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ABSTRACT

A parallel hybrid model is a partially implemented
design, where some components exist as simulation
models and others as operational subsystems, which
executes on a parallel! architecture. It supports
an evolutionary design approach for complex, dis-
tributed systems such that an initial simulation model
of the proposed design is iteratively refined and elab-
orated into an implemented system. It also supports
hybrid simulation of physical modules and simula-
tion models to facilitate rapid prototyping of com-
plex, distributed systems. The paper describes the
use of parallel hybrid models in system design, and
discusses their execution issues including cyclic de-
pendency, event causality, and real-time constraints.

1 INTRODUCTION

Our research is motivated by the following two obser-
vations.

(1) Design Methodology. The conventional big
bang approach to designing complex, time-critical
distributed systems usually consists of the following
three steps: (a) given the specifications, construct-
ing a simulation model to evaluate the functional
and performance behavior of the proposed design,
(b) implementing the simulation model in hardware
and software components, and (c) testing the imple-
mented system to ensure that it satisfies the specifi-
cations. These steps shall be repeated as many times
as needed until the implemented system passes the
test. However, this approach may result in the fol-
lowing problems: (a) the tasks of system modeling,
design, and implementation are carried out indepen-
dently, which is expensive due to various notions used
by different activities, and (b) the decoupling of sim-
ulation model and its implemented system may intro-

!The terms ‘parallel’ and ‘distributed’ have been used syn-
onymously in the paper.
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duce inconsistencies between them, which may poten-
tially result in implemented system’s dissatisfaction
of specifications.

(2) Rapid Prototyping. In designing large scale
distributed systems (such as a WAN), the cost con-
straint and complexity may prevent us from having all
the resources available and building a complete sys-
tem in the initial stages. One alternative is to have a
prototype to study the behavior of the designed sys-
tem. A prototype usually is a hybrid system which
consists of physical, operational components execut-
ing concurrently with a simulated model of the un-
available components. Execution of such a hybrid
system is called hybrid simulation. For the WAN ex-
ample, a design may start with a few physical nodes
and links which interact with a simulation model of
the rest of the system. The use of hybrid simula-
tion not only results in significant saving in terms of
resources, but also increases accuracy and reality in
evaluating the functional and performance behavior
of the proposed design.

In light of the above discussion, we propose to
use parallel hybrid models for system design, which is
based on the notion of Partially Implemented Perfor-
mance Specification proposed in Bagrodia and Shen
(1991). A parallel hybrid model is a partially imple-
mented design, where some components exist as sim-
ulation models and others as operational subsystems,
which executes on a parallel architecture. It supports
an evolutionary approach to system design, where a
discrete-event simulation model is iteratively refined
or elaborated into an operational system. During
each stage of model refinement, an intermediate hy-
brid model may be executed to determine the func-
tional and performance characteristics of the partially
elaborated design. This allows functional and perfor-
mance characteristics of a system to be estimated at
an early stage in its design and subsequently moni-
tored during critical stages of refinement and imple-
mentation. The accuracy of the estimation increases
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as more of the design is implemented.

What advantages may be derived from the hybrid
model to system design? Use of the hybrid model
implies that a separate functional and performance
model does not have to be designed and maintained
for the system. The evolving design is ils own model.
This can result in significant savings in terms of man-
power and resources while ensuring that the evolving
system is consistent with its model. Use of the hybrid
model also facilitates rapid prototyping of complex
systems so that a hybrid system can be developed
in the early design stages under the given cost and
complexity constraints. This allows system charac-
teristics to be evaluated and design deficiency to be
uncovered as early as possible.

This paper describes the use of parallel hybrid
model in system design and discusses execution and
implementation issues in its use. The next section
describes the basic concepts of hybrid model and its
relation to system design. Issues which arise in ex-
ecuting hybrid models on parallel architectures are
discussed in section 3. Algorithms to execute hybrid
models under real-time constraints are investigated
in section 4, and section 5 is the conclusion.

2 HYBRID MODEL AND SYSTEM DE-
SIGN

A distributed system consists of a collection of com-
municating sequential processes that execute concur-
rently on a number of processors linked by an arbi-
trary interconnection network. A processor may in-
terleave the execution of multiple processes, and pro-
cesses communicate exclusively via messages

In a hybrid model, each process in the physical sys-
tem is either represented by an operational module
(also called a physical process or pp for short) or ab-
stracted by a (partially implemented) logical process
(Ip). Message communication among processes in the
physical system is represented by message commu-
nications among the corresponding pp or Ip in the
hybrid model. A hybrid model uses the notion of log-
ical element (le) to model hardware resources such as
processors or communication channels. (Notice that
symbols like le, Ip, and le represent both singular and
plural forms of the corresponding term.) Each pp and
Ip must be mapped to a specific le, and multiple pp
and Ip may be mapped to a common le. All pp and Ip
mapped to a common le are executed sequentially and
those mapped to different le are executed in parallel.
The hardware and software configurations of a physi-
cal system are thus directly represented in its hybrid
model; moreover, alternative mappings may be eas-
ily tried in the hybrid model to evaluate their impact

on system performance. Virtual clocks are used to
model physical time. Each le is associated with a vir-
tual clock. The value of a virtual clock denotes the
current time at the corresponding le. A virtual clock
is updated when a pp or Ip mapped to the correspond-
ing le receives a message and executes a computation
step. The virtual clocks of different le are implicitly
synchronized by the underlying algorithm used to ex-
ecute hybrid models.

On receiving a message, a process executes either
an operational step or a simulation step. An opera-
tional step refers to the statements executed by an op-
erational module to process a message received by it.
The physical time consumed by an operational step
is measured by a physical clock and used to update
the virtual clock of the corresponding le. In contrast,
a simulation step models or simulates the activities
that would be executed by the corresponding oper-
ational step. The physical time used to execute a
simulation step is ignored; rather the virtual clock is
updated by an interval estimated to be the physical
time that would be required for the corresponding
operational step. The use of simulation steps ab-
stracts away the speeds of the underlying physical
processors, and hence facilitates performance model-
ing when the physical architectures are not available.
A pp executes only operational steps, whereas a par-
tially elaborated Ip executes an operational step in
response to some messages and a simulation step in
response to others. A simulation model is a special
case of a hybrid model, where each process executes
only simulation steps.

The use of hybrid models in system design is to it-
eratively transform each logical process to a physical
process and eventually replace each logical element
by a physical hardware. Given the functional, per-
formance, and architectural specifications for a pro-
posed system and an initial system design, an analyst
first develops a simulation model of the software mod-
ules that have not yet been implemented and defines
logical elements for the hardware processors that are
not yet available. The simulation model estimates
resource requirements of the physical object that it
represents. The satisfaction of constraints imposed
on the proposed design can be evaluated by executing
the simulation model under the assumed operating
environment. If the proposed design does not satisfy
the specifications, it is modified appropriately to in-
crease resources or attempt a different decomposition
on the primary software modules. After being eval-
uated to satisfy specifications, the model is refined
iteratively, where a refinement may be elaborating a
simulation step into an operational step, or replacing
a logical element by the physical hardware.



Parallel Hybrid Models in System Design 591

The above process of refinement and elaboration
implies that at the intermediate stages, the model
may contain some software modules that are (at least
partially) operational, and the operational steps of
these modules must be included in determining the
overall functional and performance characteristics of
the evolving system. This intermediate form of the
model is referred to as a hybrid model. The refined
hybrid model may again be evaluated to ensure that
its functional and performance characteristics are sat-
isfied. The hybrid model is refined iteratively, while
its behavior is continuously monitored to ensures that
the refinements do not violate the specifications. If
so, appropriate modifications must be made to the
assumed resource parameters, such as increasing pro-
cessor speed. If the behavior of the refined model
is satisfactory, the iterative refinement proceeds fur-
ther. This process is repeated until the software mod-
els are transformed into operational statements, and
the logical elements are replaced by actual target ar-
chitectures.

3 EXECUTION OF HYBRID MODELS

3.1 Sequential Execution

In Bagrodia and Shen (1991), a centralized environ-
ment to execute hybrid models on a uni-processor is
described, which is a straightforward adaptation of
a sequential discrete-event simulation algorithm. As
a hybrid model contains both simulated components
and implemented components, the environment must
be able to distinguish the execution of a simulation
step from that of an operational step. The central-
ized environment uses two main data structures: a
set of virtual clocks, one for each le in the hybrid
model, and an event-list. Each virtual clock gives the
time up to which the processes mapped to the associ-
ated le have been executed. The event-list is a partial
order of timestamped messages. Messages from the
event-list are delivered to a destination process in the
order determined by their timestamps. The message
timestamps are generated on the basis of the virtual
clock? of the transmitting process. A special timeout
message is defined to be scheduled by an Ip for deliv-
ery to itself at a future time to simulate the physical
time that would be required by the physical process
to execute the corresponding operational step. When
a timeout message is delivered to a process, its vir-
tual clock is simply incremented by the duration of
the simulation step specified in the timeout message.

2We use the virtual clock of a process to mean the virtual
clock associated with the le to which the process has been
mapped.

For other messages, the virtual clock is advanced by
the physical time interval corresponding to the dura-
tion of the operational step executed by the process
on a processor.

3.2 Parallel Execution

The execution of a hybrid model on a distributed ar-
chitecture represents a critical refinement step: re-
placing some Ip and its associated le in the model (for
instance, the process that models a communication
network) by the actual hardware (use an operational
network to transmit messages between entities). We
also have an additional motive — validation. If the
hardware architecture of the system being designed is
(partially) available, it can be used to validate part of
the hybrid model. For instance, assume that the com-
munication network to be used in the implemented
system is available. In this case, the Ip and le that
modeled the network may be removed from the hy-
brid model, and the hybrid model can use the avail-
able network to transmit messages. Measurement of
the transmission times can be used to validate the
model. It is important to note that replacing an Ip
by actual hardware may increase the elapsed time for
execution of the hybrid model. (This follows because
simulating a message transmission may require the
execution of only a few instructions on a processor,
while the time taken for actual transmission of the
message over a network will be determined by the
network itself.) Further, the refinement affects the
performance characteristics of the hybrid model only
to the extend that an Ip is an abstraction of a actual
component, and may not reproduce the exact behav-
ior of the physical device (for instance, the network
in our example).

Intuitively, a parallel hybrid model is executed on
a distributed architecture by mapping each le in the
model to a specific physical processor (referred to as a
pe) in the distributed architecture, and by distribut-
ing the event-list of the parallel hybrid model among
the multiple pe. This implies that although processes
mapped to different le may execute on different pe,
processes mapped to a common le are executed on
the same processor. Distributed execution of a par-
allel hybrid model raises the following critical issues.

(1) Logical Time vs. Physical Time. Let P
denote a distributed system that consists of a set of
message-communicating processes and Mp denote a
partial order of messages generated during the exe-
cution of processes in P. A parallel hybrid model of
this system must generate a partial order of messages
that is consistent with the partial order Mp. Consis-
tency requires that if a message m, generated in the
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Figure 1: Rate of Progress for Simulation

parallel hybrid model has a timestamp ¢;, then a cor-
responding message m, must be transmitted in the
physical system at time t;. Messages in a simulation
model are timestamped on the basis of a logical clock,
which is decoupled from the physical clock. We define
a ratio r, to represent the (average) rate of progress
for a simulation:

ry = $¢/pt, where

s¢ = duration of a simulation step, and

p: = physical time required by the execution
engine to simulate the system for interval s,

Depending on the application being simulated, r,
may be smaller than one (eg. simulation of a VLSI
circuit or a large telephone switching system) or
greater than one (eg. sparse traffic simulations), as
shown in Figure 1.

In a parallel hybrid model, message timestamps
may be generated from a simulation clock and/or the
physical clock. For execution of a parallel hybrid pro-
gram, we define r, as above and another ratio r. as
follows:

re = ¢t/p1, where

¢; = duration of an operational step, and
pr = physical time required to execute the
operational step

Typically ratio . is 1 as the physical time required to
execute an operational step determines its duration.
However, r. may be less than one if the hardware to
be used in the operational system is expected to be
faster than that used to execute the hybrid model, or
be greater than 1 if the operational hardware is ex-
pected to be slower. A parallel hybrid model may con-
sist of simulation and operational components that
have a variety of r, and r, ratios. The incompatible
rates of progress among different components com-
plicate the algorithm used to execute parallel hybrid
models.

(2) Cyclic Dependency. Consider a system that
consists of two interacting, concurrent physical com-
ponents pp, and pp;. Assume that the hardware for
the operational system is available and consists of a
network of two pe. In the parallel hybrid model of
this system, pp, is an operational module, whereas
pps exists as a simulation module Ip,. The hybrid

| W S W—

Figure 2: Cyclic Dependency

model is executed on the available hardware by exe-
cuting pps and Ipy on different pe, as shown in Figure
2. If pp, and Ip, are not cyclically dependent on each
other, messages for pp, may be generated (with ap-
propriate timestamps) in an off-line mode by Ipy and
then be input by pp, as desired. However, the pres-
ence of cyclic dependencies makes the execution of
parallel hybrid model non-trivial.

The cyclic dependencies may be unraveled by an
iterative computation method based on checkpoint-
ing and rollback as follows. A distributed execution
checkpoints each pp and Ip periodically. The hybrid
model on each pe is executed without explicit syn-
chronization with the other pe. If the run-time sys-
tem of a local pe receives a message from (a process
resident on) a remote pe and the timestamp on the
message is smaller than the timestamp on the last
message processed on the local pe, the hybrid model
on the local pe must be rolled back and recomputed
from an appropriately checkpointed state. This pro-
cedure is repeated until eventually the computation
reaches a fixed-point where further execution does not
change states.

(3) Real-Time Constraint. In a parallel hybrid
model, the execution of physical components may im-
pose real-time constraints on simulation modules such
that the simulation of an event must be completed by
some deadline to make the execution of the physical
component correct. This is typically the case when
applying parallel hybrid models to design hard real-
time systems. Real-time constraints may also appear
when the nature of the physical components disallows
checkpointing and rollback, where the physical com-
ponent must explicitly demand timely processing of
events by the simulation model to prevent any late
arrival of messages.

Consider a hybrid model of a real-time system
which consists of two pairs of interacting, concurrent
components (ppa, Ip.) and (pps, Ipa), where Ip, and
Ip4 execute on the same processor, as shown in Figure
3. The execution of physical components pp, and pps
imposes real-time constraints on simulation modules
Ip. and Ipg. Due to the competitive nature of Ip. and
lpg as they execute on the same pe, some schedul-
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Figure 4: Event Causality

ing algorithm is needed to schedule their execution
accordingly to satisfy real-time constraints.

(4) Event Causality. The correct execution of
parallel hybrid models requires that events are exe-
cuted in the order of their dependencies. Event de-
pendency is a partial order relation, which is typically
determined by (logical) timestamp values associated
with events. The use of an event-list maintains a to-
tal order of events, which guarantees that events are
executed in the correct order. However, in order to
satisfy some real-time constraints imposed on events,
events from the event-list will be executed in some
reverse order.

Consider a parallel hybrid model that consists of
three concurrent components ppq, Ipy, and Ip., where
lpy and lp. are executed on the same processor, as
shown in Figure 4. Two independent events, e; and
e2, are scheduled by pp,. Assume that e; has a
smaller timestamp than e,, while e3 has a tight dead-
line than e;. In order to satisfy the real-time con-
straints, e; and e, are executed in reverse order.

4 HYBRID MODELS AND REAL-TIME
CONSTRAINTS

Ghosh, Fujimoto, and Schwan (1993) have studied
the suitability of using Time Warp mechanism to
perform simulation with real-time constrains. They
showed that Time Warp using lazy cancellation can
meet real-time deadlines, while scheduling guarantees
cannot be made even in the absence of false event
when aggressive cancellation is used. In contrast, we
investigate existing real-time scheduling algorithms

and use them to execute hybrid models with real-time
constraints, whenever applicable. In this section, we
state our assumptions about hybrid models and de-
scribe appropriate real-time scheduling algorithms.

In executing hybrid models with real-time con-
straints, execution of events in timestamp order, al-
though guarantees event causality, may cause real-
time deadlines to be missed. Therefore, the idea is to
execute events according to their real-time deadlines
without violating any causality constraint. This im-
plies that events may be processed in non-timestamp
order to meet real-time requirements while satisfying
causality constraints.

In the paper, we assume that for a set of time-
constrained events, there is enough execution re-
source to process them so that events are executed
to satisfy both real-time and causality constraints.
The contrasting imprecise computation model (Liu et
al. 1991), for the case when hybrid models execute
on slower processors and hence real-time constraints
cannot be guaranteed, may change the semantics of
the hybrid models and is under further investigation.
We define the notion of feasible event set as follows.

Definition 1 An event set E is said to be feasible if
there exists an execution such that all its deadlines
are met without violating event causalities.

We now apply existing real-time scheduling algo-
rithms to execute hybrid models with real-time con-
straints. In the current stage of research, the follow-
ing two categories of events are considered.

1. Periodic Events. A set E of n independent
periodic events scheduled by the rate-monotonic
algorithm (Liu and Layland 1973) is feasible if
the resource utilization of the tasks is less than
n(21/™ - 1). Given a set of independent periodic
events, the rate-monotonic scheduling algorithm
assigns a fixed priority to each event, where the
shorter the period, the higher the priority.

2. Aperiodic Events. In the case that all events
in an event set E are aperiodic and independent,
the earliest deadline first and the least lazity first
scheduling algorithms (Dertouzos and Mok 1989)
guarantee a feasible schedule. Earliest deadline
scheduling algorithm executes an event whose
deadline is the closest, while least laxity schedul-
ing algorithm executes an event which has the
smallest laxity.

The scheduling algorithms used to execute hybrid
models are preemptive and priority-driven. This
means that whenever there is an event that has a
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higher priority than the one currently being pro-
cessed, the executing event is immediately inter-
rupted and the higher priority event is started be-
ing processed. Thus the specification of such an al-
gorithm amounts to the specification of policy that
assigns priorities to events. In the case of indepen-
dent periodic events, the execution algorithm gives
each event a fixed priority and assigns higher pri-
ority to events with shorter periods. For aperiodic
events, higher priorities are given to events with ear-
liest deadline or least laxity.

5 CONCLUSION

In the paper, we propose to use parallel hybrid models
in system design. A parallel hybrid model is a par-
tially implemented design, where some components
exist as simulation models and others as operational
subsystems, which executes on a parallel architec-
ture. Hybrid models not only supports an evolution-
ary design approach for complex, time-critical sys-
tems, but also facilitate rapid system prototyping by
hybrid simulation. We also identify several critical
issues which arise when executing hybrid models on
distributed architectures. Answers to these issues will
shed light on system integration, hybrid, and real-
time simulation.

We also discuss the execution of hybrid models with
real-time constraints. In the paper, we assume that a
feasible schedule exists for an independent event set,
and apply existing real-time scheduling algorithms to
execute the events to meet real-time requirements.
However, the causality constraints which determine
the order of event execution in a hybrid model are
in general complex and data dependent. Research is
in progress to apply other real-time scheduling algo-
rithms (Sha and Goodenough 1990) to execute hybrid
models.
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