Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

EMPLOYING DATABASES FOR LARGE SCALE REUSE OF SIMULATION MODELS

Martin Hitz

Data Engineering Department
University of Vienna
Rathausstr. 19/4, A-1010 Vienna
AUSTRIA

ABSTRACT

To enhance reusability in the field of simulation, model
bases must be equipped with powerful tools for retrieval,
modification and aggregation of simulation models. In
this paper, the role of database management systems sup-
porting a modeling environment is discussed and reuse
oriented query interfaces are presented. Specifically, we
advocate a graph browser operating on a semantic net-
work of reusable components.

1 INTRODUCTION

Reusability of software artifacts has become a well estab-
lished requirement in the software engineering commu-
nity during the last decade, and its importance in the field
of simulation has also been pointed out by many authors
already (e.g., Reese and Wyatt 1987, Ulgen, Thomasma,
and Otto 1991). However, simulation models still seem to
be lacking reusability (Lung et al. 1992): Many modelers
still view each simulation project as unique and often
construct from scratch a specific model to meet the objec-
tives. As a result, cost overruns and poor performance are
usually associated with the simulation building process.

Consequently, modeling and simulation environments
must be complemented by specific features to enhance
reusability. Such a reusability-oriented modeling envi-
ronment has to support at least four crucial aspects of
reusability in the simulation field:

1. Storage and documentation of models,

2. Construction of new models and modification of
stored models,

3. Retrieval of models which satisfy the modeler’s
needs,

4. Composition of new aggregate models from exist-
ing parts, paying heed to semantic constraints as far as
possible.

In this situation, the role of database management sys-
tems (DBMSs) in simulation environments can be envis-
aged as twofold:

Hannes Werthner

544

Tuncer I. Oren

Department of Statistics, OR, and Computing Computer Science Department
University of Vienna
Universititsstr. 5, A-1010 Vienna
AUSTRIA

University of Ottawa
Ottawa, Ontario
CANADA, K1IN 6N5

Firstly (and classically), DBMSs can be used as data
stores for all kinds of data relevant to the study at hand,
e.g. input or output time series and the like. In this con-
text, DBMSs can be used as a standard interfacing mech-
anism between distinct simulation models, mediating the
information flow in aggregate (compound) models or in
experimentation / optimization submodules of integrated
simulation environments (Oren et al. 1992; Guariso, Hitz,
and Werthner 1993).

Secondly, on a meta level, DBMSs may serve as tools
supporting model bases, i.e. repositories for model
descriptions. Instead of storing specific model code (i.e.,
input to simulation packages), the structural and semantic
aspects of simulation models can be managed, together
with (procedural) knowledge of how to construct the
input of a specific package prior to model execution. In
this latter role, DBMSs significantly enhance the reusa-
bility of simulation models.

Naturally, it is most convenient to use a DBMS as a
persistent data store. It relieves the designer of a simula-
tion environment of many technical burdens, like multi-
user access, transaction control, backup and recovery etc.
Moreover, access is provided by standardized mecha-
nisms, thus guaranteeing physical data independence, an
important asset for the software engineering process.
However, while it is fairly obvious that data can be suita-
bly managed within a data base management system, the
organization of model definition, storage and retrieval is
more complex.

The authors’ research activities of the last four years in
the area of simulation and decision support systems have
lead to the development of several working prototypes in
different software and hardware environments, all of
which are focusing on (among other aspects) certain
problems of reusability in these areas (Guariso, Hitz, and
Werthner 1988, 1989; Guariso et al. 1990; Hitz and
Werthner 1992). Their general architectural framework is
described by Guariso, Hitz, and Werthner (1993) and
depicted in Figure 1. SIMOBA, the latest of these proto-
types (Nemec 1993), emphasizes the role of a DBMS

Employing Databases for Large Scale Reuse of Simulation Models 545

supporting the model base (the shaded component in Fig-
ure 1) and appropriate query mechanisms for retrieval of
simulation models and represents the main corner stone
of this paper. Although we are currently using this proto-

x (Administrator)
| ’ v |

Simulation Methods | | Optimizing Methods
Model Base Data Base

p Ll

Experiments Base

Working Sheet

Access: ? ‘ Focus

Read Only Read / Write

Figure 1: Proposed Environment Architecture

type to study reusability issues within the rather con-
strained domain of simulation with its well defined
formalisms, we are also aiming to apply our findings to
the problem of software reusability in general.

In what remains, we will to some extent elaborate the
four main aspects of reusability as stated above. We
begin with the definition of the domain under study, char-
acterizing the data we are dealing with. We then shortly
describe how we deal with storage, modification and
aggregation of models, thus covering points 1, 2, and 4 of
the list above. The retrieval aspect is covered by a
description of the query and browsing interface of
SIMOBA in Section 4, followed by some remarks on
implementation issues. Finally, we explain the directions
of our future work in this area.

2 THE MODEL BASE
The structural variety of possible models considered in

the following is restricted to the classical definition by
Zeigler (1976) based on input, state and output variables

related by a set of ordinary differential or difference
equations. They can be partitioned into three main cate-
gories: basic, static and compound models. Basic models
are simply standard dynamic models, while static (mem-
oryless) models are represented by non dynamic relation-
ships. Compound models are aggregations of models of
any type obtained by connecting the input and output var-
iables of the components.

2.1 Entities

The model base serves as a repository for both, models
and model classes. As usual, a class is defined as a collec-
tion of instances with similar structure. That is, for a
model class, all structural attributes (like number and
dimensions of variables, the state transition function,
etc.) are defined, while all value-oriented properties (val-
ues of parameters, initial conditions, etc.) are added only
upon instantiation. For model classes, derivation with
property inheritance is defined. A subclass inherits all
structural information from its superclass, but may add
new features and redefine output and state transition
functions. (In the following, whenever it does not make
any difference, we will not explicitly distinguish between
classes and instance, i.e., we will sloppyly refer to an
arbitrary entry of the model base by the term “model”).

Besides quantitative simulation models, we also con-
sider qualitative simulation models (for a detailed
description see Guariso, Rizzoli, and Werthner (1992)).
Such models can be seen as a qualitative abstraction with
respect to structure, functions and value ranges of varia-
bles. One such model may be the qualitative abstraction
of more than one numerical model.

2.2 Attributes

A model stored in the mode! base must be defined by the
following set of attributes:

* A name, which should be as explanatory as possible
of its main features

* An extensive textual description of the relevant
characteristics of the model (both these items support to
different extents the user selection within a specified
application domain)

* An internal type indicator ({basic, static, com-
pound} x {discrete, continuous, hybrid}). This is relevant
to the user only in the model building stage.

* A (possibly empty) set of input variables (each
described by name, textual information, unit of measure-
ment and a logical proposition defining the set of permis-
sible values (called “value range” in what follows))

* A set of output variables (name, textual description,
unit of measurement, value range and the function which
computes its value)

546 Hitz, Werthner, and Oren

A (possibly empty) set of parameters (each
described by name, textual information, and default
value)

* A time unit

» A time step for discretization of differential equa-
tions (this is, in a certain sense, a characteristic of the
model since its correct value depends on both the param-
eters and the equations of the model).

Basic and compound models must contain in addition:

+ A set of state variables (each described by name,
textual information, equation of the transition function,
value range and default initial value)

A default simulation method, i.e. a numerical proce-
dure for solving recursive algebraic equations in case of
discrete time systems or differential equations in case of
continuous time systems

+ Information on its internal structure, in the case of
compound models composed of several interlinked sub-
models

While basic and compound models look similar within
this framework, they differ in so far as the above
attributes are given explicitly for basic models, whereas
for compound models they are deduced from attributes of
their components at the time of creation.

In addition to the above described essential features of
models, we add several descriptors as suggested by
Guariso and Werthner (1988) in the form of a Thesaurus-
guided keywording scheme, such as purpose and objec-
tive of the model, the domain of its application, etc.
Together with the structural attributes defined above,
these descriptors form a kind of a faceted classification
scheme as suggested by Prieto-Diaz and Freeman (1987)
and Prieto-Diaz (1989).

23 Relationships

Apart from the “single model attributes” defined in the
previous subsection, we also store semantic relationships
between models in the data base that are exploited by the
retrieval process as explained in Section 3.

It is important to reduce the amount of data entry nec-
essary by the user when new models are stored, because
if the model base reduces to a trivial, “flat” collection of
unrelated entries, reuse is not likely to take place. Thus,
the environment supports automatic insertion of some
structure-based relationships, like instance-of, part-of,
etc. We also allow so-called “virtual” relationships that
can be derived from explicitly stored relationships via
certain derivation rules.

The following relationship types are considered in the
current prototype (this set is not well defined in so far as
new relationship types may also be defined dynamically
as explained in Section 5):

The instance-of relationship links models to model

classes. These links may well be used for defining virtual
relationships. For example, a standard derivation rule
says that if two classes A and B are in relationship X, so
are their respective instances a and b. Instance-of is also
used for maintenance purposes: When a model class is
changed, the changes are automatically propagated to
their instances, unless the instance-of links are flagged to
inhibit this propagation.

Part-of: This represents the classical aggregation rela-
tionship. In the modeling domain, it is used to form com-
pound models of arbitrary deep nesting levels by
connecting input/output ports of submodels. The part-of
relationship may be expressed on the class level as well
as on the instance level.

Connected-to: While part-of relates objects of differ-
ent aggregation levels, connected-to describes the linkage
information between two component models (on the
same level of aggregation). Connected-to is defined only
for model instances, but also establishes a corresponding
relationship on the class level (friend-of).

Is-a: This is the classical generalization/specialization
relationship. It holds if the participating model classes
represent two descriptions for one and the same physical
situation, one model being more detailed than the other,
i.e. more variables and parameters. /s-a features property
inheritance, which may be exploited by both, the query
mechanism and the browser, which may again infer “vir-
tual” arcs in a similar way as with the instance-of rela-
tionship.

Friend-of: This is a virtual relationship, it holds
between two classes A and B, iff there are at least two
instances a of A and b of B for which relation connected-
to holds.

Similar-to: This relationship establishes a semantic
“affinity” metric: From the user’s point of view, certain
models may show a similar behavior. This relationship is
weighted, i.e. a positive distance is given on each arc.
Transitive closures are possible as discussed by Prieto-
Diaz and Freeman (1987) and Pintado and Tsichritzis
(1989).

Qualitative-abstraction-of. This relationship links
qualitative models to corresponding quantitative models.
It may again be used for the inference of virtual arcs.

3 STORAGE, MODIFICATION, AND AGGRE-
GATION

The operations defined on the model base are:
* definition of a new class,
* deletion of a class or model,
* editing of a class definition,
* instantiation of a class, and
* definition of relationships between entries.
These operations allow the user to define and manage

Employing Databases for Large Scale Reuse of Simulation Models 547

his own lattice of model classes. In fact, he can specify
new classes by progressively specializing existing ones
(both instantiating a set of class attributes or adding new
ones) or by generalizing them (deleting some attributes of
the class from which it is derived) (see, for instance,
Shriver and Wegner (1987)). Though each class has a
unique “parent” class, in the sense that the user derives it
from a single existing class, he must be allowed to arbi-
trarily modify them during the editing process. For
instance, the class of water quality models will contain a
state variable representing the oxygen content which will
be inherited by all its subclasses. The subclass of river
water quality models may contain in addition a variable
(and the related equation) for the algal biomass, but its
subclass representing a specific mountain river may not
need it.

Though in principle the classes of static, basic, and
compound models may also form a hierarchy, it has been
decided to represent them as separate descend of the class
“model”, since in all the implementations developed, the
methods to create a new class significantly depends on
the reserved class and this clearly separates the lattice of
the user classes inheriting these methods. The differences
in these methods depends on the fact that, for basic and
static model classes, the user must supply a strongly
structured set of information that can be easily repre-
sented by a frame to fill in, while for compound models,
also the topology of the system (i.e., the connections
between component models) must be given, as will be
described in the following section.

Aggregation of given parts in order to produce a new
product is an important feature of any environment sup-
porting reusabilty. In our case, compound models built of
stored or newly defined component models may be
defined interactively by a special purpose graph editor.

To specify the topological information of compound
models, the user first selects component model classes
from the model base and then must define, in graphical
form, the connections between input and output variables
of the components. For compound models of deeper
structure (i.e. having compound models as components),
both, the bottom-up and the top-down approach must be
supported. While the bottom-up approach is straightfor-
ward - connecting existing models yield a new (com-
pound) model - the top down definition uses “virtual”
model classes with a specified number of input and out-
put variables, but without internal structure. The instanti-
ation of such a virtual class may be completed at any time
prior to simulation. An example of a compound model
defined in this way is presented in Figure 2.

In practice, during construction of a compound model,
the model base manager must supervise the linking of
variables in order to ensure unit-compatibility, thereby
supplying conversion functions on the links where neces-

sary, and completes the user’s specification by inferring
the compound model’s attributes from its components.
The sets of input and output variables is computed as the
unions over all corresponding sets of the component
models, excluding those variables that are linked to each
others. Similarly, the sets of state variables and parame-
ters are the unions of the respective component sets.
Name clashes can be resolved by explicit qualification
with the name of the component model.

Al
P~| Manager H _yH
A
Population fY, Y:
F

Al

; Food F, L F |

h(

Figure 2: A Compound Model

During the aggregation process, the possibly different
time units and time steps of the components are taken
into account and the time step of the compound model is
computed as the greatest common divisor of all the com-
ponents’ time steps. However, the simulation itself
should proceed for each component with its own time
step, thus allowing the required precision (discretization
can be coarser for blocks with a slower dynamics), with a
minimum of computation. In quite the same way, if the
user selects different simulation methods for different
submodels (say, for instance, Euler and Runge-Kutta),
each submodel will be integrated with its own method,
unless specified otherwise during the instantiation.

Non-virtual relationships which are not collected auto-
matically during the construction process must be defined
explictly. This is done in another graphics oriented com-
ponent of the user interface, an interactive graph browser,
in a way similar to the browsing process deseribed in the
next section.

4 RETRIEVAL

Retrieval is necessary, whenever a user needs a model for
simulation or construction of a compound model. The
larger the model base, the better the likelihood of exist-
ence of an appropriate model. However, retrieval
becomes an issue when the model base is populated by,
say, hundreds of entries. Two types of unsatisfying results
may arise from any query:

548 Hitz, Werthner, and Oren

» The resulting set of candidates is empty or does not
contain useful candidates.

« The resulting set is too big to be inspected thor-
oughly.

In the first case, it is usually easy to generalize the
query, which, however, often yields case two in turn. In
the second case, restricting the query is often not appro-
priate, because of the risk to eliminate candidates of
interest from the target set. Consequently, we designed
distinct interfaces, which may collaborate with each
other. The first interface supports “classical” queries
regarding properties of models, while the second inter-
face provides the user with an associative navigational
tool to browse through the highly structured model base.
Both interfaces operate either on the whole model base or
on subsets thereof, stemming from previous retrieval
steps.

The query interface supports more or less arbitrary
complex query expressions over the structural and
semantic attributes as defined above, thus enabling the
user to retrieve models satisfying the constraints imposed
by a specific problem at hand. The result of a query, a set
of entities together with the relationships holding
between them (which are invisible at this stage), may be
refined subsequently in the following manner: The set
may be modified by the results of another query, combin-
ing the two results with standard set operations, or it may
be explored interactively via the navigational interface
(see below).

The navigational interface features an interactive
graph browser. It inspects a “current” node at a time. This
node is displayed together with its “environment”, which
is defined as the subgraph induced by all paths of a
(parameterized) maximum length, starting from the cur-
rent node and using arcs from a user-defined subset of arc
types. The arcs used to establish this environment repre-
sent the relationships defined in the model base (either
explicitly or virtually). The user may interact with the
multigraph in the following way:

* Selection of a new “current” node and re-display of
the environment. This is the main browsing activity.

* Including/excluding certain arc types for the subse-
quent interaction(s).

* Changing the diameter (the maximum path length)
of the environment.

* Inspecting/editing node information (and/or arc
information, where applicable).

* Combination with results of the query interface by
highlighting nodes which are members of the respective
result set or restricting the environment to the subgraph
induced by this set.

The major strength of this approach lies in its staged
nature: It enables the user to eliminate significant parts of
the search space by defining a “filter”, based on the struc-

tural and semantic properties of the entity looked for - as
has been proposed by many authors. However, in a sec-
ond step, the remaining part of the repository (i.e. the
result of the query) may be inspected interactively, when-
ever it is too large to be grasped at once by the user, thus
enabling the user to explore all semantic relationships
defined until a suitable item is found.

Whenever a node is found to qualify for reuse, the user
may switch to the construction interface (cf. Section 3)
where modification or aggregation can take place. Alter-
natively, the experimentation subsystem may be invoked,
where actual simulation / optimization runs are per-
formed (Guariso et al. 1990; Guariso, Hitz, and Werthner
1993).

5 IMPLEMENTATION ISSUES

The data model as sketched in Section 2, especially with
its type hierarchies, aggregation hierarchies and semantic
associations, calls for implementation on top of an object
oriented DBMS. While this is certainly on the agenda for
future developments, until now, the authors have not yet
pursued this idea (even though the last prototype devel-
oped has been implemented in C++). This is mainly due
to the practical reason that object oriented DBMSs have
not yet been available on most hardware platforms
employed so far (cf. Section 6). Moreover, while we
could have got along with uncertain performance, prizing
of these products is still an issue. Thus, we decided to
transform our object oriented data model to a flat rela-
tional schema and implemented it by means of a rela-
tional DBMS.

To keep the system as general as possible (and thus
reusable itself) the database schema implemented only
reflects an abstract meta data model. Most of its concrete
aspects are handled as data entries in meta relations. Rel-
evant parts of the corresponding ER-model is shown in
Figure 3 (excluding attributes):

An Entry (described by Keywords) is either a model
instance or a model class, as defined by the correspond-
ing Entry Type. Models contain Variables of different
types (Variable Type: input, output, state, and - somewhat
arbitrarily - parameters). Variables are measured in Units
which in turn define the physical Dimension. Within
compound models, Variables may be connected to each
other via (physical) Links. Apart from these physical
links, Entries are linked via Relationships of different
Relationship Types. Restrictions may be imposed on
Relationships depending on their Relationship Types
(e.g., is-a may only connect two class entries). Virtual
Relationship Types are defined by a Derivation Rule.

Relationship types may thus be defined dynamically
by an administrator. Consequently, derivation rules of
virtual relationships must also be entered as data. To sup-

Employing Databases for Large Scale Reuse of Simulation Models 549

Variable

Relation- Derivation
shipType Rule

Relationship multiplicity:

Figure 3: “Meta” ER-Model

port this, derivation rules are simply coded in Prolog and
entered as character strings into the data base. When the
system is about to derive virtual relationships, these rules
together with Prolog facts corresponding to the *“Rela-
tionship” relation of the current data base are fed into a
Prolog interpreter which is used as an inference machine.
The results are read by the system and presented to the
user. In the remainder of this section, we explain this
process and some possible shortcuts.

For example, assume that the similar_to relationship
as defined for classes may be derived automatically at the
instance level, if it holds for the corresponding classes.
Consider two classes A and B which are known to be
similar_to each other, and two instances a and b thereof
for which no relationship is explicitly given. The fact
base thus looks something like this:

instance_of ("a’,’B’).

instance_of (‘b’,’B’).

similar_to(’A’ ,'B’). % similar_to

similar_to(’B’,’A’). % is symmetric
The derivation rule specified for similar_to would be:

similar_to (X, Y) :-
instance_of (X, XC),
instance_of (Y, YC),
similar_to (XC, YC).

To find all entries “similar_to” instance a, SIMOBA
would define the goal
similar_to('a’, X)?
Prolog would give the (in this tiny case unique) answer
X=D>
As the structure of the derivation rule given above has
turned out to be very common among the rules currently
implemented, meta rules “check(Pred)” are used to factor
out this commonality:
check (Rel(X,Y)) :— Rel(X, Y). % use
% facts or ortho-rules, if provided
check (Rel (X,Y)) :-
undirected(Rel),
Rel(Y,X). % for symmetric relations
check (Rel(X,Y)) :-
derived via(Rel, Via),
Via (X, X0),
Via (Y, YO0),
check (Rel (X0, YO0)).
For standard rules of this type, the user need not specify
the Prolog code proper, but must only provide some addi-
tional database entries. Returning to the example, the
facts are:
undirected(similar to).
derived via(similar to, instance of).
The corresponding tables of the data base look essentially
like the example given in Figure 4 (in which D stands for
directed, V for virtual, B for built-in).

Relation D|V|B Relation DerivedVia
similar_to N|Y|N similar_to | instance_of
instance of | Y [N | Y similar_to | is_a

is_a Y[{N|Y

Figure 4: Relations Describing Standard Rules

Finally, the goal is changed to

check (similar to('a’, X))?
which, of course, yields the same answer as before. Other
standard derivations can be handled in a similar way,
reducing the overall burden of the administrator, while
keeping the system as flexible as possible.

6 CONCLUDING REMARKS

The ideas presented herein have been implemented as
four working prototypes for different software and hard-
ware environments, with emphasis laid on different parts
of an integrated environment. Figure 5 summarizes the
historic development, which is not yet complete, as the
overall integration of all subsystems is still missing.

Apart from this task, the following enhancements of
the retrieval process are planned for the near future:

550 Hitz, Werthner, and Oren

« Full text retrieval in associated documents

* Queries based on the value ranges stored with the
variables

On a side track, we also try to adapt the tool presented
to support reusability in the domain of general software
components.

We also hope to get an approximative answer to one of
the main questions related to reuse library systems like
the one proposed: Are users willing to spend the addi-
tional amount of work to enter their artifacts into the
library? If the contents of a reuse library does not reach a
“critical mass”, its usefulness is likely to vanish. We do
not know the answer yet, but we tried our best to elimi-
nate any unnecessary administrative overhead.

System Year Hardware Software
InGenOSS | 1987 Xerox Interlisp
8088 DOS
QualSim 1989 Xerox Interlisp
Loops
MoBase 1989 Xerox Interlisp
MoNet 1990 Apollo C
Unix
Dialog
SiMoBa | 1993+ 3 C++
80 2 86 Windows
SQL
Prolog

Figure 5: History of Prototypes
ACKNOWLEDGEMENTS

The authors thank Professor Giorgio Guariso of the
Politecnico di Milano whose long lasting co-operation
has laid a solid foundation for the work presented.

REFERENCES

Guariso, G., M. Hitz, and H. Werthner. 1988. A knowl-
edge based simulation environment for fast prototyp-
ing. In Proceedings of the European Simulation
Multiconference, Nice 1988.

Guariso, G., M. Hitz, and H. Werthner. 1989. An intelli-
gent simulation model generator”. Simulation 53(2).
Guariso, G., M. Hitz, M. Schauer, and H. Werthner. 1990.
MoNet: Eine Simulationsumgebung fiir hierarchische
Input/Output- Modelle. In Proceedings of the 5th Int.
Symp. on Computer Science for Environmental Pro-

tection, Vienna, September 1990. Springer.

Guariso, G., M. Hitz, and H. Werthner. 1993. An inte-

grated simulation and optimization modelling environ-
ment. Technical Report TR 93-04, Institut fiir Statistik,
Operations Research und Computerverfahren, Univer-
sity of Vienna, Austria.

Guariso, G., A. Rizzoli, and H. Werthner. 1992. Identifi-
cation of model structure via qualitative simulation.
IEEE Transactions on Systems, Man and Cybernetics
22(5).

Guariso, G., and H. Werthner. 1988. A software base for
environmental studies. Computer Journal 31(6).

Hitz M., and H. Werthner. 1992. A graph oriented
approach to enhance reusability in *-bases. In Pro-
ceedings of WISR ‘92, 5th Annual Workshop on Soft-
ware Reuse, Palo Alto, CA, October 1992.

Lung, C.-H., J. K. Cochran, G. T. Mackulak, and J. E.
Urban. 1992. Empirically analyzing software reuse in
a simulation environment. Proceedings of WISR ‘92,
5th Annual Workshop on Software Reuse, Palo Alto,
CA, October 1992.

Miller, L. H., and A. Quilici. 1991. A knowledge-based
approach to encouraging reuse of simulation and mod-
eling programs. In Proceedings of WISR ‘91, 4th
Annual Workshop on Software Reuse, Reston, Vir-
ginia, November 1991.

Nemec, T. 1993. Verwaltung wiederverwendbarer Soft-
ware-Module am Beispiel einer Simulationsmodell-
bank. Master’'s Thesis, Institut fiir angewandte
Informatik und Informationssysteme, University of
Vienna, Austria.

Oren, T. I, D. G. King, L. G. Birta, and M. Hitz. 1992.
Requirements for a repository-based simulation envi-
ronment. In Proceedings of the 1992 Winter Simula-
tion Conference.

Prieto-Diaz R., and P. Freeman. 1987. Classifying soft-
ware for reusability. IEEE Software.

Prieto-Diaz, R. 1989. Classification of reusable modules.
In Software Reusability, Vol. I, Concepts and Models,
ed. A. Perlis and T.J. Biggerstaff. ACM Press.

Pintado, X., and D. Tsichritzis. 1989. SaTellite: A naviga-
tion tool for hypermedia. In Object Oriented Develop-
ment, Centre Universitaire d'Informatique, Université
de Geneve.

Reese R., and D. L. Wyatt. 1987. Software reuse and sim-
ulation”. In Proceedings of the 1987 Winter Simula-
tion Conference.

Shriver B., and P. Wegner (eds.). 1987. Research direc-
tions in object-oriented programming. The MIT Press,
Cambridge, Mass.

Ulgen, O. M., T. Thomasma, and N. Otto. 1991. Reusable
models: Making your models more user-friendly. In
Proceedings of the 1991 Winter Simulation Confer-
ence.

Zeigler, B. 1976. Theory of modelling and simulation.
John Wiley.

Employing Databases for Large Scale Reuse of Simulation Models

AUTHOR BIOGRAPHIES

MARTIN HITZ is Assistant Professor at the Data Engi-
neering Department of the University of Vienna. He
received a Master’s degree and Ph.D. in Computer Sci-
ence from the Technical University of Vienna. His inter-
ests include information systems design, reusability, and
object oriented software development. He is a member of
the IEEE Software Reuse Working Group of the Software
Engineering Standards Subcommittee.

HANNES WERTHNER is Assistant Professor at the
Institute of Statistics and Computer Science, University
of Vienna. He received a Master’s degree and Ph.D. in
Computer Science both from the Technical University of
Vienna. His main research interests include simulation
environments, OO design, information systems and mul-
timedia.

TUNCER I. OREN is a Professor of computer science at
the Department of Computer Science, University of
Ottawa, where he leads the Simulation and Software
Quality Assurance Research Group. For a long time, Dr.
Oren has been envolved with the design and development
of integrated and integrative simulation environments. As
part of his recent research activities, he investigates the
role of repositories to support reusability in the area of
modeling and simulation.

551

