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ABSTRACT

Linear combinations of estimators offer a variety of
good computational and statistical properties. The
values of the optimal linear-combination weights de-
pend upon the estimators’ covariances. We inves-
tigate the asymptotic covariances and correlations
between overlapping-batch-means estimators of the
variance of the sample mean when applied to a com-
mon sample from a stationary finite-order moving-
average data process. After reviewing the asymp-
totic formulas, we report a Monte Carlo study that
suggests that the asymptotic correlation formula pro-
vides a good approximation to the true finite-sample
correlation if (1) the sample size n is at least sev-
eral multiples of o and (2) the both batch sizes are
between vo and n/2, where 7o is the sum of all auto-
correlation.

1 INTRODUCTION

Engineers are faced with real-world stochastic sys-
tems that are frequently too complex to allow an an-
alytical evaluation. Often, in such cases, a computer
simulation model must be developed and Monte Carlo
techniques used to study these systems. Stochastic
simulation experiments create statistical point esti-
mators to infer the value of system performance mea-
sures. Because of this inferential nature of Monte
Carlo techniques, it is necessary to indicate how likely
these statistics are to be wrong and by how much.
Usually the uncertainty is measured in terms of esti-
mator variance. We refer to the the process of esti-
mating the variance of the point estimator as outpul
analysis.

Classical issues in output analysis of a simulation
study include (1) how to obtain good estimates of
some measure of performance, (2) how to evaluate
the quality of these estimates, and (3) how to deter-
mine the goodness of the quality measure. Often in
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simulation the measure of performance is a popula-
tion mean, the point estimator is the sample mean,
and the goodness of the point estimator is measured
by its standard error.

Several procedures for estimating the standard
error from stationary autocorrelated data have
been proposed: For example, direct (DI) [Han-
nan, 1957, and Moran, 1975], spectral (SP) [Brat-
ley, Fox and Schrage, 1987; Heidelberger and
Welch, 1981], non-overlapping-batch-means (NBM)
[Schmeiser, 1982}, overlapping-batch-means (OBM)
[Meketon and Schmeiser, 1984], standardized-time-
series-area (STS.A) [Schruben, 1983] and orthonor-
mally weighted (STS.W) [Foley and Goldsman, 1988].
No type of estimator dominates the others in terms
of computational and statistical properties across all
types of time-series data.

Our main objective is to develop robust and com-
putationally efficient methodology to estimate the
variance of the sample mean. Previous studies [Poli-
tis and Romano, 1992, Song and Schmeiser, 1988b]
suggest that linear combinations of estimators of the
variance of the sample mean lead to better estimators;
i.e., with smaller mean squared error (mse) than the
component estimators. We consider the problem of
determining the minimal mse optimal linear combina-
tion weights of OBM estimators. We study OBM es-
timators since they are conceptually simple methods,
they are easy to compute, and they can be written as
quadratic forms, which leads to tractable analysis.

The key to using linear combinations, as discussed
in Section 2.3, is to derive the asymptotic covari-
ance/correlation between OBM estimators. In Sec-
tion 3 we present our asymptotic results and in Sec-
tion 4 we show empirically that the asymptotic corre-
lation formula provides a good approximation to the
finite-sample correlation, except when the batch size
is quite small or larger than half the sample size. Here
small 1s with respect to the sum of autocorrelations.
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2 BACKGROUND

Bratley, Fox and Schrage [1987] and other simulation
textbooks discuss output analysis. Here we summa-
rize background information about the variance of the
sample mean, batch means estimators, and optimal
linear combinations.

2.1 The Variance of the Sample Mean

For stationary time series {X;} a natural unbiased
estimator of the population mean px is the sample
mean

_ 1 .
X:El;)‘" (1)

where n is the number of observations. The variance
of any sample mean is

var(X) = % ii cov(Xi, X;). (2)

i=1 j=1

For stationary time series, cov(.X;, Xiyn) = R(h) 1s a
constant, yielding

var(X) = @ Z (1 - |ni|) p(h), (3)
h=-n

where R(0) = var(X) and p(h) = corr(X;, Xitn)-

Define

o=y ph) (4)
h=—o00
If v9 < oo then
lim nvar(X) = v R(0), (5)

n— 00

as shown in, for example, Anderson [1971, p. 460].
For independent and identically distributed (iid)
data, y9 = 1. More generally, Equation 5 implics
that o can be thought of as the number of contiguous
observations that carry the same information as one
independent observation. The rate of convergence in
Equation 5 depends on

1= D |kl p(h) =2 h p(h), (6)
h=1

h=—o00

the weighted sum of the correlations. In particular,
Schmeiser and Song [1989] show that if 4, < oo then

n var(X) = v R(0) — RO + o(l). (7)

n n

2.2 The Batch-Means Methodology and the
OBM Estimator of var(X)

The batch-means methodology is based on dividing
the n observations X,, X3, ..., X, into b batches of
size m. Thus batch 1 consists of observations X, ...,
Xm and batch i consists of observations Xj;_1)41, ...,
Xii=1)4m where [ is the “lag” between the first ob-
servations of two consecutive batches. For [ = 1 there
is full overlap and the estimator is called overlapping-
batch-means (OBM) [Meketon and Schmeiser, 1984]
and for | = m there is no overlap and the es-
timator is the non-overlapping-batch-means (NBM)
[Schmeiser, 1982]. The main concept underlying the
NBM methodology is to transform correlated data
into fewer batch means that are normally distributed
and uncorrelated. OBM also batches observations
but the batches contain common observations and are
therefore correlated. The OBM estimator of var(X) is
asymptotically equivalent to the Bartlett spectral es-
timator, and therefore it has only 2/3 the asymptotic
variance of NBM’s [Meketon and Schmeiser, 1984].

The overlapping-batch-means (OBM) estimator of
var(.Y) is defined as

b
V=i (K-0) (8)

where b=n—-m+1,d=(n—-m+ 1) (n—m)/m,
1<m<n-1,and

. li—l+m
Ai = ;; z: ,\f
1=

This estimator is unbiased for iid data for any sample
size n and any batch size m, but it is biased in general.

For normal iid data and fixed batch size m the fol-
lowing equation holds:

2
lim n3var(V) = 2R(0) (2m + l) 9
n—oo 3 m
(Song and Schmeiser, 1988a]. This limit can be com-
pared to the analogous expression 2mR(0)? for the
NBM estimator, to conclude that the asymptotic ra-
tio is two-thirds.

The OBM is a quadratic-form estimator since it
can be written as

V=33 qiXiX; (10)
i
for constant coefficients g;;, or equivalently

V=X'QX, (11)
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where @ is a constant symmetric matrix, Q =
[q,-j]?’jﬂ_, and X is the vector of observations. An ex-
tensive study of the quadratic-form class is presented
in Song and Schmeiser [1993].

The quadratic-form coefficients of the OBM esti-
mator of var(X) are

1la;; ai+a;; n—m+1
=9 |lm2” “ma + n? ! (12)

where a;;, the number of batches that includes both
X; and Xj, is defined by

aij = min[n—m+1,max(0,m— |j—i]),
min(i, j),n — max(z,7) +1].  (13)

the first term, n — m + 1, is the number of batches;
the second reflects the batch size m and lag of cross
product; the third and fourth terms are end effects
[Song and Schmeiser, 1993].

2.3 Linear-Combination Estimators of var(X)

There are several examples in the literature of us-
ing linear combinations of estimators to obtain a bet-
ter estimator in terms of statistical properties: small
variance, bias or mean squared error. The OBM esti-
mator can be viewed as a linear combination of NBM
estimators [Meketon and Schmeiser, 1984]. Schruben
[1983] considered a linear combination of the STS.A
and the NBM estimators, which are asymptotically
independent. Politis and Romano [1992] propose a
linear combination of two Bartlett estimators of the
spectral density with different bandwidths for the re-
duction of the bias.
The linear combination of OBM’s is

P
VEE = S iV (14)
i=1

where p is the number of components, the a;’s are the
L.C. coefficients and the V;’s are the OBM component
estimators applied to the same data but each with a
different batch size m;. By definition, the bias of vice
1s

bias (72€)

E'(VLC) — var(X)

P ~
P
+ (—l + Zm) VaT(X)» (15)
i=1

and the variance is
P

var (f}LC) - XP:ZQ,- aj cov (Vl, IA/J) . (16)

i=1j5=1

Since the linear-combination variance depends upon
the various estimator covariances, any method to se-
lect optimal linear-combination parameters must con-
sider the estimator covariances. In Section 3 we state
the asymptotic covariances, which in Section 4 we
see empirically provide a good approximation to the
finite-sample covariances. In the rest of this section,
we review how these covariances can be used to select
the optimal linear-combination weights.

Song and Schmeiser [1988b] address the problem of
selecting the component estimators and determining
the optimal linear combination coeflicients given the
covariances between component estimators and their
individual biases. They consider two problems: (P1)
the weights sum to one, and (P2) no constraint on
the weights. Let

1. z be the vector of estimators;
2. A be the p x p matrix whose (i, j)** element is

Aij = bias(V;) x bias(V});
3. X be the p x p dispersion matrix,
Ty = cov(Vi, Vy);
4. A be the “risk” matrix, i.e.,

A = /31 /_\_ + ﬁ? E)

where 3, and (2 are positive constants that re-
flect the relative weight that we want to give to
the bias and the variance;

5. a be the vector of the coefficients of the lin-
ear combinations and a* the vector of optimal
weights.

Let o' A a = (5 biasz(_c_v_'z) + B var(g’ﬁ). The
optimal a for

(P1) Minimize o' A o
st. o'l = 1,
is Lo AT
[e4

(7)
and for
(P2)  Minimize o' Aga
1S
o" = frvar(X) [BEDED) + 35| BD).
(18)

Their work also includes a numerical study, based
on AR(1) data, of effect on the mse of combining two
estimators of the same or different types. The results
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suggest that the use of linear combinations can lead
to substantial improvements.

The a* formulas (Equations 17 and 18) show,
again, that the optimal linear-combination estimator
depends on the covariance/correlation coefficients be-
tween the component estimators of the variance of the
sample mean.

3 ASYMPTOTIC COVARIANCE/COR-
RELATION FORMULAS

In this section we present the asymptotic covariance
and correlation between two OBM estimators of the
variance of the sample mean with batch sizes m; and
ms from n observations. The derivation and addi-
tional details are in Pedrosa and Schmeiser [1993b)].

Suppose that the observations {X;} are from a sta-
tionary time series and these data can be expressed
using a moving-average model of order ¢, i.e.,

Xi = bogi + bigicy + -+ bgeiog, (19)

where bo, ..., by are constants and {¢;} is a sequence of
iid random variables with finite variance ¢.2, fourth
cumulant K, 4 and mean g,.

The asymptotic results are derived using the OBM
quadratic forms. The end-eflects cannot be ignored
unless we assume conditions C1 : as n — oo, m; —
oo and my — oo while simultaneously m;/n — 0
and m, /my — ¢, where ¢ is a non-negative constant.
Notice that the limits of Equations 21 and 22 exist
only if m;/ms — c.

Assume, without loss of generality, that my > m;.

Then
3 - 3 —~
lim {n—var(Vl)} = lim {Lvar(Vg)}

C1 my Cl1 my
4
= 37" RO, (20)

lg{l {g;l cov (/V:,f/;)} =

i oo o (22

and

i oo (7.7} -

o {(2)" [ 3 (222)]) e

where f/; and {/; are two OBM estimators of var(.\)
with batch sizes m; and my, v is the sum of correla-
tions, and R(0) is the data variance. A similar result

for the variance (Equation 9) was obtained by Song
and Schmeiser [1988a].

The asymptotic variance of the OBM estimator is
proportional to the square of the sum of the correla-
tions 7o, and the population variance R(0). It is also
directly proportional to the the batch size and in-
versely proportional to n3. Using Equation 5, Equa-
tion 20 can be rewritten as

, n var(’VT) 4
w{mreary-d @

This result shows that, for a large fixed value of n,
the variance of the OBM estimator is directly pro-
portional to m; and the square of the variance of the
sample mean.

The covariance and correlation results depend upon

1 fmy —m
.(/'(mlym'l) = 1+ 5 (2—1712_I> )

a simple function of the relative distance between the
batch sizes.

The asymptotic covariance between two OBM es-
timators of var(X) can be viewed as the product of
the asymptotic variance of the OBM estimator with
smaller batch size, var(V;), by the correction factor

G(my, ma). Equation 21 can also be rewritten as

‘ n €OV (V],VQ) 4 [ 1 (mz—m1>]
Iim — (=3 1+ ———— .
L mi [var(X)) 3 2 my
(24)
This indicates that given the data type the asymp-
totic covariance only depends on the relative batch
sizes m; and mo.
The asymptotic correlation between OBM estima-
tors does not depend upon the data type. Rather
it depends only upon the two relative batch sizes

through (m,/mg)]/2 and G(m,, m»).

4 FINITE-SAMPLE RESULTS

We now describe Monte Carlo experiments that esti-
mate the correlation between two OBM estimators of
var(.X') and compare these finite-sample results to the
asymptotic results of the previous section. The pur-
pose is to study the applicability of the asymptotic
formulas for finite samples and different data types.
Equations 22 and 24 indicate that the quality of the
covariance approximation is similar to that provided
by the correlation approximation. Therefore, we con-
sider only correlation here.
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4.1 The Monte Carlo Experiment

The Monte Carlo experiment estimates corr (‘7,, ‘7])

for six cases: two sample sizes and three steady-state
data processes. The sample sizes are n = 100 and
n = 1000; the three data processes are iid normal
(yo = 1, 1 = 0), AR(1) normal with 7 = 10 and
71 = 49.5, and 5-state DPSS with 49 = 10 and v, =
—35.2 (and uniform marginal distribution). For each
sample { X1, X2, ..., Xn} from the data process, OBM
estimates Vm are computed form=1,2,...,99ifn =
100 and for m = 1,10, 20,...,990 if n = 1000. From

10, 000 such samples the correlations corr (17., VJ) are

estimated to negligible sampling error.

We now briefly review the three data processes.
They have different correlation structures and differ-
ent marginal distributions, but all are Markov pro-
cesses: the distribution of the next value depends (at
most) on the current value.

The iid-normal process has “no memory” since its
value at time t is independent of all past values.
Therefore p(h) = 0 for all nonzero values of h, 70 = 1
and y; = 0.

The AR(1) normal time series is X; = ¢ X,_1 + ¢,
where |¢| < 1 and {e,} is a sequence of iid normal
random variables with zero mean and variance o.2.
The autocovariance and autocorrelation functions are
R(h) = .20 /(1 — ¢?), and p(h) = ¢!". This ge-
ometrically decreasing correlation structure implies
that the sum of correlations is vy = (1 + ¢)/(1 — ¢)

and the weighted sum of autocorrelations is y; =

2¢/(1-¢)* = (v0 — D +1)/2.

The DPSS(d, p, s, S) process models a d-state (s, S)
inventory system with Bernoulli demands [Pedrosa
and Schmeiser, 1993a]. At each time ¢ the ran-
dom demand is zero with probability p and is A =
(S —s)/(d — 1) units with probability 1 — p; non-zero
demand at inventory s causes immediate reordering
and a return to state S. The Markov chain is doubly
stochastic, so the unique steady-state marginal distri-
bution is uniform over the d states {S,S—A,...,s};
the steady-state mean and variance are then p =
(S +5)/2 and var(X) = (d? — 1)A%/12. In addition
to having a non-normal marginal distribution, the
DPSS process differs from the AR(1) process by hav-
ing a more-complex autocorrelation structure. The
lag-1 autocorrelation is p(1) = (d — 5+ 6p)/(d + 1),
the sum of autocorrelations is v = p/(1 — p), and
the weighted sum of autocorrelations is y; = {[(19 -

d*)(y0 + 1)]/30 = 1} (70 + 1).

4.2 Discussion of Experimental Results

The experimental results indicate that the quality of
the approximation provided by the asymptotic corre-
lation in Equation 22 is good if both batch sizes are
between 7o and n/2. The quality is relatively insensi-
tive to the marginal distribution and to the weighted
sum of correlations v;.

To aid the discussion, we introduce two figures.
Figure 1, for normal data, and Figure 2, for DPSS
data, illustrate the results for n = 100, the small-
est sample size considered. Each figure contains six
charts, each corresponding to a batch size m; =
5,10, 30,50,60,90. The horizontal axis is the other
batch size m;, ranging from 1 to n — 1. For each
chart, two curves are shown: the asymptotic corre-
lation from Equation 22 and the true finite-sample
correlation; the true correlation goes to zero for large
values of m;. The closer are the two curves the better
is the approximation. The approximation is exact at
m; = mj, since both the approximation and the true
correlation are then one.

A relatively good approximation is shown in Figure
1. The independent normal data have y9 = 1, so
n = 100 is a relatively large sample size. Whenever
both batch sizes are less than n/2, the approximation
quality is good. The quality typically degenerates as
either batch size increases beyond n/2. The n = 1000
graphs (not shown) are similar to Figure 1 for all three
process. In both the AR(1) and DPSS cases, yo = 10,
so the equivalent number of independent observations
n/vo = 100.

A less good approximation is shown in Figure 2.
The DPSS dependent data have 9 = 10, so the equiv-
alent number of independent observations is quite
small, n/yo = 10. IHere the approximation quality
degencrates when either m; is too large or too small.
Roughly, the quality is good whenever both batch
sizes are between yp and n/2. Similar graphs result
for the AR(1) process with y9 = 10 and n = 100.

For sample sizes n at least a few multiples of vo,
these experimental results suggest these four conclu-
sions:

1. The graphs in Figure 1 are representative of the
asymptotic correlations, regardless of marginal
distribution and autocorrelation structure.

2. The quality of the approximation is insensitive
to the marginal distribution and to 7;.

3. The equivalent sample size n/vq is sufficient in-
formation to characterize the quality of the ap-
proximation.

4. The approximation is good if both batch sizes
are between y¢ and n/2.
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m; =5 m; = 10
1 1
COIT COIT
0 100 0 100
m; m;
mz = 30 m, = 50
1 1
COIT COIT
0
0 100 100
m] m]
m; = 60 m; = 90
1 1
corT corr
0 0
100 100
m] m]'

~

Figure 1: Correlations corr (\71, VJ) as a function of m; for an itd — normal
and a sample size n = 100.



Asymptotic and Finite - Sample Correlations Between OBM Estimators 487

m; =5 m; = 10
1 1
corr corr
0 100 0 100
m; my
m; = 30 m; = 50
1 1
COIT coIT
0 100 0 100
m; mj
m; = 60 m; = 90
1 1
COTIT COrIr
0 To0 0 100
m; m;

Figure 2: Correlations corr (\Z,‘Z) as a function of m; for a MCBT(s =
—2,5=2,d=>5,p=0.91) and a sample size n = 100.
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This robustness to batch size is encouraging since
various guidelines for choosing batch size fall within
this range:
1. NBM (non-overlapping batch means) batch sizes
chosen for good confidence-interval performance
are between n/30 and n/10 [Schmeiser, 1982];

2. The OBM estimator for the same batch size pro-
vides 50% more degrees of freedom (d.f.); then
for the same d.f. good OBM batch sizes are,
roughly, between n/20 and n/T7,

3. The asymptotic mse-optimal batch size

[Schmeiser and Song, 1989],

1
3n (71 )2 ?
2 Yo ’
is 1 for the iid normal process, is 17 and 34 for

the AR(1), and is 13 and 28 for the 5-state DPSS
for n = 100 and n = 1000, respectively.

m* =1+
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