Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

AN ALMOST REGENERATIVE SIMULATION OF VIDEO TELECONFERENCING
TRAFFIC

David M. Cohen
Daniel P. Heyman

Bellcore
Morristown, NJ 07960, U.S.A.
dmc@bellcore.com
dph@bellcore.com

ABSTRACT

This note discusses the application of an almost re-
generative method to the simulation of a Markov
chain that takes a very long time to converge. Even
simulation runs of 102 cells did not produce the same
results for simulation scenarios with an average cell-
loss-rate of 1078. The regenerative method can not
be used here as the time between regenerative states
is too long (103 events). Instead, an almost regenera-
tive method was tried and it gave results that agreed
with predictions from regenerative theory and with
some very long simulation runs. The regenerative
runs were done on a massively parallel processor.

Key words: regenerative simulation, parallel sim-
ulation, variance reduction.

1 INTRODUCTION

This note discusses experiments with an almost re-
generative discrete event simulation of a Markov
chain that takes a very long time to converge. Fig-
ure 1, on the next page, shows a block diagram of
the simulation model. Access lines carrying Asyn-
chronous Transfer Mode (ATM) cells generated by
Variable Bit Rate (VBR) encoded video sources are
fed into a buffer and multiplexed onto a higher speed
output line. The study observed the cell loss resulting
from buffer overflow. Different simulation scenarios
were obtained by varying the number of access lines,
the size of the buffer, the speed of the output line, and
the parameters for the video sources. The results on
engineering ATM networks are discussed in greater
detail in Cohen and Heyman (1993a/b) and Cohen,
Cooper, Heyman and Reilly (1992). This note dis-
cusses our experiments with an almost regenerative
method.

The study was concerned with low loss probabili-
ties, ones on the order of 1078, Simulation runs of
the order of 10! cells are normally regarded as suffi-

489

cient to find a loss rate of 10~8. However, even runs
of 1012 cells did not always see the same cell-loss-rate.
A reason is that the cell losses are clustered and nei-
ther the number of lost cells per cluster nor the time
between cluster of loss are uniformly distributed (see
Cohen and Heyman (1993a/b)).

A few thousand runs of 10'° cells were done for
each scenario on a massively parallel processor, the
MasPar MP-1216. Twenty additional runs of 10!
and 10'? cells were done on a workstation for some
of the scenarios. The average cell-loss-rates observed
by the few long runs and the average rates observed
by the many shorter ones were of the same order of
magnitude. While these simulations generated useful
results about the distribution of losses, the observed
variance in cell-loss-rates was high for scenarios with
low cell-loss-rates. For example, the standard devi-
ation in cell-loss-rates observed by different proces-
sors was five times the observed mean for scenarios
with an observed mean of 1078. Obtaining estimates
with a lower variance would either require doing much
longer runs or “patching” together several runs to
generate a longer run.

The regenerative method has been suggested by
several authors, most notably Crane and Iglehart
(1975a) and Fishman (1974), as a way to use many
independent simulations to find a steady state prob-
ability. In a regenerative simulation, a regenerative
state is identified and a regenerative cycle is defined
to be a simulation run that starts and ends in the re-
generative state. However, the regenerative method
could not be used here because the time between re-
generative states is too large. For example, with 14
sources, the mean time between visits to the state
with the highest steady state probability of occurring
is 7.25 x 10%° frames. Even at an extraordinary fast
rate of 1013 frames a second, it would take 20 billion
years to generate this many frames. Instead, an al-
most regenerative approach was tried. It gave results
that had a much lower variance and which agreed

490 Cohen and Heyman

FRAMES

A A A .
S
o 0
U A A A > F
R F
C E
E R
S

A A A

Figure 1: Block Diagram of Simulation Architecture

with the results of a few runs of 10?3 cells.

The next three sections discuss the model used for
the video sources, the basic simulation algorithm, and
simulations done using a naive approach. Section 5
discusses the almost regenerative method and gives
an illustrative application to a simpler problem, an
M/M/1/k queue. Section 6 gives the details of the al-
most regenerative simulation of the ATM buffer. The
appendix gives the details of the M/M/1/k example.

2 SIMULATION MODEL

The interframe period for the video sources used in
this study is the PAL standard, which is 40ms. This
means that once a video source starts transmitting,
it sends a frame containing ATM cells every 40ms.
The number of cells per frame is given by a Markov
chain model for VBR video traffic that was devel-
oped in Heyman, Tabatabai, and Lakshman (1992).
The Markov model is determined by three parame-
ters: mean, variance, and the correlation factor be-
tween the number of cells in successive frames. Let
fr be the negative binomial probability:

fk:<k+,:_1)p'qk (1)

where p = mean/variance and r = mean X p/(1—p).
The transition matrix then has the discrete autore-
gression DAR(1) form:

M =pl+(1-p)Q (2)

where p is the correlation factor between successive
frame sizes, I is the identity matrix, and each row
of @ consists of the negative binomial probabilities
(foy--.» fr, Fx) where Fr = Zis i fi and K is the
maximum number of cells per frame.

3 SIMULATION ALGORITHM

Although the study is interested in cell-loss-rate, the
basic event in the simulation is the arrival of a video

frame and not the arrival of an individual cell. Using
frame arrivals instead of cell arrivals greatly reduces
the number of events. The study assumes that cells
are either front-loaded in the video frame, i.e. cells
are sent at the access line speed until the frame is
complete, or that cells are evenly distributed in the
frame. Under either assumption, the buffer overflow
in any time period can be computed from the frame
arrival times, the number of cells per frame, and the
buffer’s initial state.

The frame arrival times are completely determined
by the arrival time of the call’s initial frame since
each active source sends a new frame every 40ms. By
comparing the number of active lines with the ratio
of access to output line speeds, the simulation can
identify intervals when the combined input rate is less
than the output rate. If the buffer is empty at the
start of such an interval, no cells will be lost during
the interval and the buffer will be empty at the end
of the interval. The simulation can then avoid doing
several calculations. This optimization can be very
helpful as the buffer is frequently empty in scenarios
with low cell-loss-rates.

Two different implementations were done for the
MasPar MP-1216, a SIMD parallel processor. The
most expensive parts of the computation cycle are
random number generation and maintenance of a pri-
ority queue of frame completion times (needed when
the cells are front loaded in the video frames). The
first parallelization distributes an individual simula-
tion across a row of processors. Each processor is
responsible for generating a random number and for
maintaining one slot in the queue. A new item is
added to the queue by broadcasting it along the row
to all processors forming the queue. Each processor
determines if it should replace the queue item in its
slot in the queue. An item is deleted from the head
of the queue by having each processor shift its value
to the left. This gives a constant time for updating
a priority queue of fixed maximum size. However,
the number of items in the priority queue in scenarios
with very low loss probabilities is frequently below the
crossover point between the parallel and non-parallel
implementation.

An alternative is to do many independent replica-
tions in parallel. A drawback is that if one processor
in a SIMD machine is executing a statement then
the other processors are either idle or are executing
that statement. Thus, if one processor needs to com-
pute the exact number of cells that arrive in a time
interval, all processors are delayed until that com-
putation is done. This defeats the optimization men-
tioned above and slows down the simulation consider-
ably. Even without this optimization, the replicated

An Almost Regenerative Simulation of Video Teleconferencing Traffic 491

Table 1: Non-regenerative Method

U mean std
1 | 1.3040 x 1073 | 6.883 x 10°%
2 [1.3173x 1078 | 7.169 x 10~38
3 [1.2619x10°% | 7.289 x 10~3
4 |[1.3122x1078 [7.224 x 10~8
5 | 1.3968 x 10~3 | 8.026 x 10-3
6 | 1.3146 x 10-% | 7.251 x 10~8
all [1.3178 x 10~ [7.313 x 103

simulation approach was found to generate more cells
per computation time than parallelizing each individ-
ual simulation. This is in accord with the results of
Heidelberger (1986) in analyzing the efficiency of the
replicated approach for estimating steady-state quan-
tities.

4 NAIVE SIMULATION OF THE ATM
BUFFER

Several thousand independent replications were done
in parallel for each simulation scenario. Each individ-
ual replication ran for 8 x 107 frame arrivals, which
gives about 1.04 x 10!° cells per replication. The
mean and standard deviation of the cell-loss-rates ob-
served by the different replications of each scenario
were computed. Table 1 shows the results from 6 sets
of 16K replications of a scenario with 14 access lines,
a DS-3 rate output line, and a video source with an
average of 130 cells per video frame. The cell-loss-
rates observed by the individual processors were not
normally distributed; 89 % of the replications experi-
enced no cell loss. As shown in the table, the standard
deviation is 5 times the mean.

5 ALMOST REGENERATIVE METHOD

The regenerative method has been suggested as a way
to estimate steady state probabilities from a single
simulation run. In a regenerative simulation, a re-
generative state is identified and a regenerative cycle
is defined to be any portion of simulation run that
starts and ends in the regenerative state. The esti-
mator for the loss probability is

7o E‘(number-of-losses—in-a—cycle) (3)
E (number-of-cells-arriving-in-a-cycle)

where E indicates that the expectation is estimated

from the data in the simulation. See, e.g. section 6

in Rubinstein (1981) for an extensive discussion.

The regenerative method could not be used here
because the time between regenerative states is too
large. For example, the state in the video source
model that has the largest probability of occurring
has a steady-state probability of 0.006247. For a sim-
ulation scenario with 14 access lines, the mean time
between visits to the situation where every access line
is in that state is .006247-1% = 7.25 x 10%° frames.
Even at a rate of 103 frames a second, it would take
20 billion years to simulate this many frame arrivals.

The probability of a source generating less than 100
cells/frame is .404. Thus, the mean time between vis-
its to the situation where the state of every access line
is less than 100 is .404~% = 3.22 x 10° video frames.
This is only 920 sec or 5.85 x 10% cells of real time. It
takes 2 minutes for each of the processors on the Mas-
Par to simulate this many frames. While the regen-
erative method is not feasible, an almost regenerative
approach is.

Because of the difficulty in finding regenerative
events that occur frequently enough, the almost re-
generative method was proposed by Crane and Igle-
hart (1975b) and followed up by Gunther and Wolff
(1980). The examples in these papers are the M/M/1
queue in the former and a pair of M/M/c queues in
tandem in the latter. The processes considered were
continuous-time, so an almost regenerative event is
defined in the following way. Partition the state space
into disjoint sets, U and V say. An almost regenera-
tive event occurs when a transition from some state
u € U to some other state v € V occurs.

Our process is discrete-time and our almost regen-
erative event is the entrance to some set of states,
W say. This raises the following issue. In discrete
time, when a regenerative event occurs, the next oc-
currence is the very next epoch when the regenerative
event occurs. This means that a transition from the
regenerative state to itself can occur. Shall we re-
quire an almost regenerative event to leave W, as the
continuous-time definition requires, or shall we allow
transitions from state w € W to state wr € W to
form a cycle?

Denote these alternatives by method I and method
IT respectively. We will seek guidance by analyti-
cally analyzing the effects of choosing method I or
method II on simulations of the M/M/1/k queue.
The purpose of the simulation is to estimate the loss
probability. In the Appendix it is shown that when
W ={0,1,...,b— 1} and entrance into W is treated
as a regenerative event, method II provides the ex-
act solution and method I does not. This means that
method IT produces an asymptotically-unbiased esti-
mate and method I does not.

492 Cohen and Heyman

6 ALMOST REGENERATIVE SIMULA-
TION OF THE ATM BUFFER

The almost regenerative set S(W) in our experiments
is defined to be the set of states where the buffer is
empty and the current state of each access line is less
than a watermark W, i.e. each access line sent W or
fewer cells in its last input frame. The first condition
is satisfied by most states in a simulation since the
buffer is almost always empty for low loss rates. To
be a truly regenerative state, all of the states with in-
put less than W should have the same outgoing paths.
This is not the case here. However, the transition ma-
trix M in equation 2 has the discrete autoregression
DAR(1) form pI + (1 — p)Q where every row of Q
is identical. Since every row of @ is identical, when
a line changes state, the new state is independent of
the original state. Since the buffer overflow events are
rare and have long periods between them, a plausible
assumption is that every line will change before the
next overflow condition. Thus, the almost regenera-
tive approach is a plausible approximation.

The simulation model is the same as shown in Table
1, namely 14 access lines, a 436 cell buffer, a DS-3 rate
output line, and a video source with mean of about
130 cells per frame. The watermark W was chosen to
be 105, so the regenerative set consisted of all states
where the buffer is empty and each access line is send-
ing less than 105 cells per frame. In the experiments
reported here, a transition from one state in the re-
generative set to another state also in the regenerative
set is considered to be a complete regenerative cycle.
This is consistent with the analysis of the M/M/1/k
queue in the previous section. Bias can arise when
doing multiple independent simulations in parallel if
the completion time of the simulation on one pro-
cessor effects the completion time of the other sim-
ulations. Heidelberger (1988) and Heidelberger and
Glynn (1991) have given some estimators that are un-
biased as the number of processors or the simulation
length goes to infinity. We tried two of them.

For the first estimator, after a processor has run for
a fixed time T, it is allowed to complete its current
regenerative cycle and then stops. This corresponds
to Heidelberger’s i, (1988). Let loss; be the number
of cells lost in the simulation on processor ¢ and total;
be the total number of cells on the processor. Then
the p, estimator for the simulations run on a set of
processors P is given by:

p2(P) = (loss;) / Y (total;) (4)
ieP icP

For the other estimator, only the processors that
have not completed a cycle by time T are allowed to

Table 2: u, Estimator using Almost Regenerative
Simulation with T = 8 x 107 frames

P ezp 1 all
mean std mean std
x108 x 108 x 108 x 108
128 1.3476 0.585 | 1.3195 0.590
1024 | 1.3482 0.179 | 1.3196 0.205
2048 | 1.3483 0.168 | 1.3197 0.158
4096 | 1.3485 0.138 | 1.3197 0.123
8192 | 1.3485 0.547 | 1.3197 0.735
16384 | 1.3484 - 1.3197 0.541

Table 3: us; Estimator using Almost Regenerative
Method with 7' = 8 x 107 frames

P ezp 1 all
mean std mean std
x108 x10%® | x10%8 x108
128 1.215 0.800 1.271 0.909
1024 1.203 0.276 | 1.259 0.337
2048 1.201 0.229 1.256 0.255
16384 | 1.197 - 1.253 0.120

continue. The other simulations stop and the data
from their unfinished cycles is discarded. This corre-
sponds to the p3 estimator from Heidelberger (1988).
If n; is the number of cycles done on processor ¢, then
13 for the set P is given by:

pa(P) =D (lossi/n;)/ Y (totali/ns) (5)
ieP ieP

Tables 2 and 3 show results obtained using T equal
to the time used in the Table 1, namely 8 x 107 frame
arrivals. The tables show the values of the u; and
up3 estimator obtained from 6 sets of 16K proces-
sors. Each set of 16384 simulations can be partitioned
into N sets of P = 16394/N processors each. Par-
titioning the processors into sets of 128 processors
each gives 128 different estimates of the cell-loss-rate.
Each group of 128 processors has a total of 1012 cells.
Partitioning into sets of 1024 processors each gives
16 estimates each with 103 cells. The column in Ta-
ble 2 labeled ezpl shows the results of the first set of
16K simulations. The column labeled all shows the
combined results of the six sets. The Central Limit
Theorem says that as the number of processors in
the grouping P increases to infinity, the distribution
of the estimates p;(P) converge to a normal distribu-
tion. Figure 2 shows the QQ-plot (see Becker, Cham-

An Almost Regenerative Simulation of Video Teleconferencing Traffic 493

bers and Wilks (1988)) for the estimates of uy given
by dividing the processors into groups of 2048. It is
normally distributed. Figure 3 shows the correspond-
ing plot for the pu3 estimator and again it is close to
normal.

Comparing Tables 2 and 3 with Table 1, we observe
that, no matter how the processors are grouped, the
variance given by even only one run of 16K simula-
tions done using the almost regenerative method is
an order of magnitude lower than the variance given
by 6 x 16 K simulations using the naive method. Also,
the mean given by the almost regenerative method is
stable. Doing additional sets of 16K runs reduced the
variance but did not change the mean substantially.
The variance given by both the p; and uj estima-
tors decreases as the number of processors per group
increases. The mean given by the p» estimator is sta-
ble while the mean given by the 3 estimator changes
slightly.

Results for the u; estimator obtained with differ-
ent values for the stopping time T are shown in Table
4. Reducing T from 8 x 107 to 8 x 10° events had
little effect on the mean but doubled the standard
deviation. Reducing T from 8 x 10° to 1000 events
changed the mean and variance only slightly. Reduc-
ing T further to 10 events changed the mean slightly
but increased the variance by an order of magnitude.
The standard deviation when T = 10 is only slightly
less than the mean for P = 2048 and is about 2/3 of
the mean for P = 4096. This is still much less than
the standard deviation for the naive method. The
variance jumps when T = 10 as most processors stop
their simulations after 10 events without ever leav-
ing the regenerative set. They contribute nothing to
the numerator and little to the denominator of the
o estimate. This effectively decreases the number of
processors producing the estimate. Table 5 shows the
4o estimates given by 7' = 1000 and T = 10 for vary-
ing values of P. As P increases the variance declines
which is in accord with regenerative theory.

Table 6 shows the effect that varying the stopping
time has on total simulation time. It also shows the
time for 97% and 99.7 % of the simulations to com-
plete. After most of the processors have finished their
simulations, it is easy and economical to transfer the
remaining simulations and finish them on a worksta-
tion. Reducing the time T from 8 x 107 to 8 x 10°
events gave only a 25% reduction in the time until
the last processor was finished, but almost a 50 %
reduction in the time until 99.7 % of the processors
were finished. The reduction from 8 x 10° events to
1000 events had only a 5 % to 15 % effect on the sim-
ulation time. The further reduction to 10 events had
a much greater effect on running time.

Table 4: u; Estimator with Variable Stopping Time
T

T P = 2048 P = 4096
mean std mean std
x108 x108 x108 x108

8.0 x 107 1.320 0.1583 1.320 0.1233
4.8 x 107 || 1.295 0.1554 || 1.295 0.1192
1.6 x 107 1.291 0.2702 1.285 0.1689
08 x 107 || 1.293 0.3519 || 1.293 0.2482
1000 || 1.2436 0.313 1.2438 0.232

10 || 1.2044 1.086 || 1.2032 0.801

Table 5: p; Estimator using T = 1000 and T = 10
Events

P T = 1000 T =10
mean std mean std
x108 x10%® | x10% x108

1024 | 1.2438 0.466 | 1.2047 1.510
2048 | 1.2436 0.313 | 1.2044 1.086
4096 | 1.2438 0.232 | 1.2032 0.801
8192 | 1.2961 0.143 | 1.2041 0.685
16384 | 1.2433 0.122 | 1.2078 0.352

Table 6: Simulation Run Length for p; with Variable
Stopping Time T

T simulation run length
number of events x10~7
100% 99.7% 97%
8.0x 107 [[22.32 16.32 12.96
4.8 x 107 || 21.28 13.20 9.84
1.6 x 107 || 17.20 9.92 6.56
0.8 x 107 || 16.48 9.12 5.76
1000 || 15.76 8.32 4.96
10 [10.16 4.88 1.52

494 Cohen and Heyman

Table 7: Cells and Cycles per 2048 Processors with
Varying Stopping Time

T cells cycles
mean var mean var
x1012 x10'? | x10®° x10°
8.0 x 107 25.15 0.075 16.56 0.180
4.8x 107 || 16.62 0.078 | 10.97 0.164
1.6 x 107 8.04 0.085 5.33 0.102
0.8 x 107 5.92 0.091 3.92 0.081
1000 3.79 0.097 2.50 0.059
10 0.33 0.042 0.216 .00076

Table 7 shows the number of cells and cycles per
group of 2048 processors.

We did runs of 2.2 x 10 cells, 4.5 x 10'2 cells,
and 7.4 x 103 cells. The observed cell-loss-rates were
1.49x 1078, 1.02 x 10~% and 1.31 x 1078 respectively.
These agree with the results from the regenerative
experiments. We divided the long workstation runs
into 135 segments of 1.04 x 10! cells and plotted
the distribution of cell-loss-rates for the individual
segments. This distribution was not normal which
indicates that using normal sampling theory with the
method of batch means is inappropriate here.

7 CONCLUSIONS

The Markov chain simulated in these experiments
takes a very long time to converge to steady-state.
For a scenario with an average cell-loss-rate of 1078,
even runs of 1012 cells did not always produce the
same cell-loss-rate. The regenerative approach was
not applicable because the time between regenerative
states is too long. Instead, we tried an almost regen-
erative method and showed that it gave results that
agreed with predictions from regenerative theory and
with naive runs that are 1000 times longer.

APPENDIX: ALMOST REGENERATIVE
ANALYSIS OF AN M/M/1/k Queue

Let m; be the steady-state probability that i cus-
tomers are present. It is well-known that

(1-p)o

mi(k) =m = T

i=0,1,...k (A1)
Since the arrivals are Poisson, m; is also the prob-
ability that an arriving customer finds i customers
present, and so 7y is the loss probability.
Let W = {0,1,...b— 1}, (b < k) be the almost
regenerative set of states, Ly be the expected number

of losses in a cycle, and Cj be the expected number of
arrivals in a cycle. The almost regenerative estimate
of mp, 7% say, is

T = = (A-Z)

Method IT

Towards obtaining formulas for the quantities on
the right-side of (A-1), let L;(j) be the expected num-
ber of losses in an interval that starts when an arrival
finds 7 in the system and ends when the number in
the system is no larger than j, ¢ >= j, and ¢;(j) be
the mean length of that interval. By examining sam-
ple paths it is easy to see that Lo(k) = Ly(k + 1) =
Ly(k+2)=..., and so

Lo(k) = Lb(k + b), b>=0. (A-3)
The regenerative theorem asserts that
_ Lo(k)
T k)
and
1
7r0 - Co(k) bl

so Lo(k) = /7o = p* and (A-2) yields

Looa(k) = g0+, (A-4)

Under method I, a cycle that starts in state ¢ < b—1
will have no losses. The probability that a cycle starts
1n state b — 1, sp_; say, is

_ -1
$b-1= o1
o T

Thus, (5) and (A-3) yield

_ 1—p)p*
Ly =sy_1Lp_1(k) = (—1—%. (A-5)
The same sample-path argument shows that
co(k) =ci(k+1)=ca(k+2)=..., 50
1 1-—pF?
= — b0 — = — = A-6
a-1(k) =colk —b-1)= == —37—. (A-6)

Now

k+1

_ 1—
Co = (1 - sp-1) + sp-10p-1(k) = ——2

T (A-7)

substituting (A-4) and (A-6) into (A-1) and compar-
ing with (5) yields 7% = m; for all b < k.

An Almost Regenerative Simulation of Video Teleconferencing Traffic 495

Method I

The mean number of losses in a cycle is Ly_1(k) =
p"~%1 because every cycle starts when a arrival finds
b—1 customers present. The mean length of a cycle is
obtained as follows. Let m; be the mean first-passage-
time from state 7 to state b — 1. The probability that
a cycle ends in state 7 is given by

5

8 = =g
2o T
The mean length of a cycle is

b—2
Cy = Z sim; + cp—1(k).

=0

The m; satisfy a difference equation; the solution
is very messy and will not be given here. It suffices
to note that when & = 2, mg is the reciprocal of the
probability that an interarrival time is less than a
service time, which is (14 p)/p. Hence

1—px

Cy=1
b +1_p

and so (A-1) gives

P11 - p)

T =
2—p—p*

which does not equal 7.

REFERENCES

Becker, R. A., J. M. Chambers, and A. R. Wilks.
1988. The New S Language: A Programming
Environment for Data Analysis and Graphics,
Wadsworth & Brooks, Pacific Grove, Ca, 1988.

Cohen, D. M. and D. P. Heyman. 1993a. “A Sim-
ulation Study of Video Teleconferencing Traffic in
ATM Networks,” Proceedings IEEE Infocom 93, M.
G. Hluchyj and K. S. Vastola, Eds, IEEE Press, Los
Alamitos CA, pp 894 - 901.

Cohen, D. M., and D. P. Heyman. 1993b. “Per-
formance Modeling of Video Teleconferencing in
ATM Networks,” to appear in IEEE Transactions
on Circuits and Systems for Video Technology.

Cohen, D. M, C. A. Cooper, D. P. Heyman, and A.
K. Reilly. (1992). “A Study of Cell Loss Char-
acteristics for Selected ATM Traffic Types,” ANSI
T1 standards contribution, T1A1.3/92-083

Crane, M. A. and D. L. Iglehart. 1975a. “Simulating
Stable Stochastic Systems: III. Regenerative Pro-
cesses and Discrete-Event Simulations,” Operations
Research, 23:33 - 45.

Crane, M. A, and D. L. Iglehart. 1975b. “Simulat-
ing Stable Stochastic Systems, IV: Approximation
Techniques,” Management Science, 21:1215-1224.

Fishman, G. S. 1974. “Estimation in Multiserver
Queuing Simulation,” Operations Research, 22:72
- 78.

Glynn, P. W. and P. Heidelberger. 1991. “Analysis of
Parallel Replicated Simulation Under a Completion
Time Constraint,” ACM Transactions of Modeling
and Computer Simulation, 1:2 - 24.

Gunther, F. L, and R. W. Wolff. 1980. “The Al-
most Regenerative Method for Stochastic System
Simulations,” Operations Research, 28:375 - 387

Heidelberger, P. 1986. “Statistical Analysis of Paral-
lel Simulations,” 1986 Winter Simulation Confer-
ence Proceedings, J. Wilson and J. Henriksen, Eds,
IEEE Press, New York, 290-295.

Heidelberger, P. 1988. “Discrete Event Simulations
and parallel processing: Statistical properties,”
SIAM J. Sci. Stat. Computing, 9:1114 - 1132.

Heyman, D. P., A. Tabatabai, and T. V. Lakshman.
1992. “Statistical Analysis and Simulation Study
of of Video Teleconferencing Traffic in ATM Net-
works,” IEFEE Transactions on Circuits and Sys-
tems for Video Technology, 2:49 - 59.

Rubinstein, R. Y. 1981. Simulation and the Monte
Carlo Method, Wiley, Chichester.

AUTHOR BIOGRAPHIES

DANIEL P. HEYMAN did his undergraduate
work in industrial and electrical engineering at Rens-
selaer Polytechnic Institute (1960). He received an
M.LE. degree from Syracuse University (1962) and
the Ph.D. in operations research from the University
of California- Berkeley in 1966, and then joined Bell
Laboratories. He transferred to Bellcore at the epoch
of the AT&T divestiture. His research areas are nu-
merical analysis of stochastic processes, queueing the-
ory, and performance models of data communications
systems.

DAVID M. COHEN did his undergraduate work
in mathematics at Harvard University (1972). He
received a Ph.D. in mathematics from the Mas-
sachusetts Institute of Technology in 1976 and joined
Bell Laboratories in 1981. He transferred to Bellcore
at divestiture. His current research interests are in
simulation and software engineering.

496 Cohen and Heyman

*
[V
~— —
[
——
)
(@]
ke
Q
N
‘©
:
Z ©
-
[
*
AN
)

I I I I I
-2 -1 0 1 2

Quantiles of Standard Normal
Figure 2: QQ-plot of mu2 Estimator

An Almost Regenerative Simulation of Video Teleconferencing Traffic 497

Normalized Data

I I l I l
-2 -1 0 1 2

Quantiles of Standard Normal
Figure 3: QQ-plot of mu3 Estimator

