t
xt stete velwe
sigma @ sendbme
quene i rﬁ
1]

_

Figure 8: Token-Ring Protocol Model Specification
using the DEVS-Diagram Specification Tool

cation and display objects. By that, CLIM provides
a novel way to connect input and output to the se-
mantics of an application.

In CLIM the application’s user interface, i.e., the
component that interacts directly with the user, is
called the application frame. It usually is partitioned
into several functional divisions, called panes, like
drawing areas, menu-bars, or text editor windows.
An application frame can have several layouts, i.e.,
arrangements of panes, which may be changed by the
application. Figure 8 shows the application frame for
the DEVS-diagram model specification tool. The first
pane is employed to show and define the input, out-
put, parameter, and state variables. Then, the sec-
ond pane is used to interactively develop the DEVS-
diagram of the model. In the last pane the state
transition specification of event edge selected in the
DEVS-diagram is presented in a formatted manner.
The various fields giving conditions, next state and
output values of the event specification can be edited
using a simple, built in text editor. This combined
graphical and textual specifications can be translated
into a running atomic model ready to be simulated
within the STIMS environment.

Special emphasis has been put on the program
for the graphical, interactive development of DEVS-
diagrams. The placing of the atomic-blobs and and-
blobs is done by the user with the mouse. Or-blobs
can be placed by the user if top down development of

blob structures is desired. But, or-blobs also can be
placed and layouted automatically when bottom-up
modeling is required. The atomic-blobs which should
be clustered have to be selected, a contour which en-
closes all these atomic-blobs but excludes all the other
atomic-blobs is created automatically. To specify the
edges, one has to give the starting point and the end
point of the edge which has to be on a blob contour.
The edge itself is laid automatically using a heuristic
approach so that overlapping of edges is avoided.

5 SUMMARY AND OUTLOOK

We presented the DEVS-diagram method and tool
for graphical representation of DEVS-based models
which is based on state space phase partitioning and
the higraph extension of conventional graph repre-
sentations. As has been shown, DEVS-based models
advantageously are depicted using a state transition
diagram. Also, it has been shown that the higraph-
based version of the DEVS-diagram representation
leads to a remarkable reduction of the diagrams com-
plexity. An CLIM implemented interactive tool for
interactive DEVS-based atomic model specification
has been presented. However, this first implementa-
tion is still a prototype needing further maturation.
An extension of our method and tool planned for the
future is to introduce inheritance of model behavior
of DEVS-diagram specified models.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Min-
istry of Sciences and Research under contract ”Sim-
ulation of Intelligent Systems”.

APPENDIX A: Preemptive Server Model

input ports: inLP (input of low priority jobs)
inHP (input of high priority jobs)
output ports: out
state variables: phase (phase of the system)
LPQ (low priority queue)
HPQ (high priority queue)
phase input event at port inLP
idle job into LPQ; hold-in busyLP serv-time
busyLP
busyHP

preempt job into LPQ; continue

Jjob into LPQ; continue
job into LPQ; continue

phase input event at port inHP

idle job into HPQ; hold-in busyHP serv-time
busyLP
busyHP
preempt job into HPQ; continue

job into HPQ; hold-in preempted serv-time
job into HPQ; continue

Visual Modeling of DEVS-Based Multiformalism Systems Based on Higraphs 603

phase time scheduled event
idle -
busyLP put out first of LPQ
if LPQ empty then passivate-in idle
if = LPQ empty then hold-in busyLP serv-time
busyHP put out first of HPQ
if =~ HPQ empty then hold-in busyHP serv-time
esleif - LPQ empty then hold-in busyLP serv-time
esleif LPQ empty then passivate-in idle
preempt put out first of HPQ
if » HPQ empty then hold-in preempted serv-time
elseif =~ LPQ empty then re-schedule job in busyLP
elseif empty then passivate-in idle
REFERENCES

Cota, B. A. and R. G. Sargent. 1989. Auto-
matic Lookahead Computation for Conservative
Distributed Simulation. Techn. Report No. 8916,
Simulation Research Group, Syracuse University,
Syracuse, New York.

Cota, B. A. and R. G. Sargent. 1992. A modification
of the process interaction world view. ACM Trans.
on Modeling and Compuer Simulation 2:109-129.

Fishwick, P. A. 1991. Heterogeneous decomposition
and inter-level coupling for combined modeling. In
Proceedings of the 1991 Winter Simulation Confer-
ence, 1120-1128, Phoenix, AZ.

Fishwick, P. A. and B. P. Zeigler. 1992. A multi-
model methodology for qualitative model engineer-
ing. ACM Trans. on Modeling and Compuer Sim-
ulation 2:52-81.

Harel, D. 1987. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming 8:231-274.

Harel, D. 1988. On visual formalisms. Comm. of the
ACM 31:514-530.

Harel, D. et al. 1990. STATEMATE: A working en-
vironment for the development of complex reactive
systems. IEEFE Trans. on Software Eng. 16:403-
414.

Lucid. 1992. Common Lisp Interface Manager.
Technical Manual, Lucid Inc.

Oeren, T. I. 1991. Dynamic templates and se-
mantic rules for simulation advisors and certifiers.
in:Knowledge Based Simulation: Methodology and
Application, ed. P. A. Fishwick and S. A. Modjeski,
93-76. New York: Springer.

Pichler, F. and H. Schwaertzel (eds.). 1992. CAST
Methods in Modelling. Berlin: Springer.

Poole, T. G. and J. Z. Szymankiewicz. 1977. Using
Simulation to Solve Problems. Maidenhead: Mec-
GrawlIill.

Praehofer, H. 1991a. System Theoretic Foundations
for Combined Discrete- Continuous System Sim-
ulation. PhD thesis, Johannes Kepler University,
Linz, Austria.

Praehofer, H. 1991b. System theoretic formalisms
for combined discrete-continuous system simula-
tion. Int. J. of General Systems 19:219-240.

Praehofer, H., F. Auernig and G. Reisinger. 1993. An
environment for DEVS-based multiformalism sim-
ulation in Common Lisp / CLOS . Discrete Event
Dynamic Systems: Theory and Applications (to
appear).

Praehofer, H., P. Bichler and B. Zeigler. 1993. Syn-
thesis of endomorphic models for event-based intel-
ligent control. Proc. of the Jth Conference on Al,
Stmulation and Planning in High Autonomy Sys-
tems, Tucson, AZ, IEEE/CS Press (to appear).

Pritsker, A. A. B. 1977. Modeling and Analysis Using
Q-GERT Networks. New York: John Wiley.

Schriber, T. J. 1977. Simulation Using GPSS. New
York: John Wiley.

Schruben, L. 1983, Simulation modeling with event
graphs. Comm. of the ACM 26:957-963.

Steele, G. 1990. Common Lisp: The Language.
Burlington: Digital Press.

Zeigler, B. P. 1976. Theory of Modelling and Simula-
tion. New York: John Wiley.

Zeigler, B. P. 1984. Multifacetied Modelling and Dis-
crete Event Simulation. New York: Academic
Press.

Zeigler, B. P. 1990. Object Oriented Simulation with
Modular Hierarchical Models. New York: Aca-
demic Press.

AUTHOR BIOGRAPHIES

HERBERT PRAEHOFER is a faculty member of
the Department of Systems Theory and Informations
Engineering at the Johannes Kepler University of
Linz. He got his M.S. and Ph.D. degrees in computer
science from the University of Linz in 1986 and 1991,
respectively. His research interests include discrete
event and combuined simulation methodology, sys-
tem design, object-oriented techniques, model-based
reasoning, and knowledge-based techniques.

DIETMAR PREE is a graduate student in com-
puter science at the Johannes Kepler University of
Linz. Currently he is working towards his M.S. de-
gree. His research interests include object-oriented
programming, interactive user interfaces, real-time
system design, and visual specification techniques.

