Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

THE OBJECT FLOW MODEL FOR DATA-BASED SIMULATION

Lois M.L. Delcambre
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
Portland, OR 97291, U.S.A
Imd@cse.ogi.edu (503) 690-1689

ABSTRACT

This paper introduces the notion of data-based simula-
tion to describe simulations where the basic entities and
timing for the simulation are provided by explicitly cap-
tured data, e.g., in a database. This is in contrast to tradi-
tional simulation where entities are usually generated
when needed, according to the appropriate distributions.

This paper also introduccs the Object Flow Model,
where a single model can serve as the basis for the appli-
cation software, for data-based simulation, and for tradi-
tional simulation. The Object Flow Model uses an ob-
ject-oriented database to describe entities and methods
for manipulating entities and provides a visual formalism
called the Object Flow Diagram (based on network-
based process-oriented discrete event simulation
languages), to describe the dynamic processing of an
application. A data-based simulator for the Object Flow
Model has been implemented for an apparel
manufacturing shop floor based on data captured from a
real-time payroll system to provide detailed, near-term
advice for the shop floor manager.

1 INTRODUCTION

Discrete event simulation models and languages provide
amodel of some real world application by describing the
entities, events, and processing steps of the application
[Bratley, et al, 1983; MacDoughall, 1987; Banks, et al,
1984; Nance, 1981]. Traditionally, the entities are
described by their type(s) and their arrival or inter-arrival
times. Similarly, events are described by their type and
their time of occurrence. The processing steps, the way
in which they are invoked by events, and the flow of
entities through the processing steps are usually
described in some sort of visual manner through a di-
rected graph representation, ¢.g., in network-based, dis-
crete event simulation languages.

Frequently, some aspects of the system to be simulated
are already computerized. For the purpose of this paper
we describe such a repository of structured dala as a

Lissa F. Pollacia
Department of Mathematical and Physical Sciences
Northwestern State University
Natchitoches, LA 71457, U.S.A
pollacia@alpha.nsula.edu (318) 357-5038

database although we know that such data may also exist
in a file system, perhaps with less functionality than that
provided by a database management system (DBMS).

In this paper we explore the use of such data in dis-
crete event simulation. We believe that this type of input
can be easily accommodated by a discrete event simula-

" tor and that it can result in more specific, detailed output.

519

We believe further that this type of simulation, which we
call data-based simulation, has a place in the world of
simulation. A data-based simulator for a discrete manu-
facturing shop floor has been implemented and provides
near-term guidance for the shop floor manager.

Based on our experience designing and building this
simulator and on the strength of discrete event simula-
tion languages to describe dynamic processing, we have
developed the Object Flow Model. The Object Flow
Model provides a conceptual model both for application
database software and for simulation modeling. The
Object Flow Model assumes an object-oriented database
and adds a formally defined, visual representation for
processing called the Object Flow Diagram.
Applications expressed using the Object Flow Model
easily support data-based simulation as well as more
traditional, statistically-based simulation. The Object
Flow Model demonstrates that a single formally-defined
model can serve as a model of the application software
as well as a simulation model. This, coupled with the
idea of data-based simulation, allows simulation to be
used as a form of rapid prototyping (including the pos-
sibility of animation) for application software.

The organization of this paper is as follows. Section 2
describes the idea of data-based simulation and Section 3
presents the Object Flow Model. Section 4 compares
these ideas to related work and Section 5 offers a
discussion of work in progress.

2 DATA-BASED SIMULATION
We begin by considering a typical database and a typical

simulation environment. Consider the example query
issued to a database shown in Figure 1. This is a fairly



520 Delcambre and Pollacia

typical query requiring a join between the Employee re-
lation and the Timecard relation. The query requests a
listing of names and phone numbers for employees that
have worked more than ten hours of overtime. The
query answer lists three specific employees with their
telephone extension number. Figure 2, on the other
hand, indicates the parameters that might be used for a
simple simulation. One possible output from the simula-
tion of the coming week (or of a typical week) would be
the number of employees that would work over 10 hours
of overtime. The output for this example indicates that
3.5% of all employees would work more than 10 hours
of overtime in the simulated week.

| EanEl
DB

Select Name, Phone

From Employee, Timecard

Where Employee.no = Timecard.Eno
and Overtime > 10

—
Name Phone
Smith 1443
Jones 2379
Doe 7212
Database Query Example
Figure 1
How Many Employees

Will Work More than
10 Hours of Overtime
This Week?

Bank Simulation '/
Number-of-Employees = nl
Number-of-Custs = n2
Cust-Arrival-Rate = d1

Employee-Efficienty = d2
— \ 35 %

Simulation Example
Figure 2

These two examples point out a number of the simi-
larities and differences between database applications
and simulations. The similarities include:

(1) They both represent a model of the application.

(2) They both are fundamentally discrete.

(3) They both respond to the question concerning the
employees who work more than ten hours of overtime.

One of the most striking differences is the type of
questions that can be asked and the level of detail of the
answers. Depending on the needs of the user, either of
these answers and thus either of these approaches might
be appropriate or totally inappropriate. As an example,
if a management consultant is trying to discover the gen-
eral trend for excessive overtime in the bank, then either

approach would work but the simulation is probably
more direct. On the other hand, if the president of the
company would like to write a letter of personal thanks
to the individual employee, then only the database ap-
proach would work. Some of the differences between
these two approaches include:

(1) The database response gives more detail and the
information is more accurate. We know for sure that
Smith, Jones and Doe worked more than ten hours of
overtime in the most recent week and that no other em-
ployee did (based on the closed world assumption
[Reiter, 1984] implicit in databases). Also, it is very un-
likely that a simulation would report the phone numbers
for any employees.

(2) The database reports only on the past; the simula-
tion reports predictions for the future (based perhaps, in
part, on the past).

(3) The database must hold a potentially large quan-
tity of data (e.g., thousands of tuples for the employee re-
lation and hundreds of thousands of tuples for the time-
card relation) whereas the simulation may require only a
small number of parameters.

(4) The database is able to match (i.e., join) informa-
tion about multiple entities; a simulator can do so only
probabilistically.

Traditional simulators generally capture the dynamic
behavior of a system only in terms of statistical distribu-
tions and probabilities. Such models predict "steady
state” performance characteristics of the system. For ex-
ample, such a model of a bank might predict the average
throughout and average delay for customers. A queuing
theory model is an example of a model (which is often
simulated) that deals with steady state performance
based only on a statistical characterization of the applica-
tion.

Data-based simulators, on the other hand, use entities,
attributes, relationships, events, and perhaps even service
times that are explicitly represented. A simulation model
becomes more and more data-based in as much as it
relies on explicitly captured data. The explicit
description of the entities and relationships involved in a
simulation has been recognized as an important need,
e.g., with the System Entity Structure formalism used
with DEVS, the Discrete Event System Specification
[Zeigler, 1989]. Traditional databases all provide the
facilities to describe, store, and query entities and re-
lationships as defined in the schema. Further, numerous
techniques exist to develop appropriate schemas through
the construction of E-R diagrams [Chen, 1976], for
example. We believe that all simulations can benefit
from a logical, relatively high-level description of the
data structures involved in a simulation. A data-based
simulator can also access the database as needed during
a simulation. The database query language provides a



The Object Flow Model for Data-Based Simulation 521

means to express the data required by the simulator, e.g.,
to match customers with their accounts, during the
simulation as the database entities progress through the
process steps.

Further, if the application system keeps a log of all
transactions and they are time-stamped, then this log can
serve as a file of transaction-begin and transaction-end
events. Such a log can be used to initialize the simulator
up to some predefined point (in the past). Perhaps there
was one particularly busy day when the teller configura-
tion did not work well. The log file for that day can be
used to bring the simulation up until, say, 1:30 PM on
that day. The simulation can then explore various
options that might have responded to the situation more
gracefully.

We use this approach for the apparel manufacturing
plant. Based on the data captured by a real-time payroll
system, the simulator begins with the current situation
and allow the shop floor manager to simulate in the near
term, say the next few hours or the next shift. This type
of data-based simulation provides the type of detailed in-
formation to actually be useful. The manager may want
to know "What will the work backload be like by the end
of the shift if I move Jones from Station 12 to Station 5
at 2:00 PM?" It is not particularly useful for this man-
ager to be told that on the average, the work backload at
the end of the shift is estimated to be 5% of the produc-
tion. Detailed questions require the detailed use of em-
ployee records, machine records, job records, efficien-
cies, etc.

Each simulation may use a database as a source of data
to varying degrees. We mean by the term data-based,
that the simulator accesses the database directly during
the simulation as a source of entity, event, or other detail.

Another use of a database for simulation would be to
summarize or statistically characterize the various entity
or event populations in a database and then usc the dis-
tributions uncovered as parameters of the simulation.
This uses the database for a form of (statistical) data
mining but we distinguish it from the direct database ac-
cess in data-based simulation. In the other direction, an-
other use of a database would be to explicitly generate
the events and/or entities to be used according to the dis-
tributions provided and then store them in a database.
Although this would be trivially data-based simulation, it
serves no purpose other than to use secondary storage.
The benefit of data-based simulation derives from the
access to actual data that represents details of the real
world.

3 THE OBJECT FLOW MODEL

The Object Flow Model builds on the capabilities of an
object-oriented database to provide an active, data- and

event-driven component to a database [Delcambre, et al,
1990, Delcambre, et al, 1993, Pollacia, 1991]. The
Object Flow Model was developed as a conceptual
modeling language for what we call object-driven
applications. The description of the database structure
(the entities and relationships) are described in the
schema for the object-oriented database. The major
contribution of the Object Flow Model is the Object
Flow Diagram (OFD) a graphical representation of the
object-driven invocation of processing steps.

The motivation for the model and for the OFD came
from a number of different research topics, as summa-
rized in Figure 3. Traditional databases contribute the
ideas of an explicitly stored extension that conforms to
the schema and a query language to access the data.
Active databases use rules or triggers to invoke process-
ing steps, often motivated by the occurrence of real-
world events. An object-oriented database is assumed
for this model to supply rich structural description and
methods for manipulation of objects. Deductive
databases provide the formal semantics for the OFD.
Conceptual modeling languages have described the
structure and behavior of database applications but not
necessarily with data-driven semantics where data-ob-
jects are consumed upon "firing" or invocation of the
processing step. The strongest influence for the Object
Flow Diagram comes from discrete event simulation
languages, for the intuitively appealing graphical repre-
sentation, and the data flow model of computation, for
the invocation of processing steps based on the
availability of data. The formal semantics of the Object
Flow Diagram arises from predicate transition networks
(an extended form of Petri nets) or equivalently from
deductive database rule languages [Abiteboul, et al,
1990] The active invocation of processing steps in a
database environment was inspired by the dataflow
model of computation [Dennis, et al, 1975], and
predicate transition nets.

Di§crete Evenl Database Conceputal
Simulation Modeling Languages
Models &
Languages

Traditional DBs

Dataflow and Active DBs
Pctri Net Models Object-Oriented DBs
of Computation Deductive DBs

Foundation for the Object Flow Model
Figure3

The OFD describes the active invocation of processing
steps based on the occurrence of external events and on
the availability of data. An example OFD is shown in



522 Delcambre and Pollacia

Figure 4.

The basic OFD is a bipartite, directed graph where el-
lipses represent explicitly stored collections of objects
and rectangles represent processing steps. The basic fir-
ing mechanism emulates simulation languages and the
dataflow model because the availability of data and
events triggers the process. The dataflow model has
been extended by placing named database collections of
objects on every arc (rather than just holding individual
tokens) and by adding a guard or condition that must be
true for the process to be triggered. The guard can ex-
press selection and/or matching criteria and is shown in-
side the process box above the line. The usual case is for

Available
Teller

Teller.op = St.op

the database objects (that satisfy the guard and thus trig-
ger the processing step) to be consumed. As an example,
for the process box labeled Employee Break, the Coffee
Break Event is removed from the event collection upon
firing. In some cases, the object simply changes state,
e.g., from the Available Teller to Assigned Teller
collection.

The graphical representation of the OFD is not com-
plete because the details of how the output objects are
constructed is not shown. The OFD is completed by a
textual language called the Process Flow Language
which is a single-assignment language that includes
method invocation.

Available
Station

Start of Day
Event

Assign
Employee

Coffee
Break
Event

Assigned
Teller

Emp.no = CB.no

Employee
Break

Station

Incoming

Assigned
Customer

Station

St.op = Cust.type

Process
Transaction

/

End of Day
Event

Unassign
Employee

T~

Sample Object Flow Diagram
Figure 4



The Object Flow Model for Data-Based Simulation

The OFD shown in Figure 4 indicates the initial
processing in the morning where tellers are assigned to
stations as long as they are trained for the operation to be
performed. This results in an aggregate object being
constructed, called Station, that is ready to serve
customers. The main processing step is Process
Transaction which performs the customer's transaction
and produces (i.e., releases) a station. A station may also
enter into an Employee Break when the Coffee Break
Event occurs for the teller. Finally, at the end of the day,
all stations are disassembled, ready for the next day.
Note that all input arcs shown in Figure 4 indicate that
the inputs are to be consumed (i.e., deleted) from the
database collection shown on the input arcs. This
ensures that events will each be processed once, and that
tellers will only be assigned to one available station.
The OFD is non-deterministic. A station for which there
is a Coffee Break Event as well as an appropriate
Incoming Customer, can go either way (non-
deterministically) but the consumption semantics assures
that it will only go one way at a time. The formal
semantics of the diagram comes from the equivalent rule
program or predicate transition network, both of which
are known to be non-deterministic.

4 ANALYSIS

Data-based simulation with direct access to thc database
provides a new concept for simulation where the
simulation proceeds at a completely detailed level. For
the apparel manufacturing example, we simulate
thousands of actual bundles progressing through hundred
of stations according to the efficiencies of the actual
operators.

Comparison with the Simulation Field

The scope of the Object Flow Model is as a conceptual
modeling language for data-based and traditional dis-
crete event simulation. Data-based simulation is
specifically targeted for discrete simulation, primarily
because databases are fundamentally discrete.

As a simulation model, the Object Flow Model has
some features of all three world views commonly used in
discrete simulation: event scheduling, activity scanning,
and process-oriented [Hooper, 1986]. A world view
provides the framework for the system under study and
influences both the structure of the simulation model as
well as the implementation of the simulator. Figure 5
presents a number of discrete event simulation
languages, classified according to their world view. For
the references and a more detailed discussion see
[Pollacia, 1991].

523

Event Activity Process

Scheduling Scanning Oriented

GASII, 11 CSL GPSS

SIMSCRIPT ECSL Q-GERT

SLAM,SLAMII SLAM, SLAMII
SIMAN
SIMULA

Common Simulation Languages
Figure 5§

The Object Flow Model includes the definition of
Event Classes in much the same manner as entity
classes. But the OFM is richer than pure event
scheduling because the guard is strictly more expressive
than simple event-based invocation. The triggering and
end-process events can be defined for all process nodes
in an Object Flow Diagram, providing a lower-level
implementation. However, event scheduling does not
handle matching or joining of multiple inputs well.

The activity scanning world view describes applica-
tions as activities or operations in which entities engage
[Pid84]. Each activity contains test conditions and ac-
tions where the actions will be executed whenever the
conditions are satisfied. The Object Flow Model uses
many elements of the activity scanning approach: condi-
tions are analogous to guards and activities are
analogous to process node bodies. But the Object Flow
Model includes events and the guard includes the ability
to access and match data.

The process interaction world view usually adopts a
directed graph or flow diagram to describe all of the op-
erations that an entity engages in during its lifetime.
Entities can be conditionally and unconditionally de-
layed. A common implementation uses a future event
list and a current event list (to indicate all steps to be
processed in the current time) [Zeigler, 1976]. Each
OFD is directly analogous to a process.

Thus, the Object Flow Model world view is essentially
a process interaction world view but includes elements
of the other two in the form of event classes and individ-
ual process nodes with guards (corresponding to ele-
ments of the event scheduling and activity scanning
world views, respectively). The underlying implementa-
tion for the Object Flow Model adopts the traditional
cvent list approach but supplements it with techniques to
provide matching for the non-trivial guards, as described
in a recent paper [Delcambre, et al, 1993]. The matching
technology most suited for the Object Flow Model is the
database technology for satisfying rule conditions
[Hanson, et al, 1993] inspired by the RETE network
[Forgy, 1982] used in expert systems .

Object-oriented simulation models, e.g., [Raczynski,
1988; Petty, et al, 1988; Reddy, et al, 1986; Malloy, et



524 Delcambre and Pollacia

al, 1986} are complementary to the Object Flow Model
since we assume an object-oriented model. However,
the contributions of the Object Flow Model to object-
oriented databases (listed below) apply to object-oriented
simulation, as well.

From a simulation point of view, the Object Flow
Model contributes a rich database structure for objects
and relationships, a conceptual modeling language for
the description of simulation models, and, particularly, a
formal semantics for the Object Flow Diagrams

Comparison with the Database Field

From a database point of view, the Object Flow Model
contributes a formally-defined yet intuitive conceptual
modeling language for object-driven applications.
Although not discussed here, the Object Flow Model of-
fers rich structuring capability using both generalization
and aggregation to relate various collections of objects.
We see an interplay between detailed schema design and
OFD construction where the schema supplies a rich set
of collections to be used in OFDs or, conversely, the
OFDs induce various collections in the schema. We
believe that the Object Flow Model is complementary to
object-oriented databases but contributes a missing com-
ponent for the active invocation of processing steps.
From an active database point of view, the Object Flow
Model directly integrates triggers with an object-oriented
database, provides a description of an entire set of trig-
gers or a trigger program, and provides formal semantics
for the trigger programs. Other contributions include:
the ability to invoke processing (directly) based on two
or more objects rather than just by a single message, the
ability to construct and destruct progressively more
complex objects (like the station) and show this
construction visually, and the consumption semantics to
model (even non-deterministic) object-driven invocation.

Data-based simulation is complementary to traditional
simulation, easily exploits existing database and discrete
event simulation technology, provides detailed results
from a simulation and also provides a form of
prototyping for application software. This work is
motivated by the work on System Entity Specification
[Zeigler, 1984], but brings the idea of structural
specification directly into the purview of database sys-
tems. This work applies mainly to the area of predictive,
state transition models for discrete systems [Fishwick, et
al, 19911].

5§ FUTURE WORK

The original research leading to the apparel manufactur-
ing near-term simulator was funded by the Defense

Logistics Agency of the Department of Defense in con-
junction with Clemson University. A second research
grant in progress funded by the Louisiana Educational
Quality Support Fund is transferring the Object Flow
Simulator and testing it in an actual manufacturing plant,
Jennings Manufacturing. The installation of the real-
time payroll is in progress and the installation of the
data-based simulator is planned for later this year.

The formal semantics for the Object Flow Model is
currently being finalized through a detailed algorithm
that translates the OFD to a deductive database rule pro-
gram. The challenge is to map the rich structure of an
object-oriented database to a rule language intended for
relational databases. A graphical editor for Object Flow
Model schemas has been implemented and a similar tool
for OFDs is currently under development. Finally, the
use of the Object Flow Model as the basis for domain
modeling, as part of constructing a domain-specific
software architecture, is being considered.

ACKNOWLEDGMENTS

The original idea for the apparel manufacturing simula-
tor based on detailed payroll data was suggested by Dr.
John C. Peck at Clemson University. He has been a
Principal Investigator in both funded projects and has
provided invaluable insight into data-based simulation.

REFERENCES

Abiteboul, S. and Simon, E., "Fundamental properties of
deterministic and nondeterministic extensions of
Datalog", Journal of Theoretical Computer Science,
1990.

Banks, J., Carson, J.S., Discrete Event Simulation,
Englewood Cliffs, 1984, Prentice Hall.

Bratley, P., Fox, B.L., Schrage, L.E., A Guide to
Simulation, New York 1993, Springer-Verlag.

Chen, P.P.S., "The Entity-Relationship Model: Towards
a Unified View of Data", ACM Transactions on
Database Systems, Vol. 1, No. 1, pp. 9-36, March
1976.

Dennis, J.B. and Misunas, D.P., "A preliminary
architecture for a basic data-flow processor”,
Proceedings Second Annual Symposium on Computer
Architecture, January 1975, pp. 126-132.

Delcambre, L., Landry, S., Pollacia, L., Waramahaputi,
J., "Specifying Object Flow in an Object-Oriented
Database for Simulation”, Proceedings. of the SCS
Multi Conference on Object-Oriented Simulation, San
Diego, CA, January 1990.

Delcambre, L., Narayanswamy, J., Pollacia, L.,
"Simulation of the Object Flow Model: A Conceptual
Modeling Language for Object-Driven Applications”



The Object Flow Model for Data-Based Simulation 525

Proceedings. 26th Annual Simulation Symposium,
Arlington, VA, April 1993, IEEE Computer Society
Press.

Forgy, C.L., "A fast algorithm for the many pat-
tern/many object pattern match problem", Artificial
Intelligence, Vol. 19, pp. 17-37, 1982.

Fishwick, P.A. and Zeigler, B.P., "Quantitative Physics:
toward the automation of systems problem solving",
Journal of Experimental and Theoretical Artificial
Intelligence, Volume 3, pp. 219-246, 1991.

Hooper, J.W., "Strategy-Related Characteristics of
Discrete-Event Languages and Models", Simulation,
Vol. 46, No. 4, pp. 153-159, April 1986.

Hanson, E.N. and Widom, J., "An Overview of
Production Rules in Database Systems", Knowledge
Engineering Review, June 1993,

MacDoughall, M.H. Simulating Computer Systems,
Cambridge, MA, 1987, MIT Press.

Malloy, B., Soffa, M.L., "SIMCAL: The merger of
SIMULA and Pascal”, Proceedings. 1986 Winter
Simulation Conference, pp. 397-402.

Nance, R.E., "The Time and State Relationships in
Simulation Modeling", Communications of the ACM,,
Vol. 24, No. 4, pp. 173-179, 1981.

Petty, M.D., Moshel, J.M., Hughes, C.E., "Tactical
Simulation in an Object-Oriented Graphics
Environment", Simulator, Vol. 19, No. 2, pp. 31-46,
June 1948.

Pidd, M. Computer Simulation in Management Science,
John Wiley & Sons, New York, 1984

Pollacia, L., "The Object Flow Model: A Conceptual
Modeling Language for Object-Driven Software",
Ph.D. Dissertation, University of Southwestern
Louisiana, Lafayette, LA, May 1991

Raczynski, S., "Process Hierarchy and Inheritance in
PASION", Simulation, Vol. 50, No. 6, pp. 249-251,
June 1988.

Reddy, Y.V.R., Fox, M.S., Hussain, V., McRoberts, M.,
"The Knowledge-Based Simulation System", [EEE
Software, Vol. 3, No. 2, pp. 26-37, March 1986.

Reiter, R., "Towards a Logical Reconstruction of
Relational Database Theory", On Conceptual
Modeling, Ch. 8, pp. 191-233,

Zeigler, B.P., Theory of Modeling and Simulation, New
York, 1976, John Wiley and Sons.

Zeigler, B.P., Multi-faceted Modeling and Discrete
Event Simulation, New York 1984, Academic Press.
Zeigler, B.P., "The DEVS Formalism: event-based
control for intelligent systems", Proceedings of /EEE,

Vol. 74, No. 1, pp. 27-80.

AUTHOR BIOGRAPHIES

LOIS M.L. DELCAMBRE is currently an Associate
Professor of Computer Science at the Oregon Graduate
Institute of Science and Technology. She is also a
Pacific Northwest Laboratories Affiliate Staff Scientifst
and the Director of the Data-Intensive Systems Center, a
research center comprised of researchers from the
Oregon Graduate Institute and Portland State University.
From 1982-1992 she served on the Computer Science
Faculty at the University of Southwestern Louisiana and
as the Associate Director of the Apparel CIM Center.
Her research interests are in the area of database data
models, design databases, conceptual modeling, and
expert database systems. She received her B.S. in
Mathematics from the University of Southwestern
Louisiana, her M.S. in Mathematical Sciences from
Clemson University, and her Ph.D. in Computer Science
from the University of Southwestern Louisiana. She is a
member of ACM and the IEEE Computer Society.

LISSA F. POLLACIA received a B.S. in Mathematics
Education from Northwestern State University, an M.S.
in Mathematics from Northwestern State University in
August, 1980, an M.S. in Computer Science from the
University of Southwestern Louisiana in December,
1984, and a Ph.D. in Computer Science from University
of Southwestern Louisiana in May, 1991. She was
awarded both Master's and Ph.D. Fellowships from USL.
She is a member of Phi Kappa Phi. Her professional
work experience has included four years as a high school
Advanced Mathematics teacher in Leesville, LA, and
four years as a Computer Information Systems Instructor
for Northwestern. She is currently an Assistant
Professor of Computer Science for Northwestern. She is
a member of ACM, Mathematics Association of
America, Louisiana Academy of Sciences, and Louisiana
Association of Computer Using Educators.



