Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

A PROTOTYPE IMPLEMENTATION OF A MODEL MANAGEMENT SYSTEM
FOR DISCRETE-EVENT SIMULATION MODELS

Melanie L. Lenard

School of Management
Boston University
Boston, Massachusetts 02215, U.S.A.

ABSTRACT

We describe a prototype implementation of a model manage-
ment system (MMS) for discrete-event simulation models.
The development platform is a relational Database Manage-
ment System (DBMS) installed on a desktop computer.

The conceptual foundation for this MMS is Structured
Modeling (SM) and Extended Structured Modeling (ESM).
Using the SM and ESM frameworks makes it possible to take
an integrated approach to representing and managing both
models and data. It also makes possible the use of various
DBMS functions to aid in the implementation of MMS
functions. In effect, the MMS is constructed as a database
application.

The user interface to the MMS was implemented using
the Forms and Menus Facilities of the DBMS. A variety of
reports documenting the model are generated using the query
language of the DBMS. Most important perhaps is the code
generation procedure, a complex query procedure that pro-
duces SIMSCRIPT I1.5 code for simulating the model from
the model representation stored in the database.

1 INTRODUCTION

Discrete-event simulation models are powerful tools for
analyzing and understanding how systems work. However,
building and maintaining these models is, like any other
software development effort, a time-consuming, demanding,
and error-prone task. Also, once models have been devel-
oped, they must be validated and verified, documented,
maintained, and even reused. It is natural to think that some
kind of computer-based assistance could be devised to im-
prove the productivity of model builders and the quality of the
models they produce and to support modeling activities
throughout the life-cycle.

Efforts to develop software systems to support modeling
efforts haven been in progress in several fields and in several
contexts for at least the past 20 years. For simulation models,
such efforts are called Enhanced Simulation Support Envi-
ronments or Simulation Modeling Support Technologies.

560

For a useful review article on the use of Artificial Intelligence
and database technologies to support simulation modeling,
see Centeno and Standridge [1992]. More generally, as an
outgrowth of work on Decision Support Systems, came the
realization that such systems needed model management
components that could encompass many modeling para-
digms (e.g., simulation models as well as optimization
models, models of simultaneous differential equations, sto-
chastic models, etc.). These systems are sometimes called
model development environments (by analogy to program
development environments) or model management systems
(by analogy to database management systems). For an
overview of these efforts see Blanning, et. al. [1992], Blanning,
et. al. [1993], Shetty [1993], and Krishnan [1993].

In the work described here, we have developed a proto-
type Model Management System (MMS) for discrete-event
simulation models. This MMS is intended to support the
work of professional model builders throughout the model
development life cycle, by providing its users with flexible
and rapid access to models, data, and solution procedures.
This prototype MMS is sufficiently general so that it could be
extended to manage models from other modeling paradigms
or to serve the somewhat different needs of model users.

One of the features that differentiates this MMS from
otherefforts in this field is that in order to achieve this general
and extensible design, we chose Structured Modeling (SM)
[Geoffrion (1987) and (1989)] as the conceptual foundation
of the MMS. SM is a formal mathematical framework for
representing a wide variety of models. SM identifies the basic
elements of a model and recognizes three levels of structure
for capturing the relationships among model elements. SM
is in effect a “‘model of models’’ or meta-model.

One advantage of SM is that it provides a common
representation for many kinds of models, including data
models. This suggests the possibility of representing models
as data. In particular, we have shown [Lenard (1986)] that
by using the SM formalism, it is possible to represent at least
linear programming models as a relational database.

A database representation of models can serve as the
vehicle for integrating the management of models with the

A Model Management System for Discrete-Event Simulation Models 561

management of the data that support them. Furthermore,
many model management functions (e.g.. create, delete,
update, report, query) are equivalent to databasec manage-
ment functions [Lenard (1987) and (1988b)]. As a conse-
quence, a database management system (DBMS) is an attrac-
tive platform for implementing an MMS. Not incidentally,
various application development tools (e.g., Forms, Menus,
and Report Generators) offered as part of a full-featured
DBMS can accelerate the implementation process.

Recently, we have proposed [Lenard (1992)] some ex-
tensions to the original SM framework to facilitate the
representation of discrete-event simulation models. In what
follows, we begin with an overview of the basic concepts of
this extended framework (which we call Extended Structured
Modeling or ESM). Next, we describe a relational database
for representing discrete-event simulation models, the de-
sign of which is based on ESM. Then, we give some details
on the design and function of the prototype MMS which we
have implemented using a relational DBMS. We conclude
with suggestions for future development of the prototype
system.

2 BASIC CONCEPTS

In this section, we will describe the basic concepts of Struc-
tured Modeling (SM) and Extended Structured Modeling
(ESM) in aninformal manner, using examples. (Fora formal
definition of SM, see Geoffrion [1989]. Fora more extensive
tutorial on SM, see Lenard [1988a].)

2.1 Model Elements

A structured model is composed of three basic types of
elements: entities, attributes, and functions. Thus, a model
comprises, not only the entities and attributes generally
recognized as the components of a database, but also a new
kind of component, namely functions. Entities are tangible
or intangible items that are of concern to modelers and/or
decision makers. There are in fact two types of entity
elements: primitive entities and compound entities. Com-
pound entities are those entities which are defined in terms
of other entities (which may be either primitive or com-
pound), while primitive entities are not defined in terms of
anythingelse. Entities have properties associated with them,
which may be specified as attributes or calculated from other
elements by functions. Also, in SM logical-valued function
elements are distinguished from all other kinds of functions
and treated as a separate type called tests.

ESM adds three additional types of elements to those
constituting SM. They are random attributes, actions, and
transactions. (For formal definitions of ESM, see Lenard
[1992]. For a more extensive tutorial on ESM, see the MMS
Users Guide [1993].)

Random attributes are attributes that are not known in
advance because they are realizations of random processes.
Values for random attributes are generated according to
probability distributions. These distributions, and the pa-
rameters of these distributions, are specified as part of the
model.

To facilitate the use of discrete event simulation within
the SM framework, ESM includes the behavior elements:
actions and transactions. Action elements describe transi-
tions. Actions specify a change to occur in the state of some
model element based on the current state of that (and possibly
other) elements. Actions may occur immediately after they
are invoked, or after a specified delay. When the action
occurs, it is assumed to occur instantaneously. In MMS,
action elements have been implemented that: (a) change the
value of an attribute, (b) create or delete an entity, or (c)
invoke some action external to the model (e.g., cause the
simulation processing to stop). Transaction elements are
used to build up complex events. Transactions are sequenced
lists of previously defined actions and transactions. Trans-
actions also have a pre-condition; the transaction can be
invoked only when the pre-condition is true. (Transactions
are modeled after the action clusters described by Overstreet
and Nance [1986].)

SM (and ESM) require that every element (except
primitive entities) be defined in terms of other elements. It
1s further required that the system definitions be acyclic, i.e.,
contain no circular references. Thus every element is clearly
defined and the elements it depends on can be traced back as
far as one likes.

2.2 Example: Traveling Repairman Model

To illustrate these definitions, consider the classic traveling
repairman model which may be described informally
|Overstreet and Nance (1986)] as follows:

A single repairman services a group of identical
semiautomatic machines. Each machine requires
service randomly based on a time between failure
which is a negative exponential random variable
with parameter ‘‘mean_uptime.’’ The repairman
starts in an idle location and, when one or more
machines requires service, the repairman travels to
the closest failed machine. Service time for a
machine follows a negative exponential distribu-
tion with parameter ‘‘mean_repair_time.'’ After
completing service for a machine, the repairman
travels to the closest machine needing service or to
the idle location to await the next service request.
The closest machine is determined by the shortest
travel time. Travel time between any two machines
or between the idle location and a machine is
determined by a function evaluation.

562 Lenard

For the Traveling Repairman Model, the repairman and
the machines are primitive entities; the assignment of the
man to a machine would be a compound entity (that is, each
assignment may be represented as a combination of one
repairman with one machine.) The location of each machine
is an attribute, as is its mean_uptime and its status (failed or
not). The location is a *‘fixed’’ attribute (that is, a value
specified in advance) while its status isa * ‘variable’’ attribute
(that is, a value to be determined later usually in the course
of *solving’’ the model). The travel time between machines
is a real-valued function of the attributes; testing whether or
not there are any failed machines is a test defined on the
attributes. The time between failures of a machine is a
random attribute.

Each assignment is definitionally dependent (**calls’’)
both the repairman and the machine to which he is assigned.
The travel time associated with each assignment calls the
compound entity element, which represents the assignment
itself. The function element for the travel time also calls on
several attributes including the location of the machine and
the location of the repairman.

Changing the status of a machine from not_failed to
failed is an action. To schedule a failure of a machine, one
could use this action with a delay equal to the random
attribute time_between_failures. Go_to_idle location is a
transaction, a set of actions which occur only if the appropri-
ate test indicates that there are no failed machines.

2.3 Model Structure

Using SM and ESM, the elemental structure of a model is the
collection of all elements -- entities, attributes, functions
(including tests), random attributes, actions and transactions
-- together with their definitional dependencies. In addition,
SM specifies higher levels of structure (generic and modular)
so that the model can be more easily comprehended and
manipulated.

SM recognizes that model elements tend to occur in
groups of similar elements: each group is called a genus
(plural genera). All elements within a single genus must be
of the same element type and they must share a **generic’’
calling sequence. This property. called generic similarity,
means that if, say, one element of genus A calls one or more
elements of genus B and genus C, then all the elements of A
must call one or more elementsof B and C (in the same order).
A generic structure can be specified for the Traveling Repair-
man model by having a primitive entity genus that consists
of the collection of machines, and an attribute genus that
consists of the locations of these machines. Each attribute
element (location) calls a primitive entity element (machine),
and so the attribute genus generically calls the primitive
entity genus. Since the elemental structure isacyclic, generic
similarity ensures that the generic structure is also acyclic.

At a higher level of structure, groups of conceptually

related genera canbe grouped into modules. Forexample, the
machines, their locations, and their status indicators, their
mean_uptimes, taken together, could constitute a module.
Related modules can be grouped to form even larger modules,
thereby creating a hierarchy which has at the top a single
module which encompasses all genera in the model. SM
requires that the modular structure be such that it can be
specified as an indented ordered list of modules and sub-
modules (much like an outline of the model), where none of
the calls between genera in different modules involves for-
ward references.

Because the generic structure is acyclic, there is a default
modular structure (one module for each genus and one
module for the model as a whole) that will always satisfy the
ordering requirement. Other more complex (and typically
more useful) modular structures that better reflect the logical
structure of the model can be devised. However, these must
be constructed with care to satisfy the ordering requirement.
The advantage of so doing is that the resulting model can be
read in one pass from beginning to end and thus can be more
easily comprehended.

This completes our discussion of the basic concepts of
SM and ESM. Next, we will consider how an ESM represen-
tation of discrete-event simulation model may be represented
in a database.

3 DATABASE DESIGN

The first step toward building a MMS using a DBMS is
designing a database representation of the structured model.
The database (shown in Table 1) is a somewhat revised
version of an earlier proposal [Lenard (1986)]. The relations
in this database describe not only the components of the
model (i.e., the elements, the genera, and the modules), but
also the dependenciesamong them, thus capturing the *‘struc-
ture’” of the model. There are three groups of relations,
namely Elemental, Generic, and Modular, corresponding to
the three levels of structure in a structured model. (Dolk
[1986] has developed a similar proposal in the context of a
model dictionary system.)

The design of the database differs from that used by some
other authors (e.g. Geoffrion [1987] and Dolk [1986]) in that
all of the relations are independent of the specific model.
Thus, creating a model is a matter of entering data into pre-
defined relations rather than a matter of defining new
relations. This choice of having all relations pre-defined has
a two advantages: (1) since the database structure is known
a priori, implementation of the MMS is easier, and (2) since
all models built in this system *‘look alike’’, they are easier
tounderstand, to combine and interchange, and to document.

A Model Management System for Discrete-Event Simulation Models 563

Table 1: Tables (Relations) in the MMS Database

(Table names are capitalized, field names are listed in
parenthesis, key fields are underlined, and descriptions of
the tables are given in italics)

ACTION (modid, name, indexd, calls, rule, delay, interp)
defines and describes actions at the generic level

AINT (modid, name, aindex, value, interp) contains the
elemental details for integer-valued attributes

AREAL (modid, name, aindex. value, interp) containsthe
elemental details for real-valued attributes

ATTR (modid, attname, indexdby, avatype, dtype, interp)
defines and describes attributes at the generic level

CE (modid, name, aindex, callsnam, cindex, interp) con-
tains elemental details for compound entities

CMPND (modid. cename, callsl, calls2. interp) defines
and describes compound entities at the generic level

CONTENT (modid, name, contains) defines and de-
scribes the hierarchical relationships between modules

E (modid, name, eindex, ename) defines and describes
entities and compound entities at the elemental level

ENTY (modid, entyname, etype, interp) defines and
describes entities at the generic level

ENUM (modid, constant, attname, interp) defines and
describes enumerated data at the generic level

FNCTN (modid, funcname, indexdby. rule. callsl, calls2,
dtype, interp) defines and describes functions at the
generic level

MODELS (modid, modname, moddate, interp) describes
every model that exists in the model base

MODULE (modid, name, interp) defines and describes
modules

RA (modid, raname, aindex, param!l, param2, param3,
interp) defines and describes the elemental details of
random attributes

RATTR (modid, raname, indexdby. distn, interp) defines
and describes random attributes at the generic level

TRANS (modid, name, indexdby, appliesto, cond, interp)
defines and describes transactions at the generic level

TRANSACT (modid, name, seqno. action) defines and
describes the sequence of actions constituting each trans-
action

3.1 Restrictions

It should be noted that. in order to simplify the design of the
database, we have taken some liberties with the original SM
framework and imposed the following restrictions:

Every entity genus is self-indexed.
There is no provision for indexing variables (e.g., 1.], k).

Every function, test and attribute genus must be indexed
by a single entity genus.

All function and test rules are specified at the generic
level. (There are no elemental rules.)

The entity elements constituting each compound entity
element must be specified at the elemental level. (There
are no generic index set statements.)

No function genus may call on more than two genera
(either attribute or functions). Both of the called genera
must be indexed by the same entity.

No compound entity genus may call on more than two
other entity genera.

There is no ordering of modules.

Elemental data (i.e., values) may be entered only for
attributes of type REAL or INTEGER.

3.2 Description of Database

In the terminology of relational databases, each relation is a
set of tuples consisting of a number of attributes. In what
follows. however, we will refer to the relations as tables, each
of whichmay have many records (or rows). Each row consists
of a number of fields (or columns).

Each user has password-restricted access to a copy of the
database. There are two sets of tables in that database: one
set of tables serves as the working area and holds the data
describing just one model at any given time; the other set of
tables serves as the model base and holds the data for all
models owned by the user. Editing of model data may be
performed only on the one model contained in the working
area. In the discussion that follows the structure of the model
base tables will be described. See Table 1 for details.

Elemental tables are used to store the elemental data, that
is, the detailed data about the entities and the values assigned
to their attributes. The table E contains a record for each
entity element, with each record consisting of fields contain-
ing: the model name. generic entity name. index, and name
of the elemental entity. For example, for the generic entity
“‘machine’’ the first (index = 1) elemental entity name might
be ‘*old faithful’’. Fixed attribute values are stored according
to their data types, in two tables AINT (for integer-valued

564 Lenard

attributes) and AREAL (for real-valued attributes). The
elemental details for random attributes are stored in the RA
table. Each record in this table corresponds to one random
attribute element, and includes fields for: model name,
random attribute name, index, distribution parameters (3
fields), and interpretation.

Generic tables are used to store generic data. Figure 1
displaysanentity-relationship diagram for the generic tables.
For example, generic entities are stored in the ENTY table.
This table contains one record for each generic entity, with
fields containing: model name, generic entity name, entity
type (primitive or compound), and interpretation. The field
for generic entity name is used both in the generic entity table
ENTY and in the elemental table E, thus linking the generic
entities and their specific elemental details.

Generic attribute information is stored in the ATTR
table, which consists of fields for: model name, attribute
name, associated entity, attribute type (fixed or variable),
data type, and interpretation. These tables are linked to the
elemental attribute details through the attribute name. The
associated entity field provides a different kind of link, by
referring to the entity that a given attribute describes. Ge-
neric random attribute information is stored in the RATTR
table. Generic function information is stored in the FNCTN
table.

Behavior information at the generic level is stored in the
ACTION, TRANS, and TRANSACT tables. For example,
the ACTION table contains a record for each action, with
fields for: model name, action name, associated entity, entity
that is the object of the action, rule defining the action, time

Primitive
Entity

is
part Entity
of
is
Compound a.t’f%cned
Entity ¥
@ has
specifies
Property \Kcondiﬁo
O
L : A
affected
by Behavior
@ é‘& T
Random Attibute s
Attibue used >—()
by
is] .
Acton paxt | Transaction
has_ 13 of
values used
by .
is
part
Enumerated of
Ataibute

Figure 1: Entity-Relationship Diagram for MMS Generic Tables (Relations)

A Model Management System for Discrete-Event Simulation Models 565

delay, and interpretation. The TRANS table contains a
record for each transaction, with fields containing: model
name, transaction name, associated generic entity, subset of
entities that this transaction applies to, precondition, and
interpretation. The information about the sequence of ac-
tions and transactions constituting each transaction is stored
in the TRANSACT table. Each record in this table contains
one action or transaction and consists of fields for: model
name, transaction name, sequence number, and action name.
Again, the transaction name links the actions in the TRANS-
ACT table to the transactions in the TRANS table.

Modular relations are used to store the information
representing the hierarchical modular structure within the
model. The table MODULE contains a record for each
module, with fields containing: model name, module name,
and interpretation. Table CONTENT contains a record for
each component of each module, with fields for the model
name, module name and the component name.

4 THE PROTOTYPE

Using the database representation of a discrete-event simu-
lation models described in the previous section, we have
designed and implemented a prototype MMS as an applica-
tion of a relational DBMS. The MMS is intended to be used
by professional model builders experienced with discrete-
event simulation models.

Users control the MMS through a system of menus.
There are menu items that enable them to create, delete,
update, and save models in the database. Also, through the
menus, they can choose to access (enter, review or edit) any
portion of the data representing a given model.

Users enter data describing simulation models (formu-
lated using the concepts of ESM) into a series of forms
displayed on the screen. The forms serve as the user interface
to the relations (tables) in the database.

At the user’s request, the MMS generates reports de-
scribing various aspects of the model at varying levels of
detail. Also, on request, the MMS can (after checking the
model for errors) generate and execute the code that will
simulate the model, returning results to the database.

The DBMS used for this implementation is ORACLE
Tools and Database for MS-DOS, Version 6. ORACLE is
installed on a 386-class IBM-compatible desktop computer
with 8 megabytes of RAM and 120 MB of hard disk storage
and runs under MS-DOS, Version 5.0. Although the under-
lying model representation could, in theory, be mapped to any
simulation language, this implementation generates code in
SIMSCRIPT IL.5.

We have designed the prototype MMS to make full use
of the facilities available in the ORACLE DBMS. In the
remainder of this section, we give some of the details of how
this was done.

4.1 The Menu System

The menu system was created using the ORACLE tool,
SQL*Menu. Every menu item invokes either a sub-menu, a
form, or a procedure, as shown in Figure 2. The user moves
down through the hierarchy of menus by selecting individual
items on the menus; the user moves up the menu hierarchy
by pressing the [Escape] key.

On entering MMS, the user sees the following Main
Menu options displayed on a menu bar across the top of the
screen:

Administration Entities Properties Behaviors Modules

Choosing any one of these items invokes a pop-down
sub-menu with additional options. The user can exit from
MMS by pressing the [Escape] key from this Main Menu.

The ‘*Administration’” sub-menu offers a choice of
activities (e.g. create, delete, save) that can be performed on
the model as a whole. The other four sub-menus offer choices
allowing the user to access various portions of the data for the
model in the working area as follows:

Choose Menu Item For Access to:

Entities Entities

Properties Attributes, Functions,
Random Attributes

Behaviors Actions and Transactions

Modules Modules

The organization of the menus for data access were
influenced by the object-oriented paradigm. An object may
be defined as an encapsulation of an entity together with its
properties and behaviors. This object-orientation takes on
greater importance in the design of the forms, which we
describe next.

4.2 Forms

The ORACLE tool, SQL*Forms, was used to generate the
forms which serve as the user interface for model manipula-
tion and for data entry.

An example of a model manipulation form is the one
which is invoked by the ‘‘Create/select’” item on the ** Ad-
ministration’” menu. This form that allows the user to enter
a name and other identifying information for a new model or
to select an existing model from a list of those available in the
model base.

Like the menu system described above, the design of the
data entry forms was influenced by the object-oriented para-
digm. Therefore, in a form like the one shown in Figure 3,
the top of the form displays a single entity, while the bottom
of the form displays Properties (in the figure, fixed and
variable attributes) of that entity. As the user scrolls through

566 Lenard

— Create/select
o — Outline®
Administration E a)
— Entities
— Entities” _ Delete — Transact”
Entities — Compounds’ — Details"
Primitive”
L Details ——[.
* — All tables
Compound — Report/query — o
~ Attributes” Query
— Randoms* 0
Properties — Functions* Enumerated Check o
. —Use —————— - Generate
- Details Integers ”
Floats” Execute
m]
Randoms’ — Save® View

Behavio rs{ Transactions
Actions*

Modules

Outline’

= Menu item invokes a Form
O Menu item invokes a Procedure
(¥ Menu item invokes a Form, which in tum invokes a procedure

Figure 2: MMS Menu System

the entities, the corresponding attributes will be displayed in
the bottom of the form. Similarly. the user is able to scroll
through the list of generically defined entities when entering
the elemental level detail (instances) of those entities.

A powerful feature that follows from this ‘‘object-
oriented’’ approach is the following: when the user deletes
an entity (in a form invoked from the Entities menu), all the
Properties and Behaviors of that entity are also deleted as are
all the elemental instances of the entity. Moreover, refer-
ences to that entity (e.g.. in some compound entity) are
marked as unresolved.

Available operations from within a form include: scroll-
ing through the data, creating or deleting an entire record
(row), updating any field (column) in any record, and access-
ing lists of valid values for a particular field. Another useful
operation that can be performed from a form is a query. For
example, if the list of attributes for a given entity is long, the
user can easily enter a query requesting display of, say, only
real-valued attributes beginning with the letter “S’’.

Some error checking is done during data entry. For
example, since attributes must be either fixed or variable,
only “*a’ or *‘va’’ (signifying a fixed or variable attribute,
respectively) is accepted as a valid entry in the “*AV"’ (for
AVATYPE) field of the form shown in Figure 3.

Changes made in datadisplayed ina form are transferred
(committed) to the working model tables in the database
when the user presses the designated function key or when
exiting the form (after prompting for confirmation).

4.3 Procedures

Some of the menu items and some of the forms invoke
procedures to carry out their functions. These procedures are
written in SQL*Plus, the ORACLE version of SQL (Stan-
dard Query Language). For example, forms for model
manipulation (create, select, delete, and save) invoke proce-
dures which make the appropriate global changes in the
database (e.g., delete all records for a given model or copy all
records for the working model to the model base). Also,
functions like generating reports, checking for errors, and
generating SIMSCRIPT I1.5 code are all accomplished by
procedures.

There are procedures to generate each of the following
kinds of reports:

Entities -- A list of the generic entities in the model and
their related properties sorted by entity type, type of
property, and entity name.

Details -- A list of the generic entities and properties in
the model and their related elements sorted by type, by
name, by index value.

Transactions -- An outline of all the transactions and
their constituent actions to a (user-specified) level of
detail.

A Model Management System for Discrete-Event Simulation Models 567

Count: 1 v

ATTRIBUTES MODID: TRAVERPR
ENTITY NAME ET ENTITY INTERPRETATION
MACHINES PE there exist some machines
ATTRIBUTE NAME AV DTYPE ATTRIBUTE INTERPRETATION
DISTANCE.TO.IDLE A REAL distance to idle location in miles
FAIL.INDICATOR VA LOGICAL failure indicator (true/false)
LATEST.TIME.OF.FAILURE VA REAL time of the latest failure event
MEAN UPTIME A REAL mean time between failures

Press [Up] or [Dn-arrow] to scroll through Entities

<Replace>

Figure 3: An Entity-Atribute Form

Outline -- An outline of the modular structure of the
model to a (user-specified) level of detail.

All Tables -- A list of all records in all tables in the
database.

There is a procedure which performs numerous integrity
checks on the model, i.e., it checks for missing data and for
inconsistencies within and among the modular, generic and
elemental levels. For example, it checks whether a function
references a non-existent attribute, or whether some elemen-
tal values are given for an attribute that is not defined at the
generic level. Appropriate messages are issued if any such
errors are found.

The code generation procedure is the most complex. It
transforms the database representation of a model into a
SIMSCRIPT I1.5 program. The SIMSCRIPT II.5 program
comprisesa ‘‘PREAMBLE"’, a MAIN routine, and possibly
many EVENTS and subROUTINES. The code generation
procedure also generates a data file (containing the values of
fixed attribute elements) which serves as input to the
SIMSCRIPT I1.5 program.

S FUTURE DEVELOPMENTS

The prototype MMS described here has been used success-
fully to represent and simulate the Traveling Repairman
model. We are currently experimenting with larger models
and gradually adding features to the prototype as needed.
Also, we are currently working on an a graphical user
interface. This interface will allow users to specify model
elements by drawing and connecting symbols representing
entities, attributes, actions, etc. The information conveyed
by these symbols will be translated and input into the

database. Other efforts are underway to make the system
more robust, easier to use, and more complete.

Other features tobe added in the near future include: (1)
recording model history (when, why, and by whom created or
modified), (2) more formal support for multiple versions of
amodel, and (3) support for less-experienced model develop-
ers, such as an on-line help system. These features are
intended to support the somewhat different needs of the end-
users of these models.

In the longer term, we will consider porting to more
powerful workstations and perhaps using an object-oriented
DBMS. Other possibilities for enhancements include: (1)
adding other solution methods, such as linear programming,
(2) support for model integration (i.e., combining several
smaller models into one), (3) more control over the experi-
mental design (e.g.. how many replications, how much
warm-up) for the simulations to be performed, and (4)
developing an “‘expert system shell’’ to assist users in
performing such tasks as formulating the model, choosing a
solver, diagnosing errors, and explaining results.

6 CONCLUDING REMARKS

The work described here is, we believe, a significant advance
in the effort to provide computer-based support for builders
and users of discrete-event simulation models.

By using the Structured Modeling meta-model as a
conceptual basis for the design of the system, we have laid the
groundwork for an integrated approach to managing dis-
crete-event simulation models along with models from other
paradigms.

We have designed a relational database for representing
structured discrete-event simulation models. This makes it
possible to use a relational DBMS as the development

568 Lenard

platform. The DBMS provides the facilities for constructing
the user interface and a mechanism for integrating models
with data. Using the DBMS also makes available the
database query language, SQL, a high-level, non-procedural
language that is sufficiently versatile to describe complex
tasks like code generation. Further, it puts the power of
database technology (and its ongoing development) in the
hands of model developers.

The implementation of this prototype MMS system,
while still limited in its functionality, has served to demon-
strate the feasibility of our approach to model management.
Planned future enhancements will extend the range of mod-
els that can be represented and the range of operations that
can be performed on them.

DEDICATION

This paper is dedicated to the memory of Joseph A. W.
Smith of the U. S. Coast Guard Research and Development
Center, who guided the work described here from its incep-
tion. His skill, knowledge, and vision were highly valued by
all those privileged to work with him.

ACKNOWLEDGEMENTS

This research was supported in part by the U. S. Coast
Guard under contract DTCG39-90-C-80829.

The author would like to thank the following members
of the project team for their contributions to implementing
the system: John E. Burns, Jr., Michael V. Kadyan, Daniel
Z.Levy, and Michael J. Schement. Special thanks are due to
Janet M. Wagner for her assistance in preparing this paper
and the system documentation.

TRADEMARKS

ORACLE, SQL*Forms, SQL*Menu, and SQL*Plus are
registered trademarks of Oracle Corporation. [BM is a
trademark of International Business Machines Corporation.
MS-DOS is a trademark of Microsoft, Inc. SIMSCRIPT I1.5
is a registered trademark of CACI, Inc.

REFERENCES

Blanning, R., et. al. 1992. Model management systems. In
Information systems and decision processes, eds. E.
Stohr and B. R. Konsynski, Chapter 7. Los Alamitos,
CA: IEEE Press.

Blanning, R., C. Holsapple, and A. Whinston, Eds. 1993
Decision support systems: special issue on model man-
agement. Amsterdam: Elsevier Science Publishers.

Centeno, and Standridge. 1992. In Proceedings of the Winter
Simulation Conference. eds. J. J. Swain, D. Goldsman.
R. C.Crain, and J. R. Wilson, 181-189. San Francisco.
CA: IEEE Press.

Dolk, D. R. 1986. Model management and structured mod-
eling: The role of an information resource dictionary

syste., Dept. of Administrative Sciences, Naval Post-
graduate School, Monterey, CA, August.

Geoffrion, A. M. 1987. An introduction to structured mod-
cling. Management Science 33:547-588.

Geoffrion, A. M. 1989. The formal aspects of structured
modeling. Operations Research. 37:30-51.

Krishnan, R. 1993. Model management: Survey, future
research directions and a bibliography. ORSA CSTS
Newsletter. Vol. 14.

Lenard, M. L. 1986. Representing models as data. Journal of
Management Information Systems. 2:36-48.

Lenard, M. L. 1987. An object-oriented approach to model
management. In Proceedings: 20th Hawaii Interna-
tional Conference on System Sciences. 1:509-515. Los
Alamitos, CA: IEEE Press.

Lenard, M. L. 1988a. Fundamentals of structured modeling.
In Mathematical models for decision support, ed. G.
Mitra. Berlin: Springer-Verlag.

Lenard, M. L. 1988b. Structured model management. In
Mathematical models for decision support, ed. G. Mitra.
Berlin: Springer-Verlag.

Lenard, M. L. 1992. Extending the structured modeling
framework for discrete-event simulation. In Proceed-
ings: Hawaii international conference on system sci-
ence, I11: 494-503. Los Alamitos, CA: IEEE Press.

Overstreet, C. M. and Nance, R. E. 1986. World view based
discrete event model simplification. Modelling and simu-
lation methodology in the artificial intelligence era, ed.
M. S. Elzas, T. L. Oren, and B. P. Zeigler, 165-179.
Amsterdam: Elsevier Science Publishers.

Shetty, B., Ed. 1993. Annals of operations research: Special
issue on model management.

1993. Structured model management system for
operational planning, installation and users guide, pro-
totype version 2. Brookline, MA: Crystal Decision
Systems.

AUTHOR BIOGRAPHY

Melanie L. Lenard is Associate Professor of Management
Science in the School of Management at Boston University.
Professor Lenard received her B.S. in Chemistry from the
University of Rochester and M.S. and Sc. D. degrees in
Operations Research from Columbia University. Her pri-
mary research interest is in model management, including
the integration of models with decision support systems. She
is also a consultant on the development and management of
models, and has worked in a wide range of applications in
fields such as market research, health care planning, and law
enforcement.

