Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

THE CONCEPT OF VIEWS IN SIMULATION

Margarita Rovira*

*Computer Science Department
Rensselaer Polytechnic Institute
Troy, New York 12180, U.S.A.

ABSTRACT

The concept of views is widely used in the database
community as a tool to reorganize and extend a database.
It allows different users to look at the same data in
different ways without changing the original data or
violating its integrity. The same concept can be applied
to a simulation model to find new high level interaction
patterns among the components of a model without
having to define new models and in a way that maintains
consistency among the results. This paper makes a
comparison of what the concept means in both contexts,
describes a system that is under development to support
views in simulation, and presents a small example.

1 CONCEPT OF VIEWS

The concept of views developed by the database
community (Elmasri and Navathe 1989) allows the
extension and reorganization of a database without
changing the original data. Some of the benefits
obtained from database views are that different users can
look at the same data in different ways, data integrity is
maintained among the different views because they are
derived from the same source, and in most cases only the
original data can be changed. The structure of a database
view is of the same type as the original database. This
allows the treatment of a view as a transparent extension
of the original database since it is perceived as another
component. The view is a virtual component though; it
is usually not stored in physical storage and it is usually
recomputed when referenced. A view is different from a
real component of the database because its existence is
dependent on the state of the other real components.

A view creates a new virtual component of the
database from sections of one or more previously defined
components. The previously defined components may
be base components that hold the original data or other
views. A view might include only sections of a
previously defined component. This gives rise to another
use of views: controlling access to database. A view
may restrict the access to the database by making visible
to a user only sections of the database that he/she is
authorized to use.

One of the most difficult issues of database views is

David L. Spooner*

Jorge Haddock**

**Dept. of Decision Sciences and Engineering Systems

552

Rensselaer Polytechnic Institute
Troy, New York 12180, U.S.A.

the updating of data within a view because there might
not be an unambiguous mapping of the change to the
components the data was derived from.

A database view is equivalent to the result of a query
on the database. A query specifies the qualifications of a
limited section of the database. The result of a query can
be thought of as a collection of elements that meet the
qualifications specified in the query. In terms of
relational databases, the result of a query is a collection
of tuples (not necessarily a set). Each tuple fulfills the
qualifications of the query.

2 CONCEPT OF VIEWS IN SIMULATION

A view of a model in simulation allows the definition of
a new component in the simulation that is derived from
other components. These components can be sections of
the original model or previously defined views. The
overall objective is similar to the case of database views
which is to allow the extension and reorganization of a
model without affecting the original one. A simulation
view is perceived as another component in the
simulation with the same type of basic structure as the
original components of the model from which it is
derived.

A simulation view is an analysis tool that will
allow the analyst to look for new insight into the high
level interaction patterns of the components. In general,
that is the objective of any model. We usually
understand the low level interactions of the different
components, which is what we represent in a model.
The execution of that model gives us insight on the
overall effect of the low level interactions on the system
as a whole. A view extends the capacity to look for
different patterns of interaction among the components of
a model by allowing aggregation of components at
different levels of abstraction based on different qualities.
The expected result is more insight into the effects
different qualities have on the overall system.

Another use of the view in simulation is for
simplification. Complex systems require large models
that usually take a long time to run. One of the
objectives of supporting views is to have the ability to
replace sections of the model with a simplified version of

The Concept of Views in Simulation 553

its behavior that will accelerate the execution but will
maintain a true representation of the real system. An
example of a simplification is where a group of
components is abstracted as a workcenter and instead of
representing the behavior of the workcenter as a sequence
of behaviors of its components it is replaced by a delay
defined by a random variable. The behavior of the group
of components is simplified by the use of the random
variable. This type of use of a view allows the analysis
of only sections of the model in detail, and allows the
acceleration of each run.

3 DIFFERENCES BETWEEN DATABASE
AND SIMULATION VIEWS

There are important differences between a database view
and a simulation view. In the case of a database, a view
might include just small sections of other components of
the database. In the simulation case, a view includes
whole components and may derive its state and behavior
from the state and behavior of the components. The
simulation view is an aggregation of lower level
components that defines a new type of component.

Another difference is that in the database case a view
reorganizes only data. In simulation a model is
composed of a state, which is equivalent to the data of
the database, and behavior. The simulation view has to
abstract behavior as well as data for its components.

A view in simulation must be able to act as any
other component of a model. The integration of a view
into a simulation model may require changes in the
interactions among the different components. The view
facility in simulation becomes more complex than in the
case of the database view since it has a more dynamic
nature to it. A model in execution changes the state of
its components during execution. Changes to the state
of a view are an important issue.

A view in databases applies uniformly to all the
contents of the database that meet the conditions defined
by the query. In simulation a view may be required to
hide only a section of the components that meet certain
conditions. In other words, the simulation view must be
applicable uniformly or non-uniformly to a model. For
example, in simulation a view might abstract a queue
and a machine as a new component called workcenter.
The activation of the view does not necessarily mean that
all queues and machines must be associated to represent
workcenters, although the potential to do so exists.

The result of a query in relational databases is a
multiset (sometimes called a bag) of tuples. Each tuple
fulfills the conditions defined in the query. The group
of tuples in the result of a query defines the content of
the view. In simulation, a view will represent (using
relational database terminology) a single tuple at a time.
The result of a search in a simulation model for certain
conditions might result in more than one disjoint set of
components that fulfill the conditions. Each set would

be represented by a view of the same type, but each is
actually a different view. In other words, in databases
there can only be one view of each type. Each view may
contain more than one case that fulfills the conditions.
In simulation there may be more than one view of the
same type, each view encloses a single case that fulfills
the conditions.

A database view is valid while the data it was derived
from is not changed. As soon as any of the base data is
changed the view is invalidated and needs to be
recomputed if accessed. The database view is always
active; once it is defined it can be accessed. A
simulation view is only active during a run of the model
where it is activated. The model must maintain its
validity during the whole run by propagating the changes
of the base components to the views that include those
components.

4 SIMULATION ENVIRONMENT THAT
SUPPORTS VIEWS

A simulation environment that supports the creation of
views in an object-oriented environment is being built
by the authors on top of an object system based on the
Simulation Data Model (SDM), also developed by the
authors. SDM is an extension of the traditional object
model that promotes more reusability and extensibility.

4.1 Data Model.

A data model is an abstraction device that allows one to
see the information content of data as opposed to the
individual values of data. SDM is an object-oriented
semantic data model that is based on three basic types of
elements: model, behavior and cluster. SDM allows the
hierarchical composition of any type of element, and
allows the definition of modular elements that can have a
delayed definition of their composition and interactions.
SDM is implemented as an object system that introduces
the three basic elements as metaclasses from which
everything else is derived.

Zeigler (1990) defines a module as program text that
can function as a self-contained autonomous unit in the
following sense: interactions of a module with other
modules can only occur through pre-declared input and
output ports. Traditional objects and modular system
models share the concept of internal state. Objects allow
the hierarchical composition of state and the late binding
of attributes to values, but they provide very little
flexibility in the composition of behavior and the late
binding of interactions among objects.

SDM is an extension of the object-oriented model
that shares more features with the modular system model
than the traditional object-oriented model. SDM is
object-oriented and provides encapsulation, inheritance
and message passing. It applies the encapsulation not
only to models that are close to the traditional concept of
an object, but also to behaviors, allowing behaviors to

554 Rovira, Spooner, and Haddock

Model: Factory

State No. of Shifts
Required production
Actual production

Components | Operators

Warehouse
Transportation System
Manufacturing Cells

Allocate raw material
Produce product
Ship order

Behaviors

Behavior : Produce Product

Parameters| Raw material

Operations

Time/operation

Plan Request material
Request operations
Quality Control

Figure 1. Model and Behavior Interrelationship

be composed dynamically from other behaviors and
associated with a variety of models.

Models are objects that have a state, a group of
subcomponent models, and a list of behaviors that are
themselves objects. Each part of a model allows delayed
binding, even the behaviors. A model has an attribute
for each behavior that may act on it, and the value of this
attribute is an instance of the appropriate behavior.

Each behavior is a separate object that includes a set
of parameters and the description of its action. The
description of an action may be an atomic function or a
sequence of lower level behaviors that need to be
activated according to some defined order when the
behavior is executed. A behavior is activated by sending
a message to it. The message can set the parameters of
the behavior, customizing its action or its interaction
with other behavior objects.

Figure 1 shows the interrelationship among model
and behavior objects. The state of a model includes plain
attributes that hold values, components that hold
instances of lower level models, and behaviors that hold
instances of behavior objects. Behaviors are separate
objects that may exist independently. Only in the case
when an instance of a behavior is held by a model can
the behavior act on the model.

In addition to models and behaviors, the third type of
element SDM supports as a first class object is the
cluster. Clusters represent groupings of objects that
share common properties. For example, a cluster might
represent a group of machines that have failed more than
three times. The definition of the properties of a cluster
allow the creation of new clusters with members
explicitly chosen from existing clusters or implicitly
identified through characteristics the members share. The
cluster is the basis for the support of views in a
simulation environment.

SDM also allows the modeling of user-defined
relations among the different types of objects. A relation
in SDM allows a 1-to-many link between two types of
objects. A relation may be associated with an inverse

relation which also allows a 1-to-many link. The user
may define any type of relation between any type of
objects. Behaviors can be used to create links between
objects as well.

Relations and views are powerful tools to gain
insight on high level interaction patterns of a system.

4.2 Simulation Environment.

The simulation environment proposed for SDM is an
object-oriented environment that separates model
construction and experiment specification as promoted by
Oren and Zeigler (1979, 1986).

Model construction is supported by three hierarchies
of classes that can be re-used, extended and customized.
Each hierarchy derives from one of the three basic
elements of the data model: model, behavior and cluster.

The model hierarchy starts with a SimulationModel
class that is a direct subtype of model, the root of the
hierarchy. SimulationModel provides the basic
functionality to be able to accumulate statistics for the
different models. SimulationModel provides the
capability to record two types of statistics: observational
data and time-dependent data. Observational data is
recorded as a sequence of equally weighted observations,
where each observation is triggered by a user-activated
behavior. Time-dependent data is recorded automatically
by the system whenever the value of a user-defined
dependent variable changes. The system keeps track of
the value of each variable and the interval of time for
which that value is valid.

Any type of simulation model is derived from
SimulationModel so that it can keep track of statistics.
The basic types of models defined are Entity, Resource
and Queue. See Figure 2. An Entity object represents
an active object that moves around the environment and
has a temporary life span. A Resource object represents
a passive object that has a more permanent nature and
whose activity depends on requests from the active
objects. The Queue object represents an ordered
grouping of objects.

The Concept of Views in Simulation 555

Subclassing of the basic models allows the user to
customize the simulation environment to a specific
application and to make it represent more closely the real
world. That has always been one of the advantages of
object-oriented languages for simulation.

The models being implemented as proof-of-concept
of the benefits of views in simulation are based on a
queuing model. That does not mean that the
environment is restricted to this type of modeling. One
of the motivations for defining a simulation environment
from the ground up is to achieve greater flexibility in the
type of modeling that can be supported.

Model

SimulationObject

Entity Resource Queue
Figure 2. Model Hierarchy

The Behavior hierarchy defines a database of generic
behavior that can be customized and shared by different
types of models. See Figure 3. The separation of the
behaviors from the models promotes sharing of common
behavior among models that are not necessarily related
by the is-a relationship. Traditional object-oriented
systems only allow sharing behavior through inheritance
within the class hierarchy. A generic behavior defines
the binding constraints that must be met by a model to
be able to use it. For example, a behavior might define
as a binding constraint that the model includes an
attribute with a certain name and of a certain type in
order to allow it to be bound to the model.

The behavior hierarchy of the simulation
environment provides very basic and common behaviors
for queuing models. As we said before, this does not
mean that it is restricted to only this kind of behavior.
New behavior can be composed from the basic ones or
any other pre-defined behaviors.

One of the major drawbacks of the object-oriented
languages for simulation has been the required knowledge
of the language in order to extend a given environment.
The user had to learn the syntax of the underlying
language to write methods to extend the functionality of
any system. This environment exploits the extensibility

Behavior

advantages of an object-oriented environment and
provides an interface that can customize the environment
without writing code. Given a large set of primitives, a
user can create an environment without low-level coding.

The Cluster hierarchy allows the definition of group
types that support the use of views. A cluster is
qualified by the type of objects it may enclose, the
cardinality (how many of each type can be involved in
the group) and the common properties of the group. The
properties provide a generic mechanism to define
membership in a cluster group and may be compared to
the query language in a database environment.

The environment provides only the root of the
Cluster hierarchy. This object includes the functionality
to look for the objects that fulfill a set of properties and
to maintain the members of a cluster.

Oren and Zeigler (1979, 1986) define the
experimental frame as a way of reflecting the objectives
one has in experimenting with a model. ~ Oren and
Zeigler define as components of an experimental frame:

« the initial conditions governing the conduct of the
experiment

the rules by which the experiment comes to an end
« the analysis of the results of the simulation runs.

The concept of the experiment specification is
supported by another hierarchy of classes, the Simulation
hierarchy. The root of this hierarchy provides all the
execution control functionality required in a simulation
environment. In other words, it takes care of the
scheduling of activities and the control of the simulated
time. Besides the basic execution control functionality,
it provides mechanisms that customize the experiment,
and it provides a way of defining views of a model.

The Simulation hierarchy provides a way to define
the experimental frame associated with a model during a
run. All experiments include a single object derived
from the Simulation class to control the experiment. A
model can be associated with more than one descendant
of this Simulation class, which allows the experiment to
evaluate the same model under different contexts.

The view mechanism in the environment is also
controlled through a descendent of the Simulation class.
The original model will be associated with a given
simulation instance. A subclass of that instance may

Create Assign Delay Count Tally Arrive Depart Mark Hold Release Request-service Finish-service

Figure 3.

Behavior Hierarchy

556 Rovira, Spooner, and Haddock

create a view of the original model. Different views of
the same model may be controlled by creating different
subclasses of the instance that defines the original model.
For example, the execution of the model of a
manufacturing floor might be coordinated by a descendent
of the Simulation class named ManufacturingFloor. If
we want to concentrate on just the high level flow of all
different parts, a view of the original model can be
created by just creating a subclass of
ManufacturingFloor. The original model is not changed
at all. The view is activated as an extension of the
original model. Any changes made to the original model
will be inherited by the views, automatically assuring
integrity and consistency among any number of views
that derive from it. See Figure 4.

Simulation

Manufacturing Floor

T

Generic Flow Accumulated Performance of
of Parts Workcenters
Figure 4. Simulation Hierarchy

4.3 Example

Let's take a very simple example to demonstrate the
different concepts mentioned above. A manufacturing
process for a part consists of one operation only. The
part comes into the system, joins a queue if the machine
is busy, gets operated on by the machine and then leaves
the system.

part

Figure 5. Original Manufacturing Process

The model that represents the above example will
have to create an instance of a queue and of a resource to
represent the queue and the machine respectively. Since
the objects we are modeling do not exhibit any special
behavior, we can just use the basic functionality of the
classes provided by the system. So, our model starts by
creating instances of the passive objects in the system
and assigning them names that we can use to define the
interactions among objects later. See Figure 6.

Queue: the-queue Resource:machine

Figure 6. Passive object instances

The environment uses a process orientation view of
simulation. The process is defined by detailing the life
cycle of one particular part that goes through the system.

The class Entity provides the basic functionality of the
active object. This class must be customized with a
behavior instance that describes the life cycle of the
active object and is held in the attribute called lifecycle.

The first thing we need to do is to define a new type
of behavior that will describe the process a part goes
through while in the system.

Figure 7 shows the composition of a new behavior
using existing behavior. It has four parameters that
define its interaction with the outside simulation
environment. The parameters of a behavior are used to
define the inputs and outputs of the behavior, although
they are not explicitly differentiated as such. In this
case, the first two parameters are inputs and the last two
outputs. The outputs indicate the objects that the
behavior is supposed to interact with.

Behavior: part-process

paramelersl arrival-time
work-duration
queue
resource

ask self arrive arrival-time

ask queue hold self

ask resource request

ask queue release

ask resource delay work-duration
ask resource finish

ask self depart

Plan:

Figure 7. Process of a part

The plan defines the different steps of a composite
behavior. The steps of a plan can be of two types: ask
or tell. An ask step is similar to a procedure call, the
execution of the plan will be blocked until the step is
finished and a result received back. The tell step allows
for concurrent execution of actions. The system does not
wait for the ending of the tell step before the next step is
executed.

In this example the actions are all sequential. The
value of self within any behavior refers to the model that
owns the behavior at execution time. The first step asks
the owner of the part-process behavior to schedule an
arrival of the entity. Arrive is a behavior of Entity and it
expects one parameter. The arrival-interval parameter
value is passed as a parameter (o arrive.

The second step indicates that the object that is
bound to the parameter queue is sent a message to
execute the behavior hold. In this case the behavior hold
is passed the value self, which places the owner of the
part-process behavior, a part, on the queue. The third
step is to send a message to the object that is bound to
the parameter resource to execute the behavior request,
whose objective is to get the resource assigned

The Concept of Views in Simulation 557

Entity: part

/

Behaviors | lifecycle

Behavior: part-process

parameters| arrival-time = (exponential 3)
work-duration = (exponential 5)
queue = the-queue
resource = machine

Plan: ask self arrive arrival-time
ask queue hold self

ask resource request

ask queue release

ask resource delay work-duration
ask resource finish

ask self depart

Figure 8. Description of a part

exclusively to the part. In this case no parameters are
passed through the message. As soon as the resource is
assigned to service the part, the next step starts
executing, and the queue is sent a message to release the
part. The duration of the service is simulated by a delay
behavior that will block the execution for a time defined
in the parameter work-duration. When the delay ends,
the next step releases the resource. The last step of the
behavior models the exit of the part from the
manufacturing floor.

The next step in the modeling is to define a subclass
of entity that behaves like the part and that interacts with
the queue and the machine previously instantiated. See
Figure 8.

The class part inherits the state from the class
Entity, but redefines the behavior lifecycle to be of the
type part-process. When a part is instantiated, the slot
lifecycle will hold an instance of the behavior part-
process. That part-process instance will customize its
parameters by setting two of them to random numbers
that have an exponential distribution and queue and
resource to instances the-queue and machine,
respectively. An instance of Entity must always have a
behavior lifecycle initialized.

So far, we have constructed the model of the system
and have defined the interactions among the different
components. In order to run it we must define a subclass
of Simulation that will hold the general description of
the system and will define the control conditions of the
execution.

Simulation: Manufacturing Process

active objects part
final time 100
warm-up time 20
replicates 3

re-initialize system | yes

Figure 9. Subclass of Simulation

The manufacturing process instance defines the
context of the model. See Figure 9. The simulation
gets started by sending a message to the manufacturing
process. The attribute active objects is a list of classes
that will be activated at the start of the simulation. Each
class is activated by creating its first instance and
sending it a message to start its lifecycle.

part

Workstation o

Figure 10. A view of the manufacturing
process

Suppose now that we want to create a view of the
model defined by manufacturing process. See Figure 10.
We need to do the following:

A view is an object that will have the characteristics
of a model and a cluster by inheriting from those two
different hierarchies. Workstation is defined as a view
that will have members of the type queue and machine.
See Figure 11. When no properties are defined for a
view the members are explicitly defined by the user. If
properties are defined the members are determined
automatically by the system based on the properties.

Manufacturing Process : ~ View: workstation

overall-flow

_p- Domains queue, machine
Members the-queue, machine
Activation | abstract-behavior

. amm———1
Views

Figure 11. Creating a view of Manufacturing
Process

Overall-flow will inherit all the characteristics of
manufacturing process. See Figure 11. Namely, the

558 Rovira, Spooner, and Haddock

original model gets activated and any other control
descriptions of the experiment that are not redefined by
the subclass. In this case we want to maintain all the
control information but we want to create a higher level
description of the system where the part only interacts
with one object during its stay in the system, a
workstation.

The attribute views of overall-flow can have a list
of objects that will be activated as views. Each one can
be customized and activated differently. A view can be
activated in two ways: as a structural view or as a
behavioral one. A structural view serves as a summary
of the state of its members. In a behavioral view, the
activation will create new behavior and will modify the
life cycles of the entities that interact with the new
object.

Running the model under overall-flow introduces the
new component workstation as an active part of the
simulation. This component hides the original
components the-queue and machine. The process that
describes the life cycle of the part must now interact with
the workstation instead of the original components.

Behavior: part-process

parameters| arrival-time
work-duration
queue
resource
workstation

Plan: ask self arrive arrival-time
ask workstation process-part

self work-duration queue resource
ask self depart

Behavior: process-part

Parameters: | part
work-duration

queue
machine

Plan ask queue hold part

ask resource request

ask queue release

ask resource delay work-duration
ask resource finish

Figure 12. Generated Behavior

All the changes in the interaction among
components can be generated automatically by the
system if no simplification is required. This is possible
because the interactions have been explicitly defined and
can be changed. The generated behavior of the

workstation, process-part, is defined as a sequence of
steps that involve behaviors of the-queue and machine.
The lifecycle of the part now interacts only with the
workstation and passes the original parameters to the
process-part behavior.

In the case of simplification, the user can replace the
behavior process-part with a different one that simplifies
the execution.

5 RELATED WORK

The concept of modular hierarchical systems defined by
Zeigler(1990) has been coupled to object-oriented
systems by several research groups (Pegden 1992).
Hierarchical models allow the creation of models at
different levels of abstraction by coupling together pre-
existing modules. Each description of the same system
at a different level of abstraction is a view of the system.
However, the hierarchical model approach only addresses
static changes in the level of abstraction of a model.
Views of a system are completely independent models
that must be maintained separately. The hierarchical
model approach requires redoing a lot of modeling work
and does not assure consistency among the views.

Rothenberg (1989) has also identified the need of a
view capability in simulation. The concept of view in
his case applies more to the world view used in the
simulation (object-oriented view or event view of the
same system). The concept of view, as used in this
paper, is more consistent with what he calls different
levels of aggregation of the same model.

6 CONCLUSION AND FUTURE WORK

Restructuring of patterns of interaction can provide great
insight into dependencies of a system that might not be
obvious at first sight. Rewriting of a model to
restructure it is not a trivial problem, however. If the
restructuring can not be done without having to redo
existing work, it is more than likely that it will not be
used as an analysis tool. The concept of views in
simulation provides a mechanism to restructure models
with very little effort and maintains consistency among
the models. Hence, views have the potential to offer
significant benefit to simulation.

Objects in an object-oriented environment present a
very natural representation of views (Abiteboul and
Bonner 1991) (Widerhold 1986). Unfortunately,
traditional object-oriented languages present limitations
for the integration of a view into a simulation because
interactions among objects cannot be changed at
execution time. The approach taken in this project has
been to start from the ground up, extending the object
system that supports the simulation environment in
order to support views. The resulting system, besides
making the support of views possible, presents potential
for the development of more intelligent tools to support
simulation.

The Concept of Views in Simulation 559

More work remains to be done for views. The
approach that is under evaluation defines views that last
throughout the execution of a model. Another approach
to be evaluated is the activation of views in real-time,
where the execution of a model can be suspended, a view
activated, and execution resumed.

Views create higher level abstractions from an
existing model. It is also important to investigate
providing the capability to move to a lower level of
abstraction from the original model, so that components
can be decomposed into lower level components
integrated into the execution of the model.

ACKNOWLEDGMENTS

This work has been partly supported by the National
Science Foundation under Grant No. DDM-9200517.

REFERENCES

Abiteboul, S. and A. Bonner. 1991. Objects and
Views. Proceedings of the 1991 SIGMOD
Conference.

Cammarata, S. J. and C. Burdorf. 1991. PSE: an object-
oriented simulation supporting persistence. Journal
of Object-Oriented Programming, Volume 4, Number
6, pp. 30-40.

Elmasri, R., and S. B. Navathe. 1989. Fundamentals of
Database Systems. The Benjamin/Cummings
Publishing Company, Inc. Redwood, California.

Elzas, M. S., T. 1. Oren and B. P. Zeigler (Editors).
1986. Modeling and Simulation Methodology in the
Artificial Intelligence Era. Elsevier Science
Publishers B.V. (North-Holland).

Pegden, C. D. and D. A. Davis. 1992. Arena: A
SIMAN/Cinema-Based Hierarchical Modeling
System. Proceedings of the 1992 Winter Simulation
Conference. Arlington, Virginia.

Rovira, M., J. Haddock, and D. L. Spooner. 1993.
Dynamic Abstraction Mechanisms for Simulation
Environments. Proceedings of the 1993 NSF Design
and Manufacturing Systems Grantees Conference,
University of North Carolina at Charlotte, Charlotte,
N.C.

Rothenberg, J., S. Narain, R. Steeb, C. Hefley and N.
Shapiro. 1989. Knowledge-Based Simulation: An
Interim Report. A Rand Note, N-2897-DARPA.

Wiederhold, G. 1986. Views, Objects and Databases.
Computer. December 1986. Volume 19 Number 12.

Zeigler, B. P. 1990. Object-oriented Simulation with
Hierarchical, Modular Models: intelligent agents and
endomorphic systems. Academic Press Inc.

Zeigler, B. P., M. S. Elzas, G. J. Klir and T. L. Oren
(Editors). 1979. Methodology in Systems Modeling
and Simulation. North-Holland Publishing.

AUTHOR BIOGRAPHIES

MARGARITA ROVIRA received a B.S. degree in
computer science and a M.S. in industrial engineering
from the Georgia Institute of Technology. She received a
M.S. degree in computer science and is currently
working toward the Ph.D. degree in computer science at
Rensselaer Polytechnic Institute. Her main research
topic is the development of generic tools to support
dynamic changes of abstraction in simulation
environments. Other research interests include data
modeling, object-oriented technology and databases.

DAVID L. SPOONER received his PhD degree from
the Pennsylvania State University in Computer Science.
Since then he has been at Rensselaer Polytechnic
Institute in Troy, New York, where he is a Professor in
the Computer Science Department. He is a co-director of
the Data Engineering Program in the Rensselaer Design
and Manufacturing Institute. His research interests
include engineering database systems, object-oriented
systems, and database security.

JORGE HADDOCK is an associate professor of
Industrial Engineering and Operations Research in the
Department of Decision Sciences and Engineering
Systems at Rensselaer Polytechnic Institute. He holds a
BSCE from the University of Puerto Rico, a MSMgtE
from Rensselaer, and a PhD in Industrial Engineering
from Purdue University. His primary research interests
involve modeling of manufacturing / production and
inventory control systems, as well as the design and
implementation of simulation modeling and analysis
tools.

