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ABSTRACT

We propose a Monte Carlo sampling algorithm
for estimating guaranteed-coverage tolerance factors
for nonnormal continuous distributions with known
shape but unknown mean and variance. The al-
gorithm is based on reformulating this root-finding
problem as a quantile-estimation problem. Our
quantile-estimation algorithm always converges, usu-
ally faster than stochastic-approximation algorithms,
which are designed for general root-finding.

1 INTRODUCTION

Let {X;,X3,..., X,} be a random sample from the
distribution of a continuous random variable X with
known shape but unknown mean and variance. The
guaranteed-coverage tolerance interval I(k*) for X is
[X —k* S, 00) for lower one-sided, (—oo, X 4+ k* S] for
upper one-sided, or [X —k* S, X +k* S] for two-sided
interval. The constant tolerance factor k* is defined
so that with 1009% confidence the random tolerance
interval covers the proportion a of the distribution,
ie.,

Pres{ Prx{X €Ik} 2} =7. (1)

Here the future X is independent of the sample statis-
tics X and S. The value of k* depends on sample size
n, coverage a € (0,1), confidence vy € (0,1) and the
distribution shape of X. For a single application, a
single interval is computed from observed values of X
and S%; the probability that a future observation X
lies in the interval is random, but should be at least
@ in 1007% of many applications.

Such intervals are used to predict future behavior.
In computer simulation of a manufacturing system,
X might be the throughput of a single future shift
and the observed data Xi, X»,..., X, might be the
n simulated shift throughputs. An « proportion of
future throughput is predicted to be in the interval
with confidence 4. In reliability, based on product
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test results X, X5, ..., X, a system is designed at the
tolerance bounds to ensure, with confidence v, that
system reliability is at least a; i.e., at least 100a% of
the systems built will not fail. In quality control, a
contract might specify constants n, k* and ¢ so that a
lot 1s accepted if a subset X, X3, ..., X, ylelds a value
of X —k*S less than ¢ (lower tolerance bound); these
constants can be chosen using tolerance-interval logic
to guarantee that a particular lot containing 100(1 —
a)% defective items (defined as X < c¢) is accepted
with probability ~.

Despite the broad range of applications, most
tolerance-interval literature assumes normally dis-
tributed X’s, e.g., Wald and Wolfowitz (1946),
Guttman (1970), Aitchison and Dunsmore (1975),
and Eberhardt et al. (1989). The one-sided toler-
ance factor for the normal distribution is

k* = tno14(Vnza)/Vn, )

where t, ,(}) is the v*" quantile of the noncentral t
distribution with v degrees of freedom and noncen-
trality parameter )\, and z, is the a'" quantile of
the standard normal. The normal two-sided tolerance
factor k* can be computed by solving the equation

) n—1)v? e—nu’/2
/ Pr{xi_, > ( k_z) } \/2—7[/—1_; du =¥,

where x2 is chi-square distributed with v degrees of
freedom, and v satisfies ®(u+v)—®(u—v) = a, where
& is the standard normal distribution function. Odeh
and Owen (1980) provides tables for one-sided and
two-sided tolerance factors for normal distributions.
Some nonnormal literature exists. Aitchison and
Dunsmore (1975) also propose different forms of toler-
ance intervals for binomial, Poisson, gamma and two-
parameter exponential populations. Guenther (1985)
provides an extensive discussion of distribution-free
tolerance intervals. Wald (1942) develops maximum-
likelihood tolerance limits through asymptotic theory.
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We focus on lower one-sided guaranteed-coverage
tolerance intervals. Calculating the factor &* in
the upper one-sided guaranteed-coverage tolerance-
interval (—oo, X + k* S] is a variation of the lower
one-sided problem, as discussed in Appendix A. The
factor k* in the two-sided interval [X —k* S, X +k* 5]
can be found by a modified algorithm.

In Section 2 we propose a new Monte Carlo al-
gorithm for the lower one-sided guaranteed-coverage
tolerance factor k* based on reformulating k* as
a distribution quantile. There algorithmic conver-
gence speed is also discussed and compared to that of
stochastic approximation. In Section 3 we study the
behavior of the lower one-sided factor k* as a func-
tion of n, e, v, and distribution shape. In Section 4
we show that the two-sided tolerance factor is also
a distribution quantile and hence can be solved by
modifying the algorithm in Section 2.

2 METHOD

Let Fx(-) denote the distribution function from which
the future observation X and the independent sam-
ple {X1, X,,..., X,} are drawn. We assume that X is
continuous (i.e., there is no point with positive proba-
bility mass), the shape of Fx is known, and the mean
u# and standard deviation ¢ are unknown. We want
to find the lower one-sided guaranteed-coverage tol-
erance factor k*, given sample size n, «, v and distri-
bution shape, such that Equation 1, i.e.,

Prg s{Prx{X>X k" S} >e}=7. (3)

is satisfied.
This problem is to find the root k* of the equation

g(k*) =, (4)
where the function
o(k) = Prg s{P1x{X > X ~kS} > a}  (5)

is the confidence that the interval [X — kS, c0) con-
tains at least the proportion a of the measurements.
In finding the root, three properties of g are useful:

1. g: R —[0,1]is a continuous nondecreasing func-
tion and strictly increasing in the set {k : g(k) €

(0,1},

2. for 0 < 7 < 1, equation g(k) = v has a unique
solution, k*, and

3. g does not depend on p or o.

These three properties are straightforward. If the
value of k increases, the value of X — kS decreases.

Therefore, g(k), the probability of having coverage
at least «, increases. In the limits, g(—o0) = 0 and
g(co0) = 1. Continuity follows since Fx has no mass
points, so the first property holds. For the second
property, existence of the root follows from continu-
ity and the intermediate value theorem; uniqueness
follows from g being increasing. To show the third
property, let Y = (X — p)/o and Y; = (X; — p)/o for
1=1,2,...,n. Then

Prx{X > X — kS}

n "‘_ Y;
Zi:l[)/" - 21;1&]]2

r Y
=Pry{Y2&;1——-k }

n—-1
= PI'Y{Y Z }—, - kSY})

where Y and Sy? are the sample mean and sample
variance of Y7, ..., ¥y, respectively. Hence,

g(k) = Pry s {Pry{Y > Y — kSy} > a}

and the third property holds.

Despite not depending on the population mean yu
or variance o2, g can be easily computed only for
special cases, such as the normal distribution, since g
depends upon the joint distribution function of X and
S. However, g(k) can be estimated by Monte Carlo
simulation experiment, using any arbitrary values of
u and o2,

In Subsection 2.1, we propose interpreting k* as a
quantile, which allows application of our Quantile Es-
timation (QE) algorithm. In Subsection 2.2, we show
that QE is asymptotically more efficient than general-
purpose stochastic-approximation algorithms.

2.1 Quantile Estimation Algorithm (QE)

A natural approach to solving for k* in Equation 3
would be to invert g, defined in Equation 5. By Prop-
erty 1, the inverse function ¢! always exists for do-
main (0,1). However, it is easy to compute g~! only
for special cases, such as when X is normally dis-
tributed.
Nevertheless, we always can simplify g to reformu-
late k* as a distribution quantile.
Result 1 Let K = [X — Fx'(1—a)] / S. Then
k* = Fgl(v).
proof:
g(k) = Prgs{Prx{X>X -kS}>a)
= Prg s{Prx{X<X-kS}<1-0}
= Prg s{X—-kS < Fx'(1-a)}
s 1
X-Fy(1-a) <

S < k)

= Pf}?,s{
= Fg(k).
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Hence ¢7'(:) = Fg'(). Therefore, k* =
9~1(7) = Fg'(7), the v*! quantile of K.

Algorithm QE estimates k* for lower one-sided tol-
erance intervals [X —k* S, 00) by generating m Monte
Carlo independent realizations of K. The estimate is

B = w k(m1)y)) + (1 = @) k((ma1)yj41),  (6)

the convex combination of the |[(m + 1)y]*" and
(l(m + 1)y] + 1)*® order statistics, with the weight
w = |(m+1)y] +1 - (m + 1)y chosen to reduce
the first-order bias of the quantile estimate. (See
Avramidis (1993) for other possibilities.) Neither &*
nor k* depends on u or o.

Algorithm QE( m ): Given n, «, v, and distribu-
tion shape, estimate k*.

Step 0: Set : = 0.

Step 1: Independently generate a random sample
{z1,z2,...,zn} from the population X with any
arbitrary values of y and o.

Step 2: Compute the sample mean z and stan-
dard deviation s from the sample.

Step 3: Compute k; = [z — Fx'(1 — a)]/s.
Step 4: If i < m, set i — i+ 1 and go to Step 1.

Step 5: Compute k* from ki1,k2,...,km using
Equation 6.

Given k* from QE, a practitioner can form a lower
one-sided tolerance interval [X — k* S, 00) using ob-
served values of X and S from real-world data.

2.2 Asymptotic Efficiency of Algorithms QE
and Stochastic Approximation

We show here that the QE algorithm always con-
verges at rate m~!/2 the best that stochastic ap-
proximation algorithms can achieve. Furthermore,
QE has no algorithmic parameter. Hence our QE
is easier to apply and asymptotically more efficient.

The asymptotic distribution of the QE estimate k*
based on m independent realizations of random vari-
able K is (Lehmann 1983, p. 394)

vk - k) 2one, 1020 )
fr(k*)
where fg(-) is the density function of K. Hence QE
always converges at rate m=1/2,
Stochastic approximation is a classical Monte Carlo
approach first proposed by Robbins and Monro
(1951) for root-finding problems, when function value

9(-) is difficult to compute. There are several varia-
tions (e.g., Kesten 1958, Andradottir 1992, Polyak
and Juditsky 1992). All are iterative methods requir-
ing only an ability to estimate g(k). Each has several
algorithmic parameters (initial point, step size, etc.)
which strongly affect the speed of convergence.

Stochastic approximation has the best asymptotic
distribution, that of Equation 7, when the optimal
step size which depends on ¢’(k*) (Fabian 1973) is
chosen each iteration. However, ¢'(k*) is unknown
since k* is unknown. Hence QE is asymptotically
more efficient than stochastic approximation.

Variations of QE can improve performance. Be-
cause the normal distribution yields a fast solution via
the noncentral ¢ distribution, the normal-distribution
estimator can be used as a control variate. A sec-
ond variation is to sample K dependently using, for
example, Latin hypercube sampling.

3 ANALYSIS

The lower one-sided tolerance factor, k*, is a function
of the parameter values a, v, and n and the distribu-
tion shape. In Subsection 3.1 we show one property
of k* for symmetric distribution shapes, and the lim-
iting value of k™ as sample size n goes to infinity. In
Subsection 3.2 we discuss the sensitivity of k* to the
parameter values «, v, n and distribution shape.

3.1 Symmetric Distribution Shape and Infi-
nite Sample Size

Here we show that for symmetric distributions the
value of k* with coverage a and confidence v is the
negative value of k* with coverage 1 — a and confi-
dence 1 —+. We also show that, as sample size n goes
to infinity, k* goes to [u — Fx'(1 — a)]/0.

Result 2 Let kzn,a, denote the tolerance factor for
random variable X such that the coverage is a, con-
fidence level is v and the sample size is n. If the
distribution of X is symmetric, then for0 < a,y <1
and n € {2,3,...}

k(‘n,a,'y) = _k(.n,l—a,l—'y)‘ (8)

The proof is in Appendix B.

The limiting value of k* as the sample size n goes
to infinity, for given values of a and v, is sometimes
useful as a bound, as an initial guess, or as an ap-
proximation when = is large.

Result 3 lim, oo k* = [p— Fx'(1-a)] /0.

When n — oo, X converges in distribution to p
and S converges in distribution to o. Therefore, Slut-
sky’s theorem implies from Result 1 that the random
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variable K converges in distribution to the constant
4 — Fx'(1 — a)]/o. Therefore, all quantiles g~'(q)
converge to this same constant, yielding Result 3.
This limiting value is a function of only a and the
distribution shape. As always, it is not a function
of u or ¢. In addition, the limiting value is not a
function of the confidence v, since the limiting joint
distribution of (S, X) is degenerate at (o, s).

3.2 Sensitivity Analysis

We show here that the lower one-sided factor k* is an
increasing function of & and of v, but that k* is not
necessarily a monotonic function of n. The distribu-
tion shape can affect the values of k* substantially.
To measure distribution shape, we use the skew-
ness a3 and kurtosis a4, the third and fourth stan-
dardized moments. For any specified point (as, a4),
we choose the unique corresponding Johnson distri-
bution. The Johnson family, proposed by Johnson
(1949), includes three transformations of the stan-
dard normal distribution. Let X and Z denote the
Johnson and standard normal random variables, re-
spectively. The three transformations are:

se: z=n+sm(ETY, AX-620,
Sp: Z= +61(ﬁ) 0<X—€<A
B - =1 n£+A—X’ = 6_ )

Su : Z:q+6sinh_l(¥), —00 < X < o0.

The constants ¢ and A, respectively, are location and
scale parameters; n and § are the shape parameters.
The second transformation, Sg, provides a bounded
random variable X; the third transformation, Sy, re-
sults a unbounded X. For lognormal distributions,
Sr, the range is bounded below if A > 0 and bounded
above if A < 0. DeBrota et al. (1989) have developed
two public-domain software packages; VISIFIT and
FITTR1. VISIFIT allows visual fitting to a desired
density shape. FITTRI fits Johnson distributions to
data using any of several criteria. We use the numer-
ical routines of Hill, Hill, and Holder (1976) to find
the Johnson distribution having desired moments g,
o, a3, and ay.

Tables 1 and 2 show values of k* for thirty-six de-
sign points: n € {2,10,30,00}, a € {.001,.5,.99},
and v € {.001,.5,.99}. The normal-distribution re-
sults in Table 1 are computed numerically. The
(a3, as) = (4, 30) Johnson-distribution results in Ta-
ble 2 are estimates using the QE algorithm based on
500,000 independent Monte Carlo samples of size n;
only significant digits are shown, based on standard

Table 1: Tolerance Factors for the Normal Distribu-
tion

@ ¥ 2 10 30 %
001 .001 -2365 -8.93 -5.15 -3.09
.001 5 -453 -3.21 -3.13 -3.09
001 99 -0.97 -1.85 -2.28 -3.09
.5 .001 -225 -1.36 -0.62 0.00
.5 5 0.00 0.00 0.00 0.00
.5 99 2249 089 045 0.00
99 001 015 108 149 233
99 5 338 241 235 233
99 .99 186 5.07 3.45 233

errors estimated using Schmeiser et al. (1990), and
Hashem and Schmeiser (1993).

These two tables illustrate three points that are
true in general: (1) The tolerance factor k* increases
as the coverage a increases. (2) The tolerance factor
k* increases as the confidence v increases. (3) The
sensitivity to n is least when a = .5 and ¥ = .5, with
k* = 0 in symmetric cases such as the normal.

Table 2: Tolerance Factors for the Johnson Sp Dis-
tribution with Skewness 4 and Kurtosis 30

n
« ¥ 2 10 30 00

.001 .001 -1.9E+4 -74.9 -32 -8.61
.001 5 -274 -12.6 -10.3 -8.61
.001 .99 1.5 -27 -3.7 -861
5 .001 -400 -1.7 -0.24 0.33
5 .5 0.30 036 035 0.33
5 .99 15 0.89 062 033
.99  .001 043 041 038 0.74
99 5 1.35 0.98 086 0.74
99 .99 67 194 134 0.74

The behavior of k* is not always monotonically de-
creasing as n increases. For the normal distribution in
Table 1, it is true that k* moves monotonically to the
limiting value; for the usual case of large confidence
values v, k* decreases. For the Johnson distribution
in Table 2, k* does not move monotonically to its
limiting value in the fifth and seventh rows. If we ex-
panded Table 2, the seventh-row values of k* would
be 0.40, 0.44 and 0.49 when n is 60, 100 and 200,
respectively. Hence, the value of k* decreases with
n until some value of n between 30 and 40, where it
starts increasing toward the limiting value 0.74. The
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reason for this non-monotonic behavior is that the
shape of the (S, X) joint distribution changes as n
increases. We study this effect geometrically further
later in this section. (See Figure 4.)

To interpret the behavior of the tolerance factor £*,
we now view the problem geometrically. Consider
the straight line L : # = k*s + F5'(1 — a) in the
sample plane of (S, X) with given values of n, a, v
and (a3, as), where T and s are the realizations of X
and S, respectively. The z-axis intercept Fx'(l — a)
is determined only by distribution shape and . The
slope is k*, determined so that v is the probability of
the random point (S, X) lying on or below L. The
value of k* is not necessarily positive; negative values
of k* occur when a or v, or both, are small.

2.5 3 S

Figure 1: Plot of Lines L in the Sample Plane of
(S, X) for @ = .01,.5 and .99 with Standard Normal
Data,n=2,and vy = .5

Figure 1 is a scatter plot of one hundred indepen-
dent observations (s, z) from standard normal sam-
ples of size n = 2. For 4 = 0.5, the three lines corre-
sponding to a = 0.01,0.5,0.99 illustrate the change
of k* with change of a. (The slopes are computed nu-
merically.) As o increases, the intercept on the z-axis
moves down so the slope of line L goes up in order to
keep half of the observations (s, Z) below line L.

Figure 1 also illustrates that k* increases with 7,
although the change of v with a fixed is not plotted.
As v increases, the line L pivots counterclockwise at
(0, Fx'(1 = a)) to increase the proportion of the ob-
servations below L; hence, the slope of L increases.

Figures 2 and 3 illustrate k* increasing and decreas-
ing, respectively, with n. One hundred points (S, X)
are plotted for both n = 2 and n = 30 for the John-
son Sp population with skewness 4 and kurtosis 30.
Lines are shown for n = 2, n = 30, and n = oo and
a = 0.5. (The slopes are estimated using QE with
m = 500,000 samples of size n.) The only difference
between Figure 2 and Figure 3 is that the value of

v changes from 0.001 to 0.99. As n increases, the
slope of line L passing through point (0, Fx'(1 — a))
goes closer to the limiting value of k* as the joint
distribution shrinks toward the point (o, ). Since
a proportion v of the points lies below the line, the
larger value of v has the larger slope k*.

1.5 T L] Ll v

Figure 2: Plot of Line L in Sample Plane of (S, X)
from Johnson Sp Distribution for n = 2 and 30,
where a = .5, and ¥ = .001 (When n = 2 the Slope
Is —400, and the Line L is Hidden in the £ Axis.)

0 0.5 1 1.5 2 2.5S

Figure 3: Plot of Line L in Sample Plane of (S, X)
from Johnson Sp Distribution for n = 2 and 30,
where a = .5, and y = .99

Figure 4 shows that k™ does not necessarily change
monotonically with n. Three sets of thirty points
(S, X) from the same Johnson Sp distribution are
shown for each of n = 2, n = 30 and n = 200.
The four lines (for n = 2, 30,200, 00) correspond to
a = 0.99 and ¥ = 0.1. As n increases, the slope first
decreases and then increases to the limiting k*. The
graph shows that nonmonotonic behavior occurs be-
cause the joint distribution of (S, X) changes shape as
it shrinks to (o, 1). In this case, the changing shape
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dominates for small sample sizes and the shrinking
dominates for large sample sizes.

0.4

Bx.

* »
53 >

F(l-0)
-0.8 L 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 S

Figure 4: Plot of Line L in Sample Plane of (S, )_()
from Johnson Sp Distribution for n = 2, 30 and 200,
where o = .99, and y = .1

4 TWO-SIDED TOLERANCE FACTOR

The factor £* in the two-sided guaranteed-coverage
tolerance interval [X—k* S, X +k* S] is also a quantile
of an observable random variable. Hence QE can be
modified to solve for k*.

The two-sided factor k* satisfies Equation 1, i.e.,

Prg s{Pix{X - k"S<X<X+k"S}>a}=17.

(9)
Let vo(X) = v be the random variable satisfying
Fx(X + v) — Fx(X —v) = a. Then the event
“Prx{X —k*S <X < X+k* S} > a” in Equation 9
is equivalent to the event “k* S > wv,(X)”. Hence,
Equation 9 can be rewritten as

Prys{ va(X)/S < k" }=7.

Let random variable K = v,(X)/S, which again does
not depend on g or 6. Then k* is the 4" quantile
of the distribution of K, which can be observed via
realizations of X and S.

The modification of QE algorithm for two-sided tol-
erance intervals estimates k* from order statistics in
Equation 6 based on m independent realizations of
the observable K. Analogous to the QE Algorithm
for lower one-sided stated in Subsection 2.1, Step 3 is
changed to

Step 3: Compute k; = va(Z)/s, where v4(Z) = v
satisfies Fx(Zz +v) — Fx(z —v) = a.

The new Step 3 requires numerical root finding for v.
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APPENDIX A: UPPER ONE-SIDED TOL-
ERANCE FACTORS

Upper one-sided tolerance intervals are closely related
to lower one-sided intervals. Let k,l,{ a,y @nd k,[(,a,., de-
note the factors for upper and lower one-sided inter-
vals, respectively, such that the coverage is «, confi-

dence is v and the sample size is n. Then

Prg s{Prx{X <X +kJ,, S} >a}=17

n,oy
implies that
Prg s{Prx{X > X + k., S/} <l-a}=17,
and therefore

Prg s{Prx{X>X+ki, S}>1-0a}=1-1.

n,a,y
Hence,
U _ L
kn,a,—y - _kn,l-a,l—-/ .

To estimate the upper one-sided tolerance factor
k™ with coverage a and confidence v, we can estimate
the lower one-sided tolerance factor with coverage 1-
a and confidence 1 — v and then change the sign.
The limiting value of the upper one-sided guaranteed-
coverage tolerance factor is then, from Result 3,

Jim & = [Fgle)—pul/o,  (10)

for all positive values of v.

APPENDIX B: PROOF FOR RESULT 2

Here we prove that if X is symmetrically distributed,
then kzn,a,'y) = —kfn,l—a,l—-y)'

Since changing p does not affect the tolerance fac-
tor, without loss the generality set u = 0, so that the
distribution of X is symmetric at zero. Then, X and
—X have the same distributions. Given a positive
integer n and 0 < a,y < 1, then k{n,aﬂ) satisfies

Pl‘)?'s{Pl‘x{X > X_ - kzn,a,'y) S} > a} =7
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Also,

Prg s{Prx{X >X -k, ., S}>a}
= Prgg{Prx{X<X-k{,,, S} <l-a}
= Prgs{Prx{X>-X+ knaqr) SE<1=a}
since X is symmetric at 0
= Prgs{Prx{X>X +kinaqy St<1—a}

= l—Pl'X.s{Pl'x{X Z X +kzn,a,7) S} Z l—a}

Hence,
Prgs{ Prx{X>X+k}, ., S} >1-a}=1-1.

Then,

k(‘n,a.'y) = —an,l—a,l—-y)'
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