Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

APPLYING ACTIVE DATABASE MODELS FOR SIMULATION

A. Cornelio

Bellcore, PY441.211
33, Knightsbridge Road,
Piscataway, NJ 08854, U.S.A.
e-mail: acom@cc.bellcore.com

ABSTRACT

Complex physical systems require the support of data
models to define and manipulate the data generated during
simulation. These models should have the expressive
power to represent the static and temporal relationships
among data and they should have the capability to
initiate actions to enforce these relationships when the
application state is changed. Most commercial databases
are passive, i.e., they do not take action or enforce a
constraint when the data undergoes a state change.
Object oriented database systems have taken the
technology one step further by encapsulating operations
with the data. In this paper we propose a data model for
simulation which builds on object oriented and active
database principles to represent physical systems in
terms of its structure and function. This model is called
the structure-function paradigm, or SF-paradigm for
short.

1 SURVEY AND MOTIVATION

Traditional database techniques handle large quantities of
uniformly formatted data as described in Astrahan et al.
(1976) and Stonebraker, Wong, and Kreps (1976). Here
the data manipulation languages (Elmasri and Navathe
1989) and consistency rules (Stonebraker 1975) operate
on the database by inserting, deleting, or modifying data.
These systems do not adequately model the behavior of
the application domain, which is critically needed for the
analysis and the simulation of designs.

Object-oriented techniques found in Ketabchi (1985),
Kemper, Lockemann, and Wallrath (1987), Andrews and
Harris (1987), and Banerjee, Kim, and Kim (1988) and
recent enhancements to database models store operations
(Ong, Fogg, and Stonebraker 1984), procedures
(Stonebraker, Anton, and Hanson 1987b), rules
(Stonebraker, Hanson, and Hong 1987a), and methods
along with the structured data. These enhancements
improve the modeling power of databases by

535

Shamkant B. Navathe

College of Computing,
Georgia Institute of Technology
Adanta, GA-30332-0280, U.S.A.
e-mail: sham@cc.gatech.edu

encapsulating the operational behavior with the data
object to define the object's semantics. However, as
discussed below, encapsulation of application functions
within structure is not always natural in simulating
engineering systems.

All natural and man made systems that are inherently
complex, for example, biological systems or engineering
systems do not necessarily have behaviors that are
encapsulated within the boundaries of a structural object.
On the other hand, they have complex, interdependent
functional components that relate to the system
structures. An obvious example is the human body, the
circulatory and the respiratory systems are complex
functional systems that have their own models and
abstractions to represent their behavior in terms of
functions. In the SF-paradigm, these functions are
represented as hierarchies of complex functional objects.
The heart and lungs are complex structures which are
contained in the ribcage, another complex structure
which is part of the skeletal framework. In the SF-
paradigm, these organs are represented as hierarchies of
complex structural objects. Complex functions (i.e., the
circulatory and the respiratory systems) relate to different
complex structures (i.e., the heart and the lungs); for
example, the lungs belong to both the functional
systems, whereas, the heart belongs to the circulatory
system. Here, it is easy to see structural abstraction
(aggregation of parts) does not follow abstraction of
functions, i.e., the abstraction hierarchies in the
structural and the functional domains are not isomorphic.

When functions are encapsulated within structures,
the abstraction of functions follows the abstraction of
structures, which implies that the structural and
functional hierarchies are isomorphic. Encapsulation of
functions within a structure is well suited for
generalization hierarchies, where the operations on
abstract objects are refined in more specialized objects.
This technique however severely limited in simulation
applications where modeling aggregation abstractions of
physical and functional systems are predominant. Here,

536 Cornelio and Navathe

either the functional schema is fragmented to fit within
the boundaries of the structure, or the structures are
fragmented to fit within functional objects. The S-F
paradigm, on the other hand, extends the concept of
complex objects as shown in Kim, Chou, and Banerjee
(1987) or the concept of molecular objects as shown in
Batory and Kim (1985) to include complex behavior
without distorting either the structural model or the
functional model of the application.

The explicit relationship between structures and
functions provides a framework for the database system
to process structural and functional queries. Traditional
databases can process a limited set of structural queries.
An example of a structural query is "Retrieve the
dimension of the spindle”; an example of a functional
query is "What does the Valve do when the Spindle is
turned to the right by 90 degrees?” The combination of
structural and functional queries provides a powerful data
platform to support simulation. The other advantage of
the SF paradigm is to modularly expand the functional
model, the structural model, and the relationships
between structures and functions as the design and
simulation environment changes.

The S-F paradigm states that: to represent simulation
applications, a physical component is stored as one
structural object, a functional characteristic is stored as
one functional object, and a relationship between
physical components and functional characteristics is
stored as an interaction object. Abstractions apply to
both the structural objects and the functional objects
(Navathe and Cornelio 1990) thus enabling simulation at
different levels of abstraction on the structures or
function. The SF-paradigm is general enough (a) to
represent engineering designs as shown in Cornelio,
Navathe, and Doty (1990), (b) to support the monitoring
of industrial processes as shown in Cornelio and Navathe
(1993), and (c) to support simulation of engineering
designs. Simulating engineering designs by measuring
their performance against the expected performance or
input specification (Zeigler 1985, and Fishwick 1988)
prevents costly mistakes during manufacture. Athough,
this paper will focus on data models for the simulation
of engineering systems, these modeling techniques are
general enough to be applied to any environment that
needs to flexibly manipulate structures by one or more
functional model; examples of these environments are
software prototyping and debugging applications and
virtual reality simulation applications.

The paper is organized as follows. The next section
describes the constructs of the SF-paradigm, section 3
describes the execution cycle and its application to
simulation, section 4 shows through examples how the

execution cycle is used for simulation, and section §
concludes the paper.

2 DATA MODEL
2.1 Formal Specification

A Structural Object, S, is a two-place tuple of features,
S: <Es, Is> where Es are the external features of S and Is
are the internal features of S. The external features are
the properties such as surfaces, terminal pins, leads,
connectors, etc., that potentially connect the structural
object to other structural objects and to the external
world. The internal features are denoted as Is: <Ps, Cs,
Rs> where Ps is a set of properties or attributes of the
structural object which include the state variables, Cs is
a set of sub-structural object declarations and Rs is a set
of assembly relations that connect the external features of
elements of Cs.

A Functional Object, F, is a two-place tuple, F:<Ef,
If> where Ef and If are the external features and internal
features of F. The external features refer to a set of input
variables, INf, and a set of output variables, OUTf, and
are denoted as Ef: <INf, OUTf>. The internal features
consist of the state_output function(s), Pf, which
consists of the state transfer function, Pfs, and the output
function, Pfo, where Pf = Pfo - Pfs; a set of sub-
functional object declarations, Cf; and a set of control
relations Rf that contain the relationships between
elements in Cf. The internal features are denoted as
If:<Pf, Cf, Rf>.

The state transfer function generates the new state of
the structural object from the current state and the input
variable values. The output function generates the
outputs of the functional object from the current system
state. These outputs are then fed to other functional
objects, Cf, by the control relations, Rf. The state
transfer function and the output function are implemented
by rules, constraints, and/or procedures.

An Interaction Object, D, is a three-place tuple,
D:<S, F, I>, where S is a set of structural object
declarations, F is a set of functional object declarations
and T is a set of mappings between structural and
functional objects.

The Interface, 1, relates the structural objects and the
functional objects. It consists of three types of
mappings, [:<M1, M2, M3>; where, (a) M1 is a set of
tuples which map the functional object names, Fi, to the
structural object names, Sj,

M1: (<Fi, Sj>)
(b) M2 is a set of tuples which map the state transfer
function, Pfs, of the functional objects to some feature
of the structural object, Cv,

M2: [<Pfs, Cv>)

Applying Active Database Models for Simulation 537

(c) M3 is a set of tuples which map the events defined on
the state variables, Ps, of the structural objects to a
functional object, Fi,

M3: (<Ps, Fi>}

The M1 mappings associate structures and functions
at the object level. They determine the types of structures
associated with a function, and the types of functions
associated with a structure. The M2 mapping relates the
state transfer function to the state variables; this
mapping updates the state of the system when there is an
input to one or more functional objects. The M3
mapping relates events on the state variables to the
functional object. The M3 mappings are used for
constraint specification and satisfaction where a state
variable alerts the functional object by generating events.
In an implementation, the M1 and M2 mappings are
straightforward and can be represented as tuples as shown
in section 2.2, the M3 mapping on the other hand
correlates events and is represented by rules, as shown in
section 2.3.

2.2 Interaction Types

This section formalizes the M1 and M2 mappings
between structures and functions. The M1 mapping
describes interaction at the object level, whereas the M2
mapping describes interaction at the state variable and
state transfer function level. The interaction types for
M1 and M2 are similar, so only M1 will be discussed
(for M2 types replace structures with state variables, and
replace functions with state transfer functions).
The M1 mapping has four basic association types:
(1) 1:1 structure-function correspondence. The structural
description is isomorphic to the functional description.
Here, a functional object updates the state variables of
only one structural object and the state variables of a
structural object are updated by only one functional
object. The M1 mapping is denoted as:
M1 = {m1li | mli = <Fi, Si>}

where Fi and Si are singletons.
(2) I:n structure-function correspondence. Here, the state
variables of one structural object are updated by more
than one functional object.
@) The structure supports all the functions
simultaneously. For example, the lungs are used for
respiration and circulation. The M1 mapping is denoted
as:

M1 = {mli | mli = <AND(F1, F2, ..., Fj), Si>)
where AND associates a set of functions F1, ..., Fj to
the structure Si.
(ii) The structure supports alternative functions and the
appropriate function depends on the context within which
the function is active. A good example from Kleer
(1985) is a resistor (structure) that can function as a load,

voltage sensor, current-to-voltage coverter, voltage-to-
current converter, etc. The M1 mapping is denoted as:

M1 = {mli | mli = <OR(F1, F2, ..., Fj), Si>})
where OR lists the set of alternative functions F1, ..., Fj
associated with the structure Si. The appropriate
function is determined from functional context
information, described in Cornelio (1989) and in
Comnelio, Navathe, and Doty (1990).

(3) n:1 structure-function correspondence. Many
structures are associated with a function.

(i) Here, the functional object updates the state of many
structural objects. All structural objects are affected by
the input to the functional object. For example, in order
to see we require our eyes, and brain. The M1 mapping
is denoted as:

M1 = {mli | mli = <Fi, AND(S1, S2, ..., Sj)>

where AND specifies the set of structures, S1, ..., Sj,
associated with the function Fi.
(i) The same function has alternative structural
implementations. For example, the function of lifting
can be done by a robot's arm, fork lift, chain pulley, or a
crane; the choice of the structure depends on the
requirements of the applications. The M1 mapping is
denoted as:

M1 = {mli | m1i = <Fi, OR(S1, S2, ..., Sj)>)

where OR lists the set of alternate implementations S1,
S2, ..., Sj of the function Fi. The correct structure is
determined from appropriate structural context
information, described in Cornelio (1989) and in
Comelio, Navathe, and Doty (1990).
(4) n:m structural-functional correspondence. The state
variables of many structural objects are updated by many
functional objects. This is the most general and
commonly occurring case, and is expressed as a
combination of the above two cases.

By inserting or deleting elements from these
mappings, the correspondence between the design
structure and the design behavior is easily changed.
New structures and functions are included in the
simulation with minimum effort and prototypes of
complex systems are rapidly tested. Also, alternate
functional views of a structure, and alternate structural
views of a function are easily represented thus facilitating
the storage of several simulation options.

2.3 Events

To present the role of the M3 mappings, we have to
examine the role of events in a database system. Events
are essential for simulation databases that have to
monitor their own states and take actions based on (a)
these states and (b) the stimulus from the outside world.
Events should be detectable and well-defined to be
captured by data-modeling constructs. This is done

538 Cornelio and Navathe

through conditions which detect (a) when a feature
reaches a specified state or exhibits a specified behavior
pattern over time; or (b) when the functional object needs
data. In the first case, the events will activate or
deactivate a functional object; in the latter case the events
will query the structural object for an existing state or a
past state of the structural object.

The interaction between these events and the
functional object is modeled by the M3 mappings.

There are three types of events: the data event,
D_event; the function event, F_event; and the virtual
event, V_event.

D _events are issued by a structural object when a
structural feature reaches a predefined state. These events
trigger on the value(s) and/or on the trend of values of a
structural feature. Examples of D_events are (a) the
temperature crosses a threshold; (b) the temperature
increases; or, (¢) the time is 8:00 a.m.

The syntax for a D_event is

feature_name: domain,
EVENT: Vi
{
ALERT: Pointer to M3 mapping;
ON: s_value
WHERE statement;
WHEN statement;

}

Feature_name is the name of the structural feature on
which the D_event is defined. The keyword EVENT is
followed by the name of the event, Vi. The keyword
ALERT defines the pointer to the M3 mapping in the
interaction object. The keyword ON defines the
triggering condition for the D_event. This condition
defines an envelope of states and/or a sequence of states
for the feature on which the D_event will signal the
functional object. The ON condition is composed of a
signal value, s_value, the WHERE statement, and the
WHEN statement. The signal value, s_value, consists
of the event id and the current state value (or set of state
values) which is sent to the interaction object when the
event triggers. The WHERE statement contains the
monitoring conditions on the value of the feature,
whereas the WHEN statement contains the monitoring
conditions on the temporal trend of the feature. Each
feature can have many events with distinct monitoring
conditions that point to different sets of functional
objects.

An example of a D_event that triggers if the
temperature crosses the threshold, max_c, is shown
below.

temperature, c: real,
EVENT: D1

ALERT: fan_control.map_name;
ON: (c, t)
WHERE (insert(c, t) OR update(c, 1))
AND (c, t) > max_c;
WHEN ((c, t-1) < (c, t));
)

The time stamped tuple for temperature is denoted as
(c, t). WHEN is a temporal statement defined on the
time-stamped value of the feature. A temporal statement
is satisfied if the temporal conditions are met by all
values that satisfy the WHERE statement. In the above
case, the temperature increases and crosses the threshold,
max_c. A more complete presentation on temporal
semantics is given in Rafi (1989).

The WHERE statement operates on the first part of
the time stamped tuple (c, t); for example (c, t) > max_¢
in the above example means that ¢ > max_c with t
having a don't care value; also (c, T) > max_c means that
the value of ¢ is greater than max_c, at a fixed time T.
Similarly, the WHEN statement operates on the second
part of the time stamped tuple (c, t); for example (c, t) >
T means that t > T with ¢ having a don't care value.
Therefore, (c, t) > T means any value of c after time T,
and (c, t) < T means any value of ¢ before time T. The
complete syntax for the WHERE, and WHEN statements
is given in Comelio (1989).

The F_event detects the initiating and terminating
conditions for a functional object and passes the values
of the features from the structural objects to the input
variables of the functional objects. The F_event
construct defines the M3 mappings between D_events
and the functional objects. The F_event correlates a set
of asynchronous low level D_events to define composite
higher level F_events.

A F_event is either an F_start event or a F_end event.
A F_start event correlates the D_events (or user inputs)
needed to activate a functional object. For example, the
D_events on position and velocity vector are to be
present before a F_start event can be issued to start a
trajectory correction procedure for a spacecraft. A F_end
event correlates (a) the D_events needed to deactivate the
functional object; or (b) the outputs from the functional
object that terminate an action. Examples of F_end
events include the time running out on an operation in a
real time system, a signal that indicates two processes
have successfully established contact between two remote
hosts, or a sensory signal that stops the movement of a
robot's arm.

Applying Active Database Models for Simulation 539

The syntax for a F_event is

EVENT: name,
{
PRIORITY: absolute value or time constraint;
IF: D1_events, or user specified control,;
ACTIVATE: functional object;
DISABLE: yes/no;

}

The keyword EVENT is followed by the name of the
activation rule; by default, it is the name of the
functional object if there is only one rule for the object.
The keyword IF is the activation condition (or correlating
function) to trigger the F_start event. It consists of
conjunction, disjunction, or aggregation of D_events or
user inputs. The ACTIVATE keyword specifies the
functional object that will be activated when the F_start
event is triggered. DISABLE is a manual override by the
user to temporarily disable the function. The keyword
PRIORITY specifies either an absolute priority, for
example, a number from a scale of 1 to 5; or a time
based priority which specifies the maximum time the
F_event can remain in the event server. The F_end event
is similarly defined, except that the ACTIVATE keyword
is substituted with DEACTIVATE.

V_events are phantom events that are forced by the
functional object to retrieve the system state stored in the
structural object. The functional object signals a
V_event to check the state of a feature that did not report
a D_event but whose (i.e., feature's) information is
critical in deciding the action to be taken. Therefore,
V_events are not correlated by the interaction object and
these events are treated as high priority events in the
system,

The syntax for a V_event is

EVENT: Vi
{
ALERT: Pointer to M2 mapping;
ON: s_value
WHERE statement;
WHEN statement;
}

The keyword ALERT points to the M2 mapping(s);
the s_value defines a query (or function call) that
retrieves the state values from the structural object. This
query or function call is executed in the structural object.
The WHERE statement detects the missing values needed
by the functional object; the temporal conditions in the
WHEN statement is a time constraint which specifies the
maximum time a functional object will wait for its input

variables before issuing a V_event for the missing data
value.

3 EXECUTION CYCLE AS UNIT OF
SIMULATION

3.1 Introduction

This section describes the simulation schema and the
execution cycle. The simulation schema is a general
framework to describe the simulation model (functional
data), the physical configuration or layout of the design,
the data generated during simulation, and the execution
policy of the environment. The execution cycle is the
basic unit of execution in the simulation schema and
will be discussed in detail later in this section.

3.2 Simulation Schema

A simulation schema, SIM, is a five place tuple, denoted
as
SIM = <§, F, D, DB(1), IC>

Where, S is the set containing structural information.
F is the set containing functional information, D is the
set of interaction objects, DB(t) is the set of values for
the state variables (of the structural objects), and the
input-output variables (of the functional objects). These
variable values are the run-time extension of the
simulation schema and they are a function of time and
the simulation run number. IC is the execution cycle
that relates S, F, D, and DB(t) in a simulation. The next
subsection discusses the role of IC, i.e., the execution
cycle, in simulation.

3.3 Execution Cycle

The execution cycle is a mechanism to coordinate the
exchange of information between the structures and
functions to (a) update the system state when inputs are
applied to the system or when new state values are
computed, or (b) to initiate actions when the system
reaches a critical state.

There are two kinds of execution cycles: (a) the
function driven execution cycle where a functional object
is activated by an external input or by another functional
object (i.e., not by events from the structural object); the
functional object then computes and updates the state
values of one or more structural objects; and (b) the
structure driven (or data driven) execution cycle where a
structural object due to a state update (or an external
input) issues an event which activates a functional
object; this functional object computes and updates the
state values for one or more structural objects.

540 Cornelio and Navathe

These cycles are atomic and are the basic units of
execution. A transaction will consist of one or more of
these cycles.

3.3.1 Function Driven Execution Cycle

The function driven execution cycle is illustrated for the
simple case where the M1 mapping is of association
type 1 (see section 2.2), i.e., the topologies of the
structural and functional hierarchies are isomorphic.
When an input stimulus (i.e., a functional query) is
applied to the system, a functional object(s), F1 (say),
receives these inputs. These inputs activate the
functional object and generate an activation instance for
F1, which is a process or activity that is defined by the
functional object F1.

The activation instance of F1 binds with the
structural objects that are supplied by the M1 mappings.
These structural objects are now updatable only by F1.
The state variables of bound structural objects defined in
the M2 mappings are read by the activation instance of
F1. The state transfer function, Pfs, of F1 computes the
new values for these state variables. The updated state
variables are written from the activation instance of F1
to the relevant structural objects. The structural objects
are released from the activation instance of F1. This
completes on function driven execution cycle.

The output function of F1 computes the output
variable values from the current state variables. These
output variables are transferred to F1's parent functional
object which uses the control relations to activate other
functional objects thus starting another function driven
execution cycle. The updated state variable values in the
structural object, on the other hand, can start their own
structure driven execution cycle by issuing D_events.
Therefore, a function driven execution cycle can give rise
to other function driven execution cycles and structure
driven execution cycles.

3.3.2 Structure Driven Execution Cycle

We now describe the structure (or data) driven execution
cycle. When state variables of the structural object are
modified, and if one (or more) triggering condition(s) is
met, a D_event(s) is signaled. The interaction object
uses the F_start rule to correlate the D_events. If the
correlation is successful, the system generates a F_start
event. A token (i.e., a pair consisting of event id and
priority) for the F_start event is placed on the event-ready
queue. The event scheduler uses the token's priority to
determine the sequence of triggering for the F_start
events. By issuing a F_start event the system has made a
commitment to functionally analyze the data that caused
the D_events.

input to
Fn. object
activate Bind Read
Fn. Object (M1 map (M2 map)
O deactive ’ Free ‘ rite .
Fn. object (M1 map) (M2 map)
Pfs

Figurela Function Driven Execution Cycle

state
change
D s F_start V_events
_even M3 map) (M2 map)
O —» B ——0 R B
-]
O commit O F_end . Write .
new state (M3 map) (M2 map)
Pfs

Figure 1b Structure Driven Execution Cycle

Structural Functional
object object

Passive D O
Active | [l o

LEGEND

Figure 1 Execution Cycle

The F_start event creates an activation instance for
the functional object. This activation instance binds to
structural objects which are defined in the M1 mapping.
Binding (as in the functional driven execution cycle
above) ensures that no other functional object can update
the state of the structural object during this execution
cycle. The s_values of the D_event (i.e., the signal data)
is passed to the functional object. The data not present in
the functional object are read from the structural objects
by issuing V_events. The V_events use the coupling
information held in the M2 mappings to get to the
relevant features in the structural objects.

Applying Active Database Models for Simulation 541

When all the relevant data are read, the functional
object executes the set of actions specified in the state
transfer function, Pfs. The computed values are
committed to the structural object, or the initial state
update that caused the D_events is rolled back and the
structural objects are released from the functional objects.
At this point the F_end event destroys the activation
instance of the functional objects. This completes one
structure driven execution cycle.

The structure driven execution cycle propagates to
other features of the system when (a) there is at least one
feature in the current cycle that was updated by the
functional object, and this updated feature has a set of
events which can generate D_events (excluding the one
for the current cycle); or (b) the function delegates the
testing to sub-functions. In case (a), the execution cycle
repeats for the updated features as a structure driven
execution cycle; in case (b), the newly activated sub-
functions initiate a functionally driven execution cycle.

Figure 1 illustrates the function driven execution
cycle and the structure driven execution cycle. The figure
shows how the events and the mappings are used and
when the structures and functions are active and passive.

4 EXAMPLE

The example to illustrate the execution cycle will be
done in two parts for clarity. The first part will illustrate
a structural driven execution cycle by simulating a
temperature control system; the second part will
illustrate a functional driven execution cycle by
simulating the flow of fluids through a valve.

4.1 Temperature Control System

This section uses a temperature monitoring and control
system example to describe the operation of the active
system. This example first constructs a model for the
temperature control system and then applies the structure
driven execution cycle described above.

Define a model in terms of structural objects,
functional objects, interaction objects, D_events,
F_events, and V_events such that
(1) There are two structural objects, FAN and ENGINE,
with state variables fan speed and temperature,
respectively; there is one functional object,
temperature_change, TC.

(2) An event defined on the variable temperature signals
a D_event, D1, if the engine's temperature crosses a
threshold, max_c.

(3) An event defined on the variable fan speed signals a
D_event, D2, if the fan speed changes by S percent or
more of its current value.

(4) The interaction object, fan_control, has a Ml

mapping which relates the structures, FAN and ENGINE
to the function, TC. The interaction object also has (a)
the M2 mapping which relates the state variables speed
and temperature to the state transfer function of the
functional object, TC; and (b) the M3 mapping which
stores the activation rule between the current
temperature, current fan speed, optimal temperature and
desired fan speed. On the successful firing of the
activation rule, the interaction object generates a F_start
event. A F_start event activates a functional object, TC,
if either D_event occurs.

(5) The state transfer function in the functional object,
TC, updates the fan speed as the temperature fluctuates or
warns the user that the fan cannot cool the system.

(6) A F_end event that deactivates the functional object
if the actions in (5) are taken or if the user manually
disables the warning system.

When the temperature crosses the threshold, a
D_event is generated. This D_event, D1, uses the
interaction object’'s M3 mapping to signal the functional
object, TC. The activation rule is satisfied due to
statement 4 above and a token (i.e., the id and priority
value of the F_start event) is placed on the event-ready
queue. When the token moves to the head of the queue,
the F_start event is triggered. This event creates an
activation instance for TC. The activation instance binds
with the structural objects ENGINE and FAN by using
the M1 mapping. The temperature of the engine is
available due to the s_value returned by D1, but the
fan_speed is unknown. Therefore, the activation instance
of TC issues a V_event on fan_speed and reads it from
the structural object FAN by using the M2 mapping.
The functional object, TC, executes actions to change
the fan_speed or to alert the user. On completing these
actions, the new value of fan_speed is committed to the
structural object, FAN. The structural objects FAN and
ENGINE are released from the functional object, TC, and
the F_end event is triggered.

4.2 Flow Control Valve Example

The function driven execution cycle will be illustrated by
a liquid flow control example. The function, F1, of the
valve is to Transmit_Liquid between two points, and it
does this by channeling liquid through the Valve, F11,
varying the passage dimensions, F12, and controlling the
flow rate, F13. The structures of the
Flow_Control_Valve, S1, are: Housing, Spindle,
Sealing bush, and various bearing bushes. For clarity,
this example will show an interaction between the
structural object, Flow_Control_Valve, S1, and the
functional object, Transmit_Liquid, F1, illustrating the
role of the M1 and M2 mappings in simulation. We start
by defining a structural object for the

542 Cornelio and Navathe

Flow_Control_Valve, S1, and its corresponding
functional object, Transmitting_Liquid, F1, and an
interaction object, D1, between S1 and F1.

DEFINE STRUCTURAL OBJECT: S1
EXTERNAL FEATURES
(not shown)
INTERNAL FEATURES
Ps: /* properties */
Status: (ON, OFF};
Cs: /* components (not shown) */
Rs: /* assembly relations (not shown) */
END STRUCTURAL OBJECT: S1.

DEFINE FUNCTIONAL OBJECT: F1
EXTERNAL FEATURES
INf: Torque, Ti:real;
OUTT: out_flow, Fo:real;

INTERNAL FEATURES
Pf: f_transmit /* state_output function */
INPUT: Fi;
BODY: Status = f_t(Fi, Ti, Status)

/* state transfer function */
Fo = f_out(Status)
/* output function */
OUTPUT: Fo;
Cs: F1, F2, F3; /* components */
Rs: /*control relations (not shown) */
END FUNCTIONAL OBJECT: F1.

DEFINE INTERACTION OBJECT: D1
SCOPE
STRUCTURAL OBJECTS: S1;
FUNCTIONAL OBJECTS: F1;
INTERFACE
MI1: mll: <Fl1, S1>;
M2: m21: <F1.f_t, S1.Status>
M3: /* not shown */
END INTERACTION OBJECT: D1.

Assume that the Valve is shut off. On receiving a
functional query: "What happens to the
Flow_Control_Valve's Status when an input torque, Ti,
and an input flow, Fi, is applied,” the functional object,
F1, generates an activation instance (i.e., a process for
F1). The M1 mappings identify that the structural
object, Spirdle, S1, is affected by the functional object
F1, and S1 is bound to the activation instance of F1.
The M2 mapping identifies that the state variable (i.e.,
Status) of S1 will be changed by F1, and the current
state variable value "Status = OFF" is copied to the
activation instance of F1. The state transfer function, f t,
of F1, processes the input variable, Torque, Ti, the input
flow, Fi, and the current state variable, Status = OFF, to

generate the new state, Status = ON. The new value of
Status is written back to S1 and S1 is released. The
functional value then returns the value of Status as the
result of the query. The output function, f_out,
computes the output variable value, i.e., the output flow
rate, Fo, from the current state variable value, Status =
ON. This output variable value is sent to the parent of
F1 which then sends it to other functional objects.

Through events on the updated state and by the use of
the M3 mappings (discussed in the above example), a
new structure driven execution cycle may be initiated.
Examples can be constructed by combining together a
series of structure driven and function driven execution
cycles or by performing the execution at different levels
of abstraction.

5§ CONCLUSION

This paper presented a technique for representing an
engineering simulation application in an object-oriented
database environment. The contribution here is
represent, manage, and query the structures and functions
in the application as data. This technique can represent
complex structures and complex functions without
distorting either representation and at the same time
provides for modular extensibility of both structures and
functions. Future work will include a control
mechanism for structure driven execution cycles and
function driven execution cycles.

REFERENCES

Ahmed, R. 1989. Version Control and Management in
Design Databases, Ph.D. Dissertation in
Department of Computer and Information Sciences,
University of Florida, Gainesville, Florida.

Andrews, T., and Harris, C. 1987. Combining
Language and Database Advances in an Object-
Oriented Development Environment. In the
Conference Proceedings on Object-Oriented
Programming Systems, Languages and
Applications, OOPSLA, ACM, Orlando, Florida,
pp. 430-440.

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D,,
Eswaran, K. P., Gray, J. N,, Griffiths, P. P., King,
W. F., Lorie, R. A., McJones, P. R., Mehl, J. W,
Putzolu, G. R., Traiger, L. L., Wade, B. W., and
Watson, V. 1976. System R: Relational Approach
to Database Management. In ACM Transactions on
Database Systems, Vol. 1, No. 6, pp. 97-137.

Banerjee, J., Kim, W, and Kim, K. C. 1988. Queries
in Object-Oriented Databases. In Proceedings of the
Fourth International Conference on Data
Engineering, Los Angeles, California, pp. 31-38.

Applying Active Database Models for Simulation 543

Batory, D. S., and Kim, W., Modeling Concepts for
VLSI CAD Objects. 1985. In ACM Transactions
on Database Systems, Vol. 10, No. 3, pp. 289-321.

Cornelio, A., 1989. A Structure-Function Specification
System For Engineering Designs and Simulation,
Ph.D. thesis, University of Florida, Gainesville,
Florida.

Comelio, A., Navathe, S. B., and Doty, K. L. 1990.
Extending Object-Oriented Concepts for Engineering
Design and Simulation. In Proceedings of sixth
International Conference on Data Engineering,
IEEE, Los Angeles, California.

Comnelio, A., and Navathe, S. B. 1993. Using Active
Database Techniques for Real-Time Engineering
Applications. In Proceedings of the ninth
International Conference on Data Engineering,
IEEE, Vienna, Austria.

Elmasri, R., and Navathe, S. B. 1989 Fundamentals of
Database Systems. Benjamin Cummings, Redwood
City, California.

Fishwick, P. A. 1988. Role of Process Abstraction in
Simulation. In /EEE Transactions on Systems,
Man, and Cybernetics, Vol. 18, No. 1, pp. 18-39.

Kemper, A., Lockemann, P., C., and Wallrath, M.
1987. An Object-Oriented Database System for
Engineering Applications, Proceedings of
International Conference on Management of Data,
ACM SIGMOD, San Francisco, CA, pp. 299-310.

Ketabchi, M. A., On the Management of Computer
Aided Design Databases. 1985. Ph.D. dissertation,
Department of Information and Computer Science,
University of Minnesota.

Kim, W., Chou, H. T., and Banerjee, J. 1987a.
Operations and Implementations of Composite
Objects. In Proceedings of the Third International
Conference on Data Engineering, Los Angeles,
California, pp. 626-633.

Kleer, de J. 1985. How Circuits Work, in Qualitative
Reasoning About Physical Systems, Bobrow D.
G., editor, pp. 205-280.

Navathe, S. B., and Cornelio, A. 1990. Modeling
Engineering Data By Complex Structural Objects
and Complex Functional Objects. In Proceedings of
the International Conference on Extending Database
Technology, Venice, Italy.

Ong, J., Fogg, D., and Stonebraker, M. 1984.
Implementation of Data Abstraction in the
Relational Database System INGRES. In ACM-
SIGMOD Record, Vol.14, No. 1, pp. 1-4.

Stonebraker, M. 1975. Implementation of Integrity
Constraints and Views by Query Modification. In
Proceedings of the International Conference on the
Management of Data, ACM SIGMOD, San Jose,
California, pp. 65-78.

Stonebraker, M., Wong, E., and Kreps, P. 1976. The
Design and Implementation of INGRES. In ACM
Transactions on Database Systems, Vol. 1, No. 3,
pp. 189-222,

Stonebraker, M., Hanson, E., and Hong, C. H. 1987a.
The Design of the POSTGRES Rules System. In
Proceedings of the Third International Conference on
Data Engineering, Los Angeles, California, pp. 365-
374.

Stonebraker, M., Anton, J., and Hanson, E. 1987b.
Extending a Database System With Procedures. In
ACM Transactions on Database Systems, Vol. 12,
No. 3, pp. 350-367.

Zeigler, B. 1985. Theory of Modelling and Simulation,
Robert E. Kreiger Publishing Company.

AUTHOR BIOGRAPHIES

ALOYSIUS CORNELIO received his Ph.D. ('89)
from the University of Florida and is now a member
of technical staff at Bell Communication Research
(Bellcore). His research interests include data
modeling for business and engineering applications.
He is a member of IEEE and ACM.

SHAMKANT B. NAVATHE is a Professor in the
College of Computing at Georgia Institute of
Technology. He is well-known for his work on
database conversion, database design, database
modeling, distributed database allocation, and
database integration. He has worked with IBM and
Siemens in their research divisions and has been a
consultant to various companies, including
Honeywell, Nixdorf, CCA, ADR, Digital, MCC,
Equifax, and Harris corporations. He is an associate
editor of ACM Computing Surveys and Data
Knowledge Engineering (North Holland) and is on
the editorial board of Information Systems and
Distributed and Paralle]l Databases. He is an author
of the book, Fundamentals of Database Systems,
with R. Elmasri (Benjamin Cummings, 1989). He
has published the book, "Conceptural Database
Design: An Entity Relationship Approach”, with
Carlo Batini and Stefano Ceri in 1992. His current
work addresses database integration, heterogeneous
federated databases, object-oriented databases, the
design of intelligent interfaces to databases, multi-
media database management, and engineering
databases. He is the editor of the series: "Database
Systems and Applications for Benjamin Cummings,
and has published the book, "Conceptual Database
Design: An Entity-Relationship Approach”, with
Carlo Batini and Stefano Ceri in 1992.

