Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

DYNAMIC NEIGHBORHOOD BOUNDING FOR MONTE CARLO SIMULATION

Jason S. Glazier

Department of Computer Science
Columbia University
New York, NY 10027, USA

ABSTRACT

A general variance reduction technique is presented
that allows the incorporation of ‘expert knowledge’
to speed up some Monte Carlo Simulations. A user
supplied bounding function is introduced that is used
to reduce the number of sampled vector evaluations,
thus potentially leading to a speed up of a Monte
Carlo Simulation. We call the technique Dynamic
Neighborhood Bounding. A detailed case study is
provided to demonstrate the effectiveness of the ap-
proach.

1 INTRODUCTION

Monte Carlo Simulation (MCS) is an important nu-
merical analysis tool in many areas of research, and
1s a popular application of parallel computing. In
this paper, we introduce a variance reduction tech-
nique (VRT) that is applicable in a wide range of
MCS problems.

The MCS problem can be stated as follows. Given
a function f(.) and a probability distribution €, gen-
erate randomly distributed vectors v € Q, and ex-
ecute function evaluations f(v). The vectors gener-
ated are considered to be statistically representative
of real life scenarios. The f(v) calculation is referred
to as a primary estunale calculation (PEC). After
the scenarios and evaluations are completed, statisti-
cal tests are performed to estimate means, variances,
n'™ percentile elements, and confidence levels. These
calculations using the PEC's are referred to as a sec-
ondary estimate calculation (SEC). We define a can-
didate veclor, as a vector v € 2 that has been gener-
ated, but has not yet been evaluated (i.e. a candidate
for evaluation).

We propose a VRT called Dynamic Neighborhood
Bounding (DNB). A VRT attempts to reduce the
variance of the output of a MCS. By reducing the
output variance, either fewer samples may be gener-

466

Salvatore J. Stolfo

Department of Computer Science
Columbia University
New York, NY 10027, USA

ated and evaluated to achieve the same final accu-
racy, or a higher level of accuracy can be achieved
with the same number of samples. There are many
surveys on VRTs Cheng (1986), Nelson (1985) ,Nel-
son (1987), Wilson (1984a), and Wilson (1984b). The
most widely known VRTSs are control variates, strat-
ified sampling, common random numbers, and im-
portance sampling. The similarities and differences
between DNB and both control variates and impor-
tance sampling is discussed in section 3. We will ex-
plain how the other VRTs can be used in conjunciion
with DNB.

DNB reduces the variance by effectively ‘increas-
ing’ the number of samples, without increasing the
number of function evaluations. In standard VRTs,
all candidate vectors, once generated are evaluated.
DNB may decide not to evaluate a candidate vector.
The function evaluation of all unevaluated candidate
vectors are estimated, and are used to increase the
sample count. Every time we estimate an unevalu-
ated candidate vector, the cost of one function eval-
uation is saved, potentially speeding up the overall
MCS. Thus, in problems where the function evalu-
ations are very expensive, a substantial savings in
overall execution time is possible. However, the over-
head of applying DNB is considerable, and must be
amortized by a reduction in the number of function
evaluations.

We distinguish between two types of ezperts, the
domain ezpert seeks a solution of some hard problem
by MCS. The other, the simulation expert , is knowl-
edgeable about MCS and computational complexity,
but may know little about the domain application.
DNB relies on a weak form of domain knowledge to
provide a speed up. Using a domain expert’s knowl-
edge to speed up MCSs is difficult in general and is
usually done in an ad hoc fashion by clever program-
mers. Few generic mechanisms exist. The difficulty is
that one must intimately understand both the domain
of interest as well as sophisticated knowledge of com-

Dynamic Neighborhood Bounding for Monte Carlo Simulation 467

putational complexity in order to make specific time
saving suggestions and formulate heuristics. What
is needed is a general framework to guide a process
whereby the computer expert can ask the domain ex-
pert for specific knowledge to produce a faster MCS.

DNB provides a framework for such a precise
querying of experts with the notion of a bounding
function. The bounding function is provided by an
expert in the domain field, and is the only piece of
expert knowledge needed to implement DNB. Given
a vector v; where f(v1) is known, and a vector vy
where f(ve) is unknown, the bounding function
B(f(v1),v1,v2) bounds the absolute value of the dif-
ference, f(va) — f(v1):

| f(v2) = f(v1) I< B(f(v1),v1,v2)

The bounding function should not be confused with
Euclidean distance. The bounding function may be
any function able to overestimate the absolute de-
viation of f(vy) from f(v;), for some arbitrary prior
sample vi. For our case study presented in section 5, a
non-Euclidean domain specific B() is used to demon-
strate the principle concepts. It is also important that
B() be relatively un-biased.

DNB saves all evaluated vectors in a set, P. When
a candidate vector is generated and is ready to be
evaluated, we first check if it is in a neighborhood of
some p € P, where f(p) is known. f(p) is known be-
cause it was previously evaluated in a prior iteration
of the algorithm. If the candidate vector is, we do
not evaluate it. Although we did not evaluate it, by
knowing that it is in a close neighborhood of p, we
can prove a reduction in variance. If the cost of calcu-
lating f(.) is high and the cost of calculating whether
a candidate vector is a close neighbor of p is cheap
relative to its cost of f(.), we have a potential speed
up, if enough candidate vector evaluations are saved.

We define an e-neighborhood for some p € P to be:

Nep(p) = {ve Q| B(f(p),p,v) < €}

The vector v is in the neighborhood of p iff v €
N p(p). Notice that this is not d(p,v) < € for some
distance metric d. We discuss the effect of ¢ on error
later.

When a candidate vector is not evaluated because
it is a close neighbor of some previously evaluated
point, it is called a hit. This represents a savings of
one function evaluation at the cost of a neighborhood
check on the set of all evaluated vectors. We refer
to the number of hits divided by the total number of
candidate vectors as the hit ratio.

The set of all neighborhoods, for all vectors in P is
defined as:

Nep(P)={veQ|JpeP st.ve Nes(p)}

A neighborhood defines a multi-dimensional volume.
If the vectors were uniformly random, then the pro-
portion of volume taken up by neighborhoods for
large epsilon should be roughly equivalent to the hit

ratio: | Ne g(P) |
hep ~ ————
R
where ||’ denotes a set measure. Note that the

problem of calculating the mean, with uniformly dis-
tributed candidate vectors is the problem of calcu-
lating the multi-dimensional integral of f(.). For this
case B(.) can be chosen to be based on the derivative.
The remainder of the paper is organized as fol-
lows. In section 2 we present the DNB algorithm
which sets the stage for our subsequent discussions.
Section 3 compares DNB to other well known and
similar VRTSs, control variates and importance sam-
pling. Section 4 discusses the class of MCS problems
to which DNB may be applied. Section 5 is a case
study where DNB was applied to a financial simula-
tion to determine pre-settlement risk. Section 6 con-
cludes the paper with a discussion of future work.

2 THE ALGORITHM

The MCS algorithm with DNB is as follows.

1) Input: f(.), B(.),¢, 9

2) initialize P and Q = 0

3) while (more scenarios are needed)

4) generate new scenario v €

5) find one (p, f(p)) € P s.t. v € Ne,p(P)
6) fv) = f(p)

7) add (v, f(v)) to @

8) else

9) evaluate f(v)

10) add (v, f(v)) to P

11) end while

12) Upon completion, we next compute a number

of statistics as follows:
n=|P| and m=|Q |

_ 1 ~
mean: f, = P ;f(p)-!—'%f(v)

After the initialization in line 2, the first operation
of the main loop is to generate a new scenario in line
4. A new scenario will be referred to as a candidate
vector. For each candidate vector v, the algorithm
searches the set P for a neighborhood that contains
v in line 5. If a neighborhood N, g(p) is found in
line 5, then the evaluated point is saved in the set Q
in line 7 as a pair with its corresponding f(v) value,
calculated and previously stored by a prior iteration
of the algorithm at step 10. If v belongs to no neigh-
borhood of P, then f(v) must be evaluated in line 9.

468 Glazier and Stolfo

A candidate vector v will either become an evaluated
vector in P, or an unevaluated vector stored with its
corresponding f value in Q. After enough scenarios
have been evaluated, we run statistics on the output.

In the algorithm above we allowed v to be asso-
ciated with at most one neighborhood N, p(P). As
we will see later in the case study, it is significantly
more accurate to let v fall into many neighborhoods,
i.e. we shall allow multiple hits, and then let our es-
timate of f(v) be the average function value over all
the neighborhoods. In order to allow multiple hits,
we replace lines 5 and 6 in the algorithm with:

5) find R = {f(p) | (p, f(p)) € P s.t. v € N.,p(P)}

6) f(v) = average of set R

Note, a variety of indexing techniques can substan-
tially reduce the time complexity of line 5 for multi-
ple hits. Some of the issues critical to the algorithm’s
success are:

e How should ¢ be set?

e What is the confidence interval?

e What is the error induced by DNB?

e What is the increase in efficiency?

e What algorithms are efficient for locating neigh-

borhoods?

We address these issues in the following sections.

3 COMPARISON TO OTHER VRTs

It 1s important to contrast DNB to two other impor-
tant VRTSs, importance sampling and control vari-
ates. Like DNB, both of these two techniques provide
a means of exploiting domain knowledge in a MCS.
Control variates provides a speed up if the expert
can produce an integrable function g() that approx-
imates f(). It is not essential for g() to be a good
numeric approximation of f(), as long as g() approx-
imates the volatility of f(). By knowing g() we then
compute f(v) —g(v), and add the known expectation
of g(). The closer g() approximates f(), the more
f(v) — g(v) will tend to zero. The B() used in DNB
differs from g() because B() is an overestimate of the
maximum absolute difference of the f() values of any
two candidate vectors, whereas g() is an estimate of
0.

Importance sampling assumes that the expert can
tell us the regions in the probability space that will
give us highly volatile f(). The candidate vector se-
lection algorithm can then be biased to disproportion-
ately sample vectors from these regions. Of course
the output will need to be normalized to adjust for
this bias. DNB does not require the MCS designer
to have knowledge of the areas of greatest volatility.
DNB does not explicitly bias the distribution of can-
didate vectors. DNB can be used even when little is

know about the areas of high volatility or the specifics
of the distribution. However, the B() in DNB can be
similar to importance sampling in the following way.
If an area is known to be volatile, and it is embodied
in B(), small neighborhoods will be created, forcing
DNB to evaluate candidate vectors more frequently
in these volatile areas. In the less volatile areas, if this
knowledge is embodied in B(), large neighborhoods
will be created, and less evaluations will be performed
in these less volatile areas.

The similarities between the three techniques is
that they all provide a precise framework to query
an expert. The main difference is the type of infor-
mation we seek from the expert. All three of the
VRTs force the implementer to do some experimen-
tation to determine if the variance will be reduced,
otherwise, if applied improperly the variance can be
increased. Also, the variance reduction must be sub-
stantial enough to still provide an overall application
speed up due to the increase in overhead of the addi-
tional variance reduction code.

Notice that the other VRTs can be used in conjunc-
tion with DNB. Importance sampling’s only effect is
biasing of the candidate selection algorithm. Control
variates simply subtracts a value for each vector. Nei-

ther of these strategies interferes with the application
of DNB.

4 PROPERTIES OF PROBLEMS

Three characteristics distinguish the class of problems
to which this technique should be applied.

1. Calculating f(.) is expensive.

2. Random scenario generation is inexpensive.

3. An expert in the field can provide a relatively un-
biased bounding function B(.) that can be com-
puted inexpensively. B(.) need not be a tight
bound, although, the tighter this bound, usually
the bigger the savings.

We conjecture that domain experts can give a,
crude estimate of the bounding formula B(.) for many
problems. B(.) may be quite un-tight, but if it exists,
it should be used to reduce the output variance if ev-
ery function evaluation is sufficiently costly. This is
where DNB'’s savings comes from. The bounding for-
mula B(.) is central to the technique. If a domain ex-
pert cannot provide a bounding formula, DNB cannot
be applied. If B(.) is biased the output may achieve
a variance reduction, but the estimator will no longer
be accurate.

If the function is Lipschitz continuous, or differen-
tiable, then B(.) is always bounded by some constant
times the Euclidean distance. This is not always the

Dynamic Neighborhood Bounding for Monte Carlo Simulation 469

best B(.) to use. Often there is a ‘tighter’ bound,
or a cheaper bound. For instance, in the case study
detailed in the next section, we found both a sig-
nificantly cheaper function and tighter bound then
computing the Euclidean distance.

5 CASE STUDY

We chose pre-settlement risk (PSR), Hull (1989), as
our case study. Evaluating PSR is an important fi-
nancial problem that must be considered by every
financial investment firm.

In this problem, a firm holds a portfolio of unset-
tled contracts. We are concerned with the risk of the
counterparty going into bankruptcy and defaulting
prior to settlement. If the counterparty defaults, we
must go to the marketplace to replace the contracts,
and will suffer a financial loss on the contracts that
have a positive value.

The risk of a customer defaulting at time ¢ in the
future can be estimated using a Monte Carlo method
to evaluate PSR. The method for determining PSR
would be to simulate the market variables changing
over time and calculate the effect on portfolio value.
So, in our example, v is the vector of market variables
and f() is the present value of the portfolio at time
t in the future. Actually f() is the maximum of the
present value or 0 since we can never have a negative
risk, at best we can have a risk of 0. In order to assess
risk over time, a separate simulation for every time
slice t must be performed. A Company could then
choose the maximum 97% confidence interval of any
of the time slices, as an acceptable assessment of risk.
Based on this assessment of the portfolio risk and the
probability that the customer will default, a credit
limit for the customer can be set.

For the purposes of demonstrating the effectiveness
of DNB, we will only be looking at one time slice of
risk, one month in the future. Instead of dealing with
a portfolio of many different financial instruments, we
will only consider portfolios of only forward foreign
exchange contracts. A full system would consider all
time slices, and all types of foreign exchange and in-
terest rate securities including options, bonds, swaps,
futures, and so on.

5.1 Calculations

There are four stages of the calculation: calculat-
ing the initial market at to (‘todays’ rates), random
number generation, generating forward forward FX
rates, and calculating the present value of the portfo-
lio marked to the simulated rates. A forward forward
rate would be a forward rate beginning some time in

the future. An example of a forward forward contract
would be a one year forward rate where the contract
starts in 1 month from the contract date. The derived
rates are stored for the remainder of the simulation.

The initial market at ¢ is a combination of quoted
rates and derived rates. The spot FX and money mar-
ket interest rates for each of the countries are quoted
rates. Spot rates are stored as vectors. All foreign ex-
change rates are stored quoted relative to US dollars
(USD). All interest rates and derived zero coupon dis-
count factors are stored as matrices where currencies
are the rows and the tenors are the columns. Com-
mon tenors would be 1, 2, 3, 6, 9, 12, 24, 36, 60, and
120 month rates. From the money market rates we
derive zero coupon discount factors. Using the zero
coupon discount factors with the spot rates, we derive
the forward FX rates. A one month forward FX rate
is what the market believes that FX spot rate will
be in one month. Since this is the best estimate we
have, the simulated forward FX rates will be centered
around this initial estimate of the forward FX rates.
Similarly, the simulated money market rates will be
centered around the 1 month forward interest rates.

The other inputs to our program will be a cross
correlation matrix of currencies. Instead of using a
three dimensional cross correlation matrix for the in-
terest rates, we make the simplifying assumption that
the volatility of the interest rates is 16% for any cur-
rency and tenor, and that there are no interest rate
correlations between different countries.

One random scenario is calculated by first gener-
ating a vector of multivariate normal random num-
bers to be used in the simulation of forward FX spot
rates. Generating a vector of independent normal
random numbers with 16% volatility to be used in
the simulation of forward zero discount coupon fac-
tors. Simulating the one month forward FX spot
rates, which are centered around the initial estimate
of the one month forward FX rates. Simulatinga ran-
dom change in the money market rates. From these,
derive a forward zero discount coupon factor matrix.
Use the forward FX spot rates and the forward zero
discount coupon factor matrix to derive the matrix
of forward forward FX for various tenors rates. The
forward forward FX rates (FFFXR) is a matrix of
forward rates for every tenor starting at time ¢. The
FFFXR matriz is the candidate vector v.

Calculating f() is a multistage calculation. First
we mark the contracts to the simulated forward for-
ward FX rates. Since we are considering the risk of
default in a month, we need to only consider con-
tracts that have maturities greater than or equal to
one month. Because the counterparty will not honor
contracts with positive value to the firm, our maxi-

470 Glazier and Stolfo

mum loss (maximum risk) is the sum of all positive
present value (pv) over the set of all contracts.

Our f() calculation is the calculation of maximum
loss. Notice that f() can be arbitrarily expensive
to calculate since there can be an arbitrarily large
number of contracts. A large customer could have
over 1000 forward FX contracts in their portfolio.
Also note that if more security types are added, since
we have done a full simulation of the interest rate
environment, random scenario generation would not
take more time, only the cost of f() would increase.
Adding more security types would only further ex-
acerbate the computational demand thus creating a
better environment for DNB.

5.2 Applying DNB to PSR

So far we have described v and f(). The only ad-
ditional information needed to implement DNB is to
give a bounding function B(). The bounding function
must be calculated quickly. For this specific problem,
interest rates shifts have much less dramatic effect on
the pv of the portfolio than a shift in a forward FX
rates. The FFFXRs are a function of forward zero
discount coupon factors and forward FX spot rates.
We condensed the maximum interest rate shift into
a constant. By analysing the calculations, we found
that the forward FX rates could never be more than
1.9 times the absolute difference of the contracted
rate and the forward FX spot rates. The constant
1.9 is specific to the formulas in this simulation and
is not generalizable to other interest rate models, or
if new types of securities are added. With this major
simplification, only the forward FX spot rate vector
needs to be saved. Remember B() is an overestimate
of the difference, it is not a tight bound. This saves
a lot of time over storing the entire FFFXR matrix.
Recall control variates and importance sampling
VRTs. For this problem control variates would re-
quire the MCS designer to construct an inexpensive
function g() that approximates f(). For importance
sampling, we would need to know the areas that
would give use the most volatile f(). It would seem
reasonable to use the extreme rate change scenarios
to guide the importance sampling. This works for our
simple test case of forward FX contracts, but does not
work in general for all securities. Sometimes the max-
imum loss occurs when the rates remain constant!

5.3 Indexing data points

For PSR simulation the stored vectors were indexed
based on the sum of the absolute distance between
each element of the forward spot vector and the ini-
tial spot vector. Points in the same bin are not neces-

sarily in the same e-neighborhood. Two forward spot
vectors can deviate by the same distance, but may
deviate in different ways.

We initially decided to break the stored points into
200 bins. For epsilon values of up to 40MM (MM is an
abbreviation for 1,000,000, so 40MM is 40 million), at
most 15 of the 200 bins needed to be checked. From
the indexed value, we inspected the 7 neighboring
bins on either side of the indexed value. This reduced
the number of points that needed to be checked by a
factor of about 8.

5.4 Experimental Results

In order to analyze the variance of the output of a
Monte Carlo simulation, for a given epsilon, we must
perform hundreds of complete simulations, where
each complete simulation consists of thousands of
simulations.

In this problem, we are interested in the stan-
dard deviation of the average, 84.1345% element, and
97.7250% elements. We will refer to these as our three
metrics. Standard metrics give us a way to intel-
ligently compare different alternatives. These met-
rics were chosen because if the output distribution
were normal (Gaussian), these would be the average,
first and second standard deviation elements. Also,
it is important to make the standard deviation mag-
nitude independent, so we divide by the mean, and
express it as a percentage. We felt that this was a
better method of displaying the information than in
numbers with magnitude. The mean used both in
the standard deviation calculation and the division to
make the standard deviation magnitude independent
is the ’local’ sample mean. In addition to the stan-
dard metrics we needed standard rates and a stan-
dard portfolio. We choose rates that we had stored
from over one year ago and used a composite portfo-
lio of 115 contracts totalling approximately 500MM,
using 15 currencies, that closely mimicked an actual
portfolio.

There are general trends to notice that will be il-
lustrated in figures 1-6, and table 1. We conjecture
that these trends are universal across many DNB ap-
plications, although much experimentation must be
done to make this conclusion firm.

Figure 1 displays the number of candidate vectors
in a simulation verses the sample standard deviation
for our three metrics. Figure 1 does not use DNB.
For example, if we perform five hundred simulations
of four thousand candidate vectors each, the standard
deviation of the 500 averages is 0.43%, the standard
deviation of the 500 84% elements is 0.64%, and the
standard deviation of the 500 97% elements is 0.90%.

Dynamic Neighborhood Bounding for Monte Carlo Simulation 471

There are a few trends to notice on figure 1. First,
notice that the standard deviation of the 97% element
is always greater than the standard deviation of the
84%-element, and the standard deviation of the 84%-
element is always greater than the standard deviation
of the average element. The second thing to notice is
that the sample standard deviation decreases as the
number of candidate vectors increases.

Figure 2 is the number of candidate vectors vs. the
hit ratio for various epsilon. As the number of can-
didate vectors increases, the hit ratio increases and
approaches 100%, and the hit ratio first increases
quickly then increases slowly.

Figure 3 is the most important figure of our study.
For concreteness, the data points of figure 3 are de-
tailed in table 1. The sample variance with and with-
out using DNB is compared for our three metrics. We
make the assumption that the time to do a neighbor-
hood check is negligible compared to the time to do
an f() calculation. With this assumption we ignore
the number of candidate vectors and only compare
the number of evaluated vectors necessary to achieve
a given variance.

For example, for an epsilon of 35MM, the standard
deviation of the 97%-element is 0.840% (although
having epsilon greater than 5% of the portfolios to-
tal value may seem high, remember that B() can be
a large overestimate, the true error). This was com-
puted for 5000 candidate vectors with a hit ratio of
3450/5000, or 69%. So, only 1550 points were eval-
uated out of the 5000. Assuming that the cost of a
neighborhood check is trivial compared to an f() cal-
culation, it is instructive to compare the standard de-
viation of the 97% element of 1550 evaluations with-
out DNB. This the essence of figure 3. The bar charts
at the bottom of the figure displays our three metrics
with DNB for the various epsilon, and the line chart
displays corresponding three metrics without DNB for
an equivalent number of evaluations determined by
equating the hit ratio when DNB is used.

Figure 4 is a derivative of figure 3 (and table 1).
Figure 4 measures the percentage improvement of us-
ing DNB.

When evaluating a choice of epsilon, there are two
criteria: is the variance reduced, and is the estimator
still accurate? It is irrelevant if we can reduce the
variance of the output, but we are no longer predict-
ing the correct value. Figure 5 shows the explosion
of error of the estimator when epsilon is chosen too
large. By running 500 simulations of 10,000 simula-
tions without using DNB, we know the ‘correct’ val-
ues of our three metrics. We can use these correct
values and see how far the absolute difference of the
correct value and our estimator value deviate, at var-

ious epsilon. Looking at figure 5, we can see that
the estimators are very accurate up to an epsilon of
about 50MM. After 50MM, the standard deviation of
the 84% and 97% elements start to vary drastically.

All the previous figures assumed multiple hits. Re-
call that multiple hits refers to allowing a candidate
vector to ’hit’ with multiple vectors in P. Figure 6
is the same as figure 5, but for single hits (a candi-
date vector may ’hit’ with at most one vector in P).
Notice in figure 6 that the estimator almost immedi-
ately becomes too inaccurate. We believe that this
is due in part to the indexing structure specific to
our implementation. It is possible that a different in-
dex structure would have produced better results for
figure 6.

The most important thing to notice when looking
at the charts is that the estimator of the mean is
accurate for moderate epsilon and at those epsilon,
DNB delivers large variance reductions.

6 CONCLUSION

The proposed DNB technique is not without prob-
lems:

¢ Experimentation must be done to efficiently use
DNB. There is no general a priori automatic pro-
cedure for determining the number of candidate
vectors and evaluation, how to index the data
points, the ‘tightness’ of the bounding function
B(), and the proper setting of e. We are currently
working on a software tool to aid the testing of
a DNB implementation, to provide a user with

an experimental means of exploiting the use of
DNB.

e DNB increases the complexity of the MCS pro-
gram. However, our experience teaches that it
is not a major programming effort to add DNB
to an existing MCS application. Additional soft-
ware tools are being developed to make the pro-
cess easier.

o If the time to calculate f() is not large compared
to the time to perform a neighborhood check
and random scenario generation, the overhead
of DNB may actually slow down the overall per-
formance of the program.

However, if DNB is applied appropriately in a well
engineered simulation then:

e DNB can provide a substantial output variance
reduction, and can reduce overall execution time.

¢ DNB provides a general mechanism for domain
expert - simulation expert interaction.

472 Glazier and Stolfo

140.00% 7
3.5000% T 5 .
.00%
3.0000% t 5 120.00
i s £ 100.00%
3 2.5000% 5 § X
: . Avg H
Q
v 2.0000% T3 2 g 0000%
3 ad . QJ 84% Elem 3 :z‘
, 2 60.00%
2 15000% 7,3 .., . 97% Eem 5 p
LI - <
‘é 1.0000% = ¢ : . 3 «000% //
- .. * . . 1
L Svw Sa ga Q ‘e o 4 o o o . 3
o.sooosu\, ' e sed ©33% 33399423 z 20.00%
0.00%
0.0000%
0 2000 4000 8000 8000 10000 20 25 30 s 0
Numbder of Cand. Vecs. Eosilon (in mdllons)

Figure 1: Number of Cand. Vecs. vs. Sample Devia- Figure 4: Percentage Improvement using DNB
tion

80.00% 1 8.0000%
- I .
70.00% . - | . N
60.00% .
T doMM § 4.0000% . .
$0.00% Kl
3 | | —3— J0MM 3 1.0000% . s
2 0000 L]
= 40.00% s = a
: /. M | . :]) . .
= - - ! E
30.00% | . fﬂ/;,fa" | —— 20MM 3 2.0000% 1 L . El .
20.00% o« e s .
I 1.0000% « ; a2 0. c .
. .
10.00% T f M,..g—o—o—o—» . au‘c.a - -
0.00% — e 0.0000% ——2as2d 1
0 500 1000 1500 2000 0 so 100 150 200

Number ot Cand. Vecs. Eosdon (in milions)

Figure 2: Hit Ratio vs. Num. of Cand. Vecs. for Figure 5: Estimator Accuracy with Multiple Hits
Various Epsilon

! a 9o
. 9.0000% T .
e IR Avg w/ONB 3.0000% + ‘3 o
:% BB 54% Clem wiONB § 7.0000% {» ad 2 H R
s " 37% Eem wiONB 2 6.0000% © sov” 37% Eom
3 & 5.0000% | gr. 3 g4% Bem
g T Aw § T MRS -
a 3 4.0000% T qqi Avg
% ——— 34% Elem i 1.0000% + :g: -
3 K 97% Elem 2.0000% } 5o
1.0000% % 2t
0.0000% sul
4] 20 25 30 s 40 Q SO 100 150 200
Epsdon (in Milions) espsdon
Figure 3: Sample Deviation with and without DNB Figure 6: Estimator Accuracy with Single Hits
Table 1: Sample Deviation with and without DNB
Num DNB w/5000 Candidate Vecs. Without DNB
Epsilon | Evals. Avg. | 84%-Elem | 97%-Elem Avg. | 84%-Elem | 97%-Elem

0] 5000} 0.4101% 0.5899% 0.7930% | 0.4101% 0.5899% 0.7930%
20 | 4350 | 0.3867% 0.5635% 0.7625% | 0.4224% 0.5728% 0.8060%
25 | 3330 | 0.3883% 0.5843% 0.7970% | 0.4667% 0.6812% 0.9354%
30| 2330 | 0.3778% 0.5807% 0.7552% | 0.3765% 0.8597% 1.0869%
35| 1350 | 0.4123% 0.5955% 0.3448% | 0.6875% 1.0316% 1.4078%
40 | 1050 | 0.3824% 0.6008% 0.8761% | 0.8419% 1.1812% 1.7270%

Dynamic Neighborhood Bounding for Monte Carlo Simulation 473

DNB is being implemented in a general and easy to
use software system to allow an engineer or analyst a
way of experimenting with this technique.

ACKNOWLEDGMENTS

We thank Terrance Boult, Michael Elhadad, Paul
Glasserman, and Spassimir Paskov for many useful
discussions that improved the ideas presented in this
paper. This work has been supported in part by the
New York State Science and Technology Foundation
through the Center for Advanced Technology under
contract NYSSTFCU01207901.

REFERENCES

Russell C.H. Cheng, Variance Reduction Methods,
Proceedings of the 1986 Winter Simulation Con-
ference

John C. Hull, Options, Futures, and other Derivative
Securities, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1989

Barry L. Nelson, A Decomposition Approach To Vari-
ance Reduction, Proceedings of the 1985 Winter
Simulation Conference

Barry L. Nelson, Variance Reduction for Simulation
Practitioners, Proceedings of the 1987 Winter
Simulation Conference

James R. Willson, Variance Reduction Techniques for
Digital Stmulation, American Journal of Mathe-
matical and Management Sciences, Vol. 4, Nos. 3
& 4, p277-312, 1984

James R. Willson, Variance Reduction in Simulation,
Proceedings of the 1984 Winter Simulation Confer-
ence

AUTHOR BIOGRAPHIES

JASON S. GLAZIER is a doctoral candidate at
the Department of Computer Science, Columbia Uni-
versity. He graduated in 1989 with a B.S. in CS from
Johns Hopkins University, and in 1991 with a M.S.
in CS from Columbia University. His research inter-
ests include computationally complex financial appli-
cations with emphasis on allocation problems, opti-
mizations, parallel processing, and simulations. In
1992 he founded Complex Computing Company, Inc.
which actively develops products for the financial in-
dustry.

SALVATORE J. STOLFO is an associate pro-
fessor of computer science at Columbia University.
His main fields of interest are artificial intelligence,
knowledge-based systems, and parallel processing.

He has published extensively in those fields. He was
the principal architect of the 1023-processor DADO2
parallel computer and ACE, one of the first widely
deployed expert systems. He consults for large com-
panies in the information systems business. Stolfo
received his B.S. in computational mathematics from
Brooklyn College in 1974, and his Ph.D. in CS from
Courant Institute, New York University, in 1979.

