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ABSTRACT

Weighted batch means is a procedure for producing
a confidence interval for the mean of a covariance-
stationary process. Weights placed on the observa-
tions within a batch are functions of the parameters
of a fitted time-series model. Experiments show that
the method works well in terms of achieved coverage
when only a comparatively small number of obser-
vations is available, even for processes that display
strong correlation. In theory the method should pro-
vide exact coverage for some processes. However, in
practice the time-series identification procedure and
estimation of the parameters and weights bring in
bias. We investigate the sources of bias and suggest
how coverage might be improved.

1 INTRODUCTION

The problem of constructing a confidence interval for
the mean p of a discrete-time, covariance-stationary
stochastic process {X;,i = 1,2,...} from a sample
of n data values has received much attention in the
simulation literature. The main reason for this at-
tention is that it is difficult, in general, to produce a
valid interval. That is, it is difficult to find a proce-
dure that, when used to produce a nominal level 1 —a
confidence interval in a very large number of experi-
ments, will produce intervals that actually cover 1 on
100(1 — )% of those experiments.

Validity is one of the most important attributes for
a confidence-interval construction procedure to pos-
sess. Unfortunately, straightforward application of
confidence-interval construction procedures that as-
sume the observed data are independent and iden-
tically distributed (i.i.d.) does not provide validity
when the data are autocorrelated. The problem lies
in the fact that the usual estimator of the variance of
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the sample average X = 51| Xi/n,

Var (X) = _Z?=——nl ((75(1—1)7(__)2 )

i1s biased when the data are correlated. If the pro-
cess is positively autocorrelated, as is often the case
in simulations of queuing systems, Var (3(—) 1s biased
low and confidence intervals created using it will, on
average, have lower-than-nominal coverage.

Weighted batch means (Bischak, Kelton, and
Pollock 1993) is a generalization of the method
of confidence-interval construction known as batch
means. Here we describe the method of (unweighted)
batch means and our generalization, in which weights
for observations are selected according to formulas
for optimal weights developed for certain autoregres-
sive and moving-average processes. Empirical results
show that weighted batch means (WBM) provides
coverage closer to nominal confidence than that of
unweighted batch means (UBM) in the case of high
autocorrelation and small n. In theory the method
should provide valid intervals for certain processes;
we examine why this is not the case in practice.

2 WEIGHTED BATCH MEANS

In the method of batch means (see Law and Kelton
1991) the n observations are grouped into k batches
of m consecutive observations each. (We assume that
k divides n, so that n = km.) The jth batch mean
X; S, Xij/m, where X;; denotes the ith ob-
servation in the jth batch, is then treated as a sin-
gle “observation,” and the confidence interval con-
structed from the k batch means is

?—itl—a/Z,k—l Var (ﬁ, (1)

where

n

zx,‘/n

k
X=>"X;/k=
ji=1
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is the sample average of the batch means,

= (% Z;'c:l(rj "7)2
Var (ﬂ = k(= 1)

is its variance estimator, and ¢} _q/2,n-1 is the 100(1—
a/2)th percentile of the ¢ distribution with n — 1 de-
grees of freedom.

Batch means formed from “large” batches will tend
to be uncorrelated and normal and hence indepen-
dent, making (1) a valid interval. For small samples,
however, (1) will not be valid because of the remain-
ing correlation of the X;’s. Positive process autocor-

relation will bias the estimate of Var (7) downward;

negative autocorrelation will result in overestimation
of the point estimator variance.

If we use weights on the observations within each
batch, the jth weighted batch mean is

m
E w; Xij,
1=1

where the weights w; are constants. The resulting
confidence interval is

7it1—a/2,k—l\/\7a\r(7)) (2)
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where

The weights to be used in WBM are determined by
solving the following program (for details see Bischak,
Kelton, and Pollock 1993):

Var (V)

s.t. 17(5) =0, j=1,... k-1

m
Zw,:l,
i=1

(P1): min

where

m m

1) = DD wpwerx(jm+p—q)

p=14¢=1

is the weighted-batch-mean covariance at lag j with
7x (3) = Cov(Xy, Xia;),

Var (?) = zk:i:'ry(] —0)/k?,

and w = (wy, wy, -- -, wm) T is the vector of weights.
Note that the solution weights may be negative and
that for each vector of weights that solves (P1), we
can reverse the indices of the weights and get another
solution.

Weights solving this program will provide an un-

biased point estimator Y, will provide an unbiased
variance estimator Var (7), and will minimize the

variance of the point estimator under the given con-
ditions. The'solution weights will not necessarily pro-
vide a valid confidence interval for y, but if weights
fulfilling these conditions are used and the resulting
weighted batch means are normally distributed, they
are also independent and (2) is valid.

In (P1) the covariances yx({) for l = 0,...,n — 1
must be estimated. We use autoregressive-moving-
average (ARMA) models to model the process, the
advantage being that it is unnecessary to estimate
explicitly all n covariances. Instead, we estimate a
few parameters of which the covariances are func-
tions. Although this restricts the applicability of the
method somewhat, it is well known that many pro-
cesses occurring in practice can be treated as though
they were ARMA processes. For processes that dis-
play high autocorrelation that dies out slowly over
many lags, the autocorrelation structure can be well
represented by autoregressive processes.

The problem (P1) has an analytic solution for cer-
tain ARMA processes. We briefly state results on
AR(p) processes; details on these and on the optimal
weights for the MA(1) process can be found at length
in Bischak, Kelton, and Pollock (1993). When the
parameter ¢ 1s known, there are exactly two optimal
solutions to (P1) for the AR(1) process

Xe=p+¢(Xic1 — p) + €4, (3)

where [¢] < 1 and the errors {¢;} are i.i.d. N (0,0?),
0 < 02 < 0o. These solutions are

u_( —¢ L
T \m-1)(1-¢)m-1" "

1 1 T
'”m—l%m—UO—@)

and

v_( 1 1
T\(m-D)1-¢)m-1"""

1 —¢ T
‘'m—-1"(m-1)(1-¢))
The weights u and v are optimal for a given batch
size m. Additional calculations show that for a num-

ber of batches 10 < k < 25 the half-length is fairly
insensitive to the choice of k.
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If we rewrite (3) as
€ =Xt — X

and take the sum of m — 1 of these terms divided by
the sum of the coeflicients of the X’s, we obtain

Yl te 1
A=@)m=-1  (=@m=1) w2t
t4+m-3

1 ¢
}: —n_zTTXi - mxz-l- (4)

1=t

The right-hand side of (4) is precisely a batch mean
weighted by u. Since the ¢;’s are normal i.i.d. random
variables with variance o2, the distribution of Y using
u (or v) is normal with mean u and variance ¢2/[(1—
#)?(m — 1)]. The confidence interval (2) is therefore
based on normal, uncorrelated, and hence i.1.d. data
and will be valid for batches of any size m > 2.

It can be shown that for the AR(1) process the ratio
of Var (?) and Var (7) (using the optimal weights)
is

Var (7)

n? (1 - ¢°)
n2 (1 —¢2) —nk (1l —¢2)—2¢(n—k)(1-¢")’

which is greater than one if ¢ > 0. Hence weighting
the batch means in this manner increases the variance
of the point estimator, which increases the half-length
of the confidence interval over that obtained with un-
weighted batch means.

For the AR(p) process
Xe=p+d1(Xemr —p)+ -+ 6p(Xemp — p) + &4,

where Y 7_, #; < 1, we can obtain weights from sums
of AR(p) error terms, as in (4), which provide a feasi-
ble solution to (P1) and a local minimum; from exten-
sive experimentation we postulate that they also form
one of the optimal solutions, as was true in the AR(1)
case. The derived weights are, for 0 < p < m/2,

(- f=p—i+1 ‘f’j/Cm,P
fori=1,...,p
(1 - 25’:1 ¢’j) /Cm,P
fori=p+1,...,m—p,
(1- S5 45) /Cmp

fori=m-—-p+1,....,m

k)

w,~=<

i

and, for m/2 < p < m,
- Z;=p—i+l ¢’J'/C"",P

fori=1,...,m—p,

- Z;n:;i—i-f-l ¢j/cm,p

w; = forizm—P'l'l,ou,P,
(155 6) 1Cns
fori=p+1,...,m,
where

14
Cm,pz(m—p) I—Z¢j

i=1

Since the errors are uncorrelated, each weighted batch
mean is uncorrelated with the others at all lags. Using
these weights

_ 2
Var(Y) = 7 .
( ) (n — kp) (1—Z§:1¢j)2

The procedure for using the method of weighted
batch means in practice is then as follows. After trun-
cating the initial transient (see Law and Kelton 1991),
we select p and ¢, our best guess at the parameters
of the ARMA(p, q) process from which the data was
generated. For this identification an automatic pro-
cedure due to Gray, Kelley, and McIntire (1978) can
be used. Choice of p and § are limited to the ARMA
processes for which optimal analytic weights are cur-
rently known: the AR(p) and MA(1) processes. If p
and ¢ are both zero the data appear to be i.i.d. and
unweighted batch means (for example) can be used.
If either p or ¢ is nonzero, the ¢ and @ vectors are
estimated. A number of batches, k, is chosen, and
weights are computed that are a function of m, p, q
¢, and 6. A 100(1 — )% confidence interval can then
be produced from the weighted batch means using

).

3 CONTROLLING SOURCES OF BIAS

From experimental results given in Bischak, Kelton,
and Pollock (1993) it appears that in cases where the
sample is small and the process displays strong auto-
correlation, whether positive or negative, the method
of weighted batch means provides better coverage
than unweighted batch means. This is apparently
due to the fact that the optimal weights produce a
valid confidence interval if the process order and its
parameters are known. However, when WBM is em-
ployed in practice the process order and parameters

will not be known, and Y and Var (? may be bi-

ased or correlated with each other; this may reduce
coverage.
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There are several potential sources of bias. In order
to obtain the optimal weights for a given set of data,
the order (p,q) of the ARMA process must be cor-
rectly identified. There are two reaons why bias in
identification may be introduced. The first is that,
so far, there i1s a limited set of models for which
optimal weights have been determined, namely, the
AR(p) and MA(1) processes. Due to computational
difficulties with estimating the parameters, in our ex-
periments we further restricted the choice of ARMA
models to one of the AR(p) processes with p < 4
or the MA(1) process. There were a large number
of experiments in which our identification procedure
found that an ARMA model outside this set of pro-
cesses was more suitable; we forced the procedure to
reconsider and to select a model from the allowed
set. The second problem with identification is that
misspecification may occur, both because the data
sets are small and also because the automatic identi-
fication procedure does not operate as well as would
subjective judgment.

Even with correct identification of the process, poor

estimation of ¢;,...,¢, and 6;,...,60, may bias Y

and \/’a\r(V)‘ We know, for example, that the usual
estimators of ¢ for the AR(1) process are biased
low. Once the parameters are estimated, the weights,
which are functions of the order and the parame-
ters, will be observations of the random variables w;.
These estimators of the weights may be biased. In
addition, if the weights are estimated from the data
to which they will be applied, bias may result from
the dependence of w; and X;;.

As an example of the effects of these sources of bias,
consider the point estimator Y = Z;’zl Y;/k. This
estimator will be unbiased if E[Y;] = p. If p, g, the
¢’s, and the 0’s are known, the weights are constants
and

EY;] = E[Zuh'Xij]
= ZwiE[Xij]

m

= pr;
i=1

= p

where the last step follows from the fact that the
weights sum to 1. In this case we have by a result
similar to (4) that the weighted batch means are i.i.d.

normal, the point estimator Y and variance estima-
tor Var (7) are unbiased and uncorrelated, and the

confidence interval is valid.

If only the order of the process is known or if notl?-
ing is known about the process, the weights are esti-
mated and

E[Y;] = E[) uwiXy]

NIE

1}
—

E[w; Xij].

s

i=1

If the order is known and the data and weights are
dependent, E[w;X;;] must be derived in order to de-
termine whether Y; is unbiased. This expectation is
difficult to derive analytically. If the order is known
and the data and weights are independent, Y'; is un-
biased since

Z E[w; X;;] Z E[b;]E[X ;)

= p Z E(w]

= #E[Zﬁlf]
— =1

where the last step follows because the weight estima-
tors sum to 1. However, Var (7) may still be biased,;

one possible reason is that if non-optimal weights are
used, the weighted batch means may not be uncorre-
lated. The point and variance estimators may also be
correlated, with possible implications for coverage.

If the order of the process is unknown, whether
or not the data and weights are independent, we may
end up choosing the wrong order and hence the wrong
form for the weights; for instance, weights which are
optimal for an MA(1) process may be (incorrectly)
used on observations from an AR(2) process. It is
difficult to determine analytically the effect of this
misspecification since the probability with which an
incorrect process is chosen will depend both on the
method used for identification and, since identifica-
tion can be subjective, on the person performing the
identification.

4 EMPIRICAL RESULTS ON IMPROVE-
MENTS IN COVERAGE

In order to examine the effects of each of these sources
of bias, experiments were run on observations from
the following processes: the AR(2) process with ¢; =
0.6, ¢2 = 0.3, and normal errors with mean 0 and
variance 1; the EAR(1) process with ¢ = 0.9 and
A = 1.0; and the queue-delay process in an M/M/1
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queueing system in steady-state with traffic intensity
0.8 and g = 3.2. The EAR(]) is defined as follows:

w_[ X woes
! ¢X1—l +6t w. p. 1_¢1

where €, 1s 1.1.d. exponential with mean A and 0 <
¢ < 1. The autocovariance function of the EAR(1)
is analogous to that of the AR(l). Each of these
processes exhibits strong positive correlation.

2,000 replications of each experiment were per-
formed. Data from the processes were generated be-
ginning in steady-state. Run lengths of 100 and 200
were used, and the data were batched into & = 5, 10,
and 20 batches. All runs are independent across n
and k, but runs on the same process use the same
random numbers for each case so that the differences
between cases can be more easily discerned. Thus in
a given table, each row for a given n uses the same
random numbers. Candidate models for identifica-
tion were limited to a set of six: AR(p) processes
with p < 4, the MA(1) process, and i.i.d. data.

The achieved coverage and average half-length for
nominal 90% confidence intervals were calculated us-
ing UBM and WBM. (95% confidence interval half-
lengths on coverage are in all cases no more than
0.022.) These experiments were then repeated with
one or more sources of bias controlled, as follows:

1. weights independent of the data: a separate set
of data independent of the original data was used
to estimate the weights.

2. p known: p is set to p (for the AR(2) only).

3. weights independent of the data and p known
(for the AR(2) only).

4. p known and ¢ known: p is set to p and ¢ to ¢
(for the AR(2) only).

Also estimated were the relative bias of the UBM
and WBM variance estimators for the AR(2) process
and the correlation between the point and variance es-
timators for the EAR(1) and queue-delay processes.
Bias was calculated only for the AR(2) because opti-
mal weights, and hence Var (Y ), are not defined for
the other two processes. The correlation of the point
and variauce estimators for the AR(2) process was
found to be nearly zero for all cases. This is similar
to the result of Kang and Goldsman (1990) that the
correlation of X and the UBM variance estimator is
zero.

Table 1 shows that the achieved coverage for the
AR(2) process is significantly greater for WBM than
for UBM. Coverage is even greater if the weights for

WBM are estimated from a separate set of data.
Knowing more about the process improves cover-
age, as would be expected, but when the number of
batches is small, estimating from a separate set of
data improves coverage about the same amount as
does knowing the order of the process. Coverage is
improved further if we both know p and also estimate
the weights independently of the data.

Table 1: Achieved Coverage for the AR(2) Process,
a=0.10

k
n  Case ) 10 20
100 UBM 0.780 0.634 0.481
WBM 0.818 0.737 0.693
Weights 0.853 0.765 0.710
independent
p known 0.846 0.780 0.780
p known, weights 0.879 0.817 0.793
independent
p, ¢ known 0.915 0.897 0.901
200 UBM 0.840 0.766 0.630
WBM 0.861 0.845 0.782
Weights 0.873 0.853 0.799
independent
p known 0.880 0.872 0.841
p known, weights 0.891 0.884 0.851
independent
p, ¢ known 0.907 0.915 0.908

When everything is known about the AR(2) pro-
cess from which the data are generated, the cover-
age is on average about 0.90, as expected. This is
the only case in which coverage does not deteriorate
as the number of batches increases. An interesting
result in the AR(2) experiments is that if we have
n = 100 data values and use another set of data of
the same size to estimate the weights, we still do at
least as well as UBM with n = 200. However, we
would be better off using WBM on the full set of 200
data values.

Table 2 shows for each n and k estimates of the
relative bias '

(5[5 (7)) ver (7)) rvs (7)

for each case and the actual variance for both UBM
and WBM. (For UBM X replaces Y in the above ex-
pression.) For the most part there is a close inverse
relationship between relative bias in the variance esti-
mator and coverage. The variance estimator is biased
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low for all cases except that it is unbiased when both
p and ¢ are known, as expected. The relative bias is
greatest for UBM. Estimating weights independently
appears to increase the relative bias on average, even
though this improves coverage.

Table 2: Estimated Relative Bias of Variance Esti-
mators and True Variance for AR(2) Process

k
n  Case 5 10 20
100 UBM -0.529 -0.724 -0.844
WBM -0.320 -0.493 -0.586
Weights -0.373 -0.518 -0.563
independent
p known -0.142  -0.309 -0.404
p known,weights  -0.243 -0.356 -0.362
independent
p, ¢ known 0.013 -0.002 -0.007
Var X 0.873 0.873  0.873
Var Y 1.111 1250 1.667
200 UBM -0.318 -0.519 -0.703
WBM -0.144 -0.241 -0.368
Weights -0.171  -0.257 -0.392
independent
p known -0.015 -0.054 -0.146
p known,weights -0.063 -0.099 -0.187
independent
p, ¢ known 0.021  0.022 -0.003
Var X 0.468 0.468 0.468
Var Y 0.526 0.556  0.625

Results on coverage in Table 3 for the EAR(1) pro-
cess are similar to those for the AR(2). The best
coverage is achieved with WBM and independent
weights. However, the lowest correlation between Y
and Var (Sf_—) occurs when WBM is used with depen-
dent weights, as shown in Table 4.

Figures 1 and 2 show graphically the achieved cov-
erage and average half-length for the M/M/1 queue-
delay process for n = 100 and n = 200, respectively.
The two figures are very similar except that cover-
age improves somewhat for all three cases with larger
n. Coverage with WBM is closer to the target value
of 0.90, but the average half-length is greater. Inde-
pendently estimating the weights decreases the aver-
age half-length slightly while also improving coverage
slightly. _

Table 5 _shows that the estimated correlation of Y
and Var (—}75‘ for the M/M/1 process is less for WBM

than for UBM. The correlation decreases further with
independent weights. However, it increases with n.
In this respect the correlation seems unrelated to the
coverage.

5 CONCLUSIONS

From these experiments, we conclude that coverage
with weighted batch means can be improved by using
a separate run to estimate the weights, but the cov-
erage from simply doubling the original sample size
may be better. Improved identification and estima-
tion for processes that can be well represented by an
ARMA process will also improve coverage. The re-
lationship among coverage, variance estimator bias,

and the correlation of ¥ and Var (7) when weights

are estimated independently seems to go against in-
tuition and should be explored further.
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Figure 1: Achieved Coverage and

Average Half-Length for the M/M/1 Queue-Delay
Process, n = 100 and k£ = 5,10,20 (Circle=UBM,
Square=WBM, Diamond=Independent Weights)
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Figure 2: Achieved Coverage and

Average Half-Length for the M/M/1 Queue-Delay
Process, n = 200 and £ = 5,10,20 (Circle=UBM,
Square=WBM, Diamond=Independent Weights)

Table 3: Achieved Coverage for the EAR(1) Process,
a=20.10

k
n  Case 5 10 20

100 UBM 0.768 0.666 0.548
WBM 0.810 0.777 0.756
Weights 0.832 0.793 0.767
independent

200 UBM 0.840 0.774 0.683
WBM 0.875 0.832 0.830
Weights 0.883 0.849 0.839
independent

Table 4: Estimated Correlation of Point and Variance
Estimators for the EAR(1) Process

k

n  Case 5 10 20

100 UBM 0.586 0.682 0.707
WBM 0.509 0.538 0.556
Weights 0.586 0.622 0.633
independent

200 UBM 0.512 0.636 0.653
WBM 0.444 0.527 0.483
Weights 0.503 0.606 0.627
independent

Table 5: Estimated Correlation of Point and Variance
Estimators for the M/M/1 Queue-Delay Process

k

n  Case 5 10 20

100 UBM 0.641 0.725 0.724
WBM 0.522 0.462 0.511
Weights 0.515 0.301 0.174
independent

200 UBM 0.790 0.778 0.823
WBM 0.611 0.508 0.542
Weights 0.605 0.293 0.245

independent



